阅读排行

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部
Please wait a minute...
  • 全选
    |
  • 研究论文
    WU Xuan, JIAO Liang, DU Dashi, XUE Ruhong, WEI Mengyuan, ZHANG Peng
    地理学报(英文版). 2024, 34(1): 146-164. doi: 10.1007/s11442-024-2199-x

    Current ecosystem models used to simulate global terrestrial carbon balance generally suggest that terrestrial landscapes are stable and mature, but terrestrial net primary productivity (NPP) data estimated without accounting for disturbances in species composition, environment, structure, and ecological characteristics will reduce the accuracy of the global carbon budget. Therefore, the steady-state assumption and neglect of elevation-related changes in forest NPP is a concern. The Qilian Mountains are located in continental climate zone, and vegetation is highly sensitive to climate change. We quantified aboveground biomass (AGB) and aboveground net primary productivity (ANPP) sequences at three elevations using field-collected tree rings of Picea crassifolia in Qilian Mountains of Northwest China. The results showed that (1) There were significant differences between AGB and ANPP at the three elevations, and the growth rate of AGB was the highest at the low elevation (55.99 t ha-1 10a-1). (2) There are differences in the response relationship between the ANPP and climate factors at the three elevations, and drought stress is the main climate signal affecting the change of ANPP. (3) Under the future climate scenario, drought stress intensifies, and the predicted decline trend of ANPP at the three elevations from mid-century to the end of this century is -0.025 t ha-1 10a-1, respectively; -0.022 t ha-1 10a-1; At -0.246 t ha-1 10a-1, the level of forest productivity was significantly degraded. The results reveal the elevation gradient differences in forest productivity levels and provide key information for studying the carbon sink potential of boreal forests.

  • LI Xuhong, LIU Yansui, GUO Yuanzhi
    地理学报(英文版). 2023, 33(11): 2257-2277. doi: 10.1007/s11442-023-2175-x

    Exploring the coupling coordinated level of rural population-land-industry (PLI) and its underlying driving mechanism contributes to the scientific decision-making on rural sustainable development. This study assessed the coupling coordinated level of PLI based on an improved evaluation index system and then revealed the regional differentiation and driving mechanism in China’s rural areas in 2020. The results showed that the rural PLI coupling coordinated degree was 0.4694, and thus was in the stage of approximate incoordination. In addition, China’s rural PLI coupling coordinated degree formed a spatially heterogeneous pattern with high levels in the northeast, eastern and central regions, and the intragroup difference contributed more than 80% to the total difference. The rural PLI coupling coordinated level was influenced by the combined effects of rural kernel and peripheral systems, but the rural kernel system mostly determined the differentiation. In the future, rural areas should first exploit population quality improvement projects, land consolidation projects and industrial integration development strategies to promote benign mutual feedback of PLI. Second, driving factors should be comprehensively regulated by implementing a “one village, one product” strategy, breaking the urban-rural dual system, improving agricultural machinery subsidies policy, and promoting urban-rural integrated development.

  • 研究论文
    YANG Hua, XU Yong, ZHOU Kan, WANG Lijia, XU Lin
    地理学报(英文版). 2024, 34(1): 41-61. doi: 10.1007/s11442-024-2194-2

    Construction land is the leading carrier of human activities such as production and living. Evaluating the construction land suitability (CLS) on the Qinghai-Tibet Plateau (QTP) holds significant implications for harmonizing the relationship between ecological protection and human activity and promoting population and industry layout optimization. However, no relevant studies provide a complete CLS assessment of the QTP. In this study, we developed a model-based CLS evaluation framework coupling of pattern and process to calculate the global CLS on the QTP based on a previously developed CLS evaluation model. Then, using the land-use data of 1990, 2000, 2010, and 2020, we examined the adaptability of existing construction land (ECL) to the CLS assessment result through the adaptability index and vertical gradient index and further analyzed the limitations of maladaptive construction land. Finally, we calculated the potential area of reserve suitable construction land. This article includes four conclusions: (1) The highly suitable, suitable, moderately suitable, marginally suitable, and unsuitable CLS classes cover areas of 0.33×104 km2, 10.42×104 km2, 18.06× 104 km2, 24.12×104 km2, and 205.29×104 km2, respectively. Only approximately 11% of the study area on the QTP is suitable for large-scale permanent construction land, and approximately 79.50% of the area is unsuitable under current economic and technological conditions. (2) The ECL adaptability index is 85.16%, 85.93%, 85.18%, and 78.01% during 1990-2020, respectively, with an average adaptability index exceeding 80% on the QTP. The ECL distribution generally conforms to construction land suitable space characteristics but with a significant spatial difference. (3) From 1990 to 2020, the maladaptive ECL was dominated by rural settlement land, transport land, and special land, with a rapidly increasing proportion of urban and other construction land. The maladaptive ECL is constrained by both elevation and slope in the southern Qinghai Plateau, the Hengduan Mountains, and the Qilian Mountains. In contrast, elevation is significantly more limiting than slope in the northern Tibet Plateau, the Gangdis Mountains, and the Himalayan Mountains. (4) The potential area of reserve suitable construction land is 12.41×104 km2, accounting for 4.81% of the total land area of the QTP, and the per capita area is 9928 m2. Regions of Qaidam Basin, Gonghe Basin, and Lhasa-Shannan Valley have the richest and most concentrated land resource of reserve suitable construction land. The research results provide spatial decision support for urban and rural settlement planning and ecological migration on the QTP.

  • 研究论文
    SUN Han, WANG Xiangping
    地理学报(英文版). 2024, 34(1): 131-145. doi: 10.1007/s11442-024-2198-y

    The taiga vegetation in Western Siberia has been seriously threatened by climate warming in recent decades. However, how vegetation in different growing states and climate conditions responds to climate changes differently is still unclear. Here we explore the vegetation activity trends in Western Siberia taiga forests using the annual rate of change in leaf area index (LAI) during 1982-2018 so as to answer two questions: (1) how did climate warming affect taiga vegetation activity in the recent last decades? (2) Did the growing state of taiga forest affect its response to climate warming? Our results revealed that climate warming promoted taiga vegetation activity in Western Siberia before 2000. However, continuous warming caused excessive evapotranspiration and led to decreased vegetation activity after 2000. Moreover, the intensity of vegetation growth response to warming was positively related to canopy height and LAI, indicating that both the positive and negative effects of warming were more significant in taiga forests in better growing state. Since these forests generally have higher productivity and play more important roles in ecosystem functioning (e.g., carbon sink and biodiversity conservation), our results highlight their vulnerability to future climate change that need more research attention.

  • HOU Yali, KUANG Wenhui, DOU Yinyin
    地理学报(英文版). 2023, 33(12): 2359-2376. doi: 10.1007/s11442-023-2180-0

    Megacities serve as global centers for economic, cultural, and high-tech industries. The structural features and population agglomerations are typical traits of urbanization, yet little is known about the morphological features and expansion patterns of megacities worldwide. Here we examined the spatiotemporal variations of urban land in megalopolises from 2000 to 2020 using the Urban Expansion Intensity Differentiation Index. The fractal features and expansion patterns of megacities were analyzed using the Area-Radius Multidimensional Scaling Model. Urban land use efficiency was then evaluated based on the linear relationship between urban land area and population. We found that Southeast Asia and China were the hotspots of urban expansion in megacities from 2000 to 2020, with urban land areas expanding by 3148.32 km2 and 5996.26 km2, respectively. The morphological features and expansion patterns of megacities exhibited a growing trend towards intensification and compactness, with the average radial dimension increasing from 1.54 to 1.56. The annual decrease in fractal dimensions indicated the integration of inner urban areas. North America and Europe megacities showed a low urban land use efficiency, with a ratio of urban land area to population ranging from 0.89 to 4.11 in 2020. Conversely, South Asia and Africa megacities exhibited a high urban land use efficiency, with the ratios between 0.23 and 0.87. Our results provide information for promoting efficient urban land utilization and sustainable cities. It is proposed to control the scale of urban expansion and to promote balanced development between inner and outer urban areas for achieving resilient and sustainable urban development.

  • 研究论文
    CHEN Mingxing, XIAN Yue, HUANG Yaohuan, SUN Zhigang, WU Chengbin
    地理学报(英文版). 2024, 34(1): 25-40. doi: 10.1007/s11442-024-2193-3

    Cities are the key areas for human beings to achieve sustainable development goals in the future. Estuarine cities are a special type of coastal city in urgent need of a clear definition. This paper proposed that estuarine cities are cities developed on the coast where rivers and oceans meet and defined four connotations, including the intersection of rivers and marine water systems, the coordinated development of land and oceans, the location advantages of connecting rivers and seas, and the important fragility of the ecological environment. We used HydroSHEDS, OSM, GPW, and urban socioeconomic statistics and selected 50 estuarine cities with large rivers as representatives to summarize the main geographical basis and socioeconomic characteristics. Cities are primarily found in low-altitude, flat regions with average annual temperatures that mainly vary from 10°C to 25°C, relatively abundant precipitation, and extensive biological resources. There are substantial variations in the socioeconomic features of estuarine cities. We proposed eight development patterns, including open and inclusive city spirit, high-quality livable cities, high-quality development driven by innovation, integration of internal and external communication with ports and cities, construction of an international financial center, ecological environment protection and restoration, active promotion of cultural tourism, and positive international exchanges.

  • REN Jinyuan, GUO Xiaomeng, TONG Siqin, BAO Yuhai, BAO Gang, HUANG Xiaojun
    地理学报(英文版). 2023, 33(11): 2175-2192. doi: 10.1007/s11442-023-2171-1

    The increasing frequency of recent droughts has an adverse effect on the ecosystem of the Mongolian Plateau. The growth condition of NPP is considered an indicator of the ecological function. Therefore, identifying the relationship between NPP and drought can assist in the prevention of drought-associated disasters and the conservation of the ecological environment of the Mongolian Plateau. This study used the Carnegie-Ames-Stanford Approach (CASA) model to simulate the NPP capacity of the Mongolian Plateau between 1982 and 2015, as well as drought indicators (drought probability, vulnerability, and risk) to explore the drought risk of NPP. The findings pointed to an overall increase in NPP with regional variances; however, the NPP rate in Inner Mongolia was considerably higher than that in Mongolia. The standardized precipitation evapotranspiration index (SPEI) showed an overall downward trend, with Inner Mongolia experiencing a substantially lower rate of decline than Mongolia. The areas most likely to experience drought were primarily in the center and north while the areas with the highest drought vulnerability were primarily in the northeast, center, and southeast. Mongolia showed a higher probability of drought compared to Inner Mongolia. Drought-prone regions of the Mongolian Plateau increased during the 21st century while drought-vulnerable areas increased and shifted from north to south. Alpine grasslands and coniferous forests were least vulnerable to drought, while other vegetation types experienced temporal variation. In the 21st century, the primary determinants of drought risk shifted from precipitation and the normalized difference vegetation index (NDVI) to temperature and relative humidity.

  • LIU Yan, CHENG Yu, ZHENG Ruijing, ZHAO Huaxue, WANG Yaping
    地理学报(英文版). 2023, 33(11): 2295-2320. doi: 10.1007/s11442-023-2177-8

    Regional and persistent PM2.5 pollution seriously undermines the development of urban ecological civilizations and the advancement of high-quality economies. The producer service sector, an example of a typical knowledge-intensive service industry, plays an important role in advancing the manufacturing industry and fostering economic growth while concurrently improving urban environmental conditions. Based on panel data of prefecture-level cities in the Yellow River Basin from 2006 to 2019, this study constructed a Spatial Durbin Model and a mediation effect model to comprehensively explore the impact of producer services agglomeration on PM2.5 pollution. The main conclusions are as follows: (1) From 2006 to 2019, PM2.5 pollution in the study area exhibited an initial rise followed by a subsequent decline, with notable spatial heterogeneity. PM2.5 pollution in the lower reaches of the Yellow River was significantly higher than in the middle and upper reaches. In addition, the spatial pattern of producer services agglomeration showed distinct “core-edge” characteristics. (2) The agglomeration of producer services had a significant negative impact on local and adjacent PM2.5 pollution, and there was a more pronounced haze reduction effect in the case of specialized agglomerations of producer services and low-end producer services. (3) The agglomeration of producer services indirectly improved PM2.5 pollution by promoting technological innovation and optimizing industrial structure, with the latter playing a greater mediating effect. This study not only helps expand the theoretical and empirical research on producer services agglomeration but also offers valuable insights for pursuing a green transformation of the Yellow River Basin by optimizing industrial patterns through the producer services sector. This approach represents a reference for curbing PM2.5 pollution and guiding the region toward a greener future.

  • 研究论文
    REN Siyu, JING Haichao, QIAN Xuexue, LIU Yinghui
    地理学报(英文版). 2024, 34(2): 252-288. doi: 10.1007/s11442-024-2204-4

    In this study, the interplay between ecosystem services and human well-being in Seni district, which is a pastoral region of Nagqu city on the Qinghai-Tibet Plateau, is investigated. Employing the improved InVEST model, CASA model, coupling coordination model, and hierarchical clustering method, we analyze the spatiotemporal patterns of ecosystem services, the levels of resident well-being levels, and the interrelationships between these factors over the period from 2000 to 2018. Our findings reveal significant changes in six ecosystem services, with water production decreasing by 7.1% and carbon sequestration and soil conservation services increasing by approximately 6.3% and 14.6%, respectively. Both the habitat quality and landscape recreation services remained stable. Spatially, the towns in the eastern and southern areas exhibited higher water production and soil conservation services, while those in the central area exhibited greater carbon sequestration services. The coupling and coordination relationship between ecosystem services and human well-being improved significantly over the study period, evolving from low-level coupling to coordinated coupling. Hierarchical clustering was used to classify the 12 town-level units into five categories. Low subjective well-being townships had lower livestock breeding services, while high subjective well-being townships had higher supply, regulation, and support ecosystem services. Good transportation conditions were associated with higher subjective well-being in townships with low supply services. We recommend addressing the identified transportation disparities and enhancing key regulatory and livestock breeding services to promote regional sustainability and improve the quality of life for Seni district residents, thus catering to the diverse needs of both herdsmen and citizens.

  • 研究论文
    WEI Zhongyin, TU Jianjun, XIAO Lin, SUN Wenjing
    地理学报(英文版). 2024, 34(10): 1925-1952. doi: 10.1007/s11442-024-2277-0

    Since China’s reform and opening-up in 1978, rapid urbanization has coincided with a surge in carbon emissions. Statistical, geospatial, and time-series analysis methods were utilized to examine the dynamic relationship between urbanization and carbon emissions over the past 43 years; elucidate the mechanisms through which dimensions of urbanization, such as population, land, economy, and green development, impact carbon emissions at various stages; and further explore the heterogeneity among cities of different scales. The analysis reveals that 2001 and 2011 represent significant turning points in China’s carbon emission growth “S” curve. The phase of rapid carbon emissions growth is associated with an increase in the urbanization rate from 40% to 50%, a shift in industrial structure from being dominated by secondary industry to tertiary industry, and a decrease in urban population density from 19,600 to 16,000 people per square kilometer of built-up area. Regions northeast of the “Bayannur-Ningde Line” have experienced rapid increases in carbon emissions, with large and medium-sized cities being the primary contributors nationwide. The TVP-VAR results indicate that higher urbanization rates have short-term carbon and mid- to long-term carbon-reducing effects. Population concentration in large cities facilitates short- to mid-term carbon reduction, whereas intensive urban development, industrial upgrading, and the promotion of clean energy use have sustained carbon-reducing effects. Carbon emissions exhibit path dependence. Increased urbanization rates in mega-cities and super-cities result in carbon-increasing effects, whereas the optimization of industrial structures exerts an inhibitory effect on carbon emissions in medium-sized and large cities. The changes in impulse response values of various variables are influenced by the developmental trajectory of Chinese cities from “small to large and then to agglomerations.” These recommendations indicate the necessity for differentiated emission reduction strategies contingent on the specific regions and types of cities in question.

  • 研究论文
    ZHANG Haiping, TANG Guoan, XIONG Liyang, YANG Xin, LI Fayuan
    地理学报(英文版). 2024, 34(1): 165-184. doi: 10.1007/s11442-024-2200-8

    Digital elevation model (DEM) plays a fundamental role in the study of the earth system by expressing surface configuration, understanding surface process, and revealing surface mechanism. DEM is widely used in analysis and modeling in the field of geoscience. However, traditional DEM has the defect of single attribute, which is difficult to support the research in earth system science oriented to geoscience process and mechanism mining. Hence, realizing the value-added data model on the basis of traditional DEM is necessary to serve digital elevation modeling and terrain analysis under the background of a new geomorphology research paradigm and earth observation technology. A theoretical framework for value-added DEM that mainly includes concept, connotation, content, and categories, is constructed in this study. The relationship between different types of value-added DEMs as well as the research significance and application category of this theoretical framework are also proposed. The following are different methods of value-added DEMs: (1) value-added methods of DEM space and time dimensions that emphasize the integration of the ground and underground as well as coupling of time and space, (2) attribute-based value-added methods composed of material (including underground, surface, and ground) and morphological properties, and (3) value-added methods of features and physical elements that consider geographical objects and landform features formed by natural processes and artificial effects. The digital terrace, slope, and watershed models are used as examples to illustrate application scenarios of the three kinds of value-added methods. This study aims to improve expression methods of DEMs under the background of new surveying and mapping technologies by adding value to the DEM at three levels of dimensions, attributes, and elements as well as support knowledge-driven digital geomorphological analysis in the era of big data.

  • 研究论文
    SUN Hongri, ZHOU Guolei, LIU Yanjun, FU Hui, JIN Yu
    地理学报(英文版). 2024, 34(1): 89-111. doi: 10.1007/s11442-024-2196-0

    Urban shrinkage has attracted the attention of many geographers and urban planners in recent years. However, there are fewer studies on vacant housing in shrinking cities. Therefore, this study combines multi-source remote sensing images and urban building data to assess the spatiotemporal variation patterns of housing vacancy in a typical shrinking city in China. The following points were obtained: (1) We developed an evaluation model to identify vacant residential buildings in shrinking cities by removing the contribution of nighttime lights from roads and non-residential buildings; (2) The residential building vacancy rate in Fushun city significantly increased from 2013 to 2020, resulting in a significant high-value clustering effect. The impact of urban shrinkage on vacant residential buildings was higher than that on vacant non-residential buildings; (3) The WorldPop population data demonstrated consistent spatial distribution and trend of population change in Fushun with the residential building vacancy rate results, suggesting good reliability of the constructed evaluation model in this study. Identifying housing vacancies can help the local government to raise awareness of the housing vacancy problem in shrinking cities and to propose reasonable renewal strategies.

  • CAI Xingran, XU Chunhai, LIANG Yanqing, ZHANG Zhongwu, LI Zhongqin, WANG Feiteng, WANG Shijin
    地理学报(英文版). 2023, 33(11): 2211-2236. doi: 10.1007/s11442-023-2173-z

    Global warming is causing melting of glaciers, which is affecting socioeconomic development. It is essential to study the combined influence of changes in structures of glaciers on human well-being and socioeconomic systems. Herein, we considered Qilian Mountains as an example, quantified the regional socioeconomic benefits of glaciers and human well-being, and attempted to draw a correlation between glacier service value and human well-being. The findings of our study reveal that the value of glacier services in Qilian Mountains decreased from 1.84 × 1010 yuan in 1998 to 1.72 × 1010 yuan in 2018, with a spatial trend of circling down from the central region to the western and eastern regions. The distribution of human well-being showed an increasing trend, and a phenomenon of “low value central and western clustering, high value eastern sporadic distribution.” There is an increasing degree of coordination between human well-being and glacier services value; the spatial distribution shows a decreasing trend from the west to the east, with differences in the nature of coordinated development in different regions at the same coordination stage being obvious. We analyzed the changes in glacier services value and their relationship with human well-being from both micro and macro perspectives to provide theoretical support for formulating management strategies for glacier resource conservation and improving the interface between glacier service evaluation results and government decision-making.

  • 研究论文
    ZHANG Jing, MA Kai, FAN Hui, HE Daming
    地理学报(英文版). 2024, 34(2): 329-354. doi: 10.1007/s11442-024-2207-1

    The transboundary influence of environmental change is a critical issue in the Lancang-Mekong region. As the largest river-connected lake in the lower Mekong, the ecological change and influence of Tonle Sap Lake have received widespread attention and discussion, especially after 2008, when the hydrological regime of the Lancang-Mekong River mainstream underwent distinct changes. However, the linkage and coupling mechanism between the lake riparian environment and mainstream water level change are still unclear. In this study, the interannual spatiotemporal changes in land cover in the Tonle Sap Lake riparian zone (TSLRZ) and their relationship with mainstream water levels were analysed. The results showed that the expansion of farmland was the most notable change in 1988-2020. After 2008, the land cover changes intensified, manifested as accelerated farmland expansion, intensified woodland fragmentation and significant water body shrinkage. Furthermore, the responses of the water body, degraded land, wasteland and grassland areas to the mainstream water levels weakened after 2008. Evidently, the land cover changes in the TSLRZ in the last 30 years were less related to the mainstream water level change than to local reclamation and logging. These results can offer a new scientific basis for the transboundary influence analysis of hydrological change.

  • WEN Penghui, WANG Nai’ang, LI Mingjuan, CHENG Hongyi, NIU Zhenmin
    地理学报(英文版). 2023, 33(11): 2338-2356. doi: 10.1007/s11442-023-2179-6

    Settlements are excellent spatiotemporal indicators for studying historical human activities and environmental change. This paper discusses the spatial and temporal changes of sites on the Ordos Plateau in China since the Neolithic Age, based on an analysis of spatiotemporal distribution characteristics of the human settlements. The frequency of human settlements on the Ordos Plateau presented a phased fluctuation process, and the sizes were mainly small and medium. The spatial distribution of human settlements was fractal, and the D value of the aggregation dimension was generally small, indicating that the spatial distribution of the sites was agglomerated. Affected by the desert, the sites were mainly distributed in the south and east of the Ordos Plateau. The spatiotemporal distribution pattern of human settlements in the Ordos Plateau resulted from the combined action of natural and human factors, especially climate change. Moreover, local livelihood patterns significantly affected the frequency of human settlements. The number of human settlements in the farming period was large, and the distribution was concentrated. In contrast, the number of sites in the nomadic period was small and scattered. The central government’s policies and the conflicts between farming and nomadic groups further affected the spatiotemporal distribution of human settlements. This study may contribute to a better understanding of historical environmental change and human-land relationships in the Ordos Plateau.

  • LIU Yueming, WANG Zhihua, YANG Xiaomei, WANG Shaoqiang, LIU Xiaoliang, LIU Bin, ZHANG Junyao, MENG Dan, DING Kaimeng, GAO Ku, ZENG Xiaowei, DING Yaxin
    地理学报(英文版). 2023, 33(12): 2377-2399. doi: 10.1007/s11442-023-2181-z

    China's mariculture provides more than 60% of the world’s mariculture products and plays an important role in the world’s aquaculture and food supply. Research on changes in the spatial distribution pattern of China’s mariculture, however, remains lacking. To accurately reflect the changes in the spatial pattern of mariculture in China, in this study, we used multitemporal optical and synthetic aperture radar remote sensing images to enhance the characteristics of mariculture and extracted the spatial distribution data for mariculture in China in 2000, 2010, and 2020. Accordingly, we explored the distribution pattern and changes in mariculture in China. We found that, in 2020, China’s mariculture exhibited a distribution pattern of more in the north and less in the south. With the Yangtze River estuary as the boundary, the proportion of mariculture in northern China was 70.9%, and that in southern China was only 29.1%. This difference did not exist in 2000, but it emerged because of the rapid development of mariculture in northern China from 2010 to 2020. In addition, by superimposing the mariculture data with shoreline and water depth data, we found that more than 90% of China’s mariculture area was located in the sea area within 20 km of the shoreline and that more than 80% of the mariculture area was located in the sea area with water depths of less than 20 m. In addition, the spatial distribution of mariculture in China developed from near the shore and moved outward from shallow to deep water areas. We examined the driving factors that influence changes in the spatial distribution of mariculture in China. We argue that technological advancements in mariculture, as well as the intensive concentration of mariculture near the shore, policy constraints and incentives, and economic development, collaborate to shape the current pattern of mariculture development in China.

  • JIN Jiaxin, CAI Yulong, GUO Xi, WANG Longhao, WANG Ying, LIU Yuanbo
    地理学报(英文版). 2023, 33(11): 2159-2174. doi: 10.1007/s11442-023-2170-2

    Transpiration (Tc) is a critical component of the global water cycle. Soil moisture (SM) and vapor pressure deficit (VPD) are key regulators of Tc, and exploring their contributions to changes in Tc can deepen our understanding of the mechanisms of water cycling in terrestrial ecosystems. However, the driving roles of VPD and SM in Tc changes remain debated because of the coupling of SM and VPD through land-atmosphere interactions which restrict the quantification of the independent effects of SM and VPD on Tc. By decoupling the correlations between SM and VPD using a novel binning approach, this study analyzed the dominant drivers of vegetation transpiration in subtropical China from 2003 to 2018 based on multi-source data, including meteorological reanalysis, remotely sensed soil moisture, transpiration, and land cover data. The results show that Tc first increased and then remained stable with an increase in SM across the study area but changed slightly with increasing VPD. Overall, the relative contribution of SM to the change in Tc was approximately five times that of VPD. The sensitivities of Tc to SM and VPD differed among vegetation types. Although the sensitivity of Tc to SM was greater than that of VPD for all four vegetation types, the thresholds of Tc in response to SM were different, with the lowest threshold (approximately 35%) for the other forests and the highest threshold (approximately 55% ) for short wood vegetation. We infer that this is associated with the differences in ecological strategies. To verify the reliability of our conclusions, we used solar- induced chlorophyll fluorescence (SIF) data as a proxy for Tc based on the tight coupling between photosynthesis and transpiration. Consistent results were obtained by repeating the analyses. The results of this study, in which the impacts of SM and VPD on Tc were decoupled, are beneficial for further understanding the critical processes involved in water cycling in terrestrial ecosystems in response to climate change.

  • 研究论文
    GAO Yunxiao, WANG Zhanqi, CHAI Ji, ZHANG Hongwei
    地理学报(英文版). 2024, 34(1): 62-88. doi: 10.1007/s11442-024-2195-1

    Identification of the spatial mismatch between land use functions (LUFs) and land use efficiencies (LUEs) is essential to regional land use policies. However, previous studies about LUF-LUE mismatch and its driving factors have been insufficient. In this study, we explored the spatiotemporal mismatch of LUFs and LUEs and their influencing factors from 2000 to 2018 in the Middle Reaches of the Yangtze River (MRYR). Specifically, we used Spearman correlation analysis to reveal the trade-off relationship between LUFs and LUEs and determine the direction of the influencing factors on the LUF-LUE mismatch, adopted spatial mismatch analysis to measure the imbalance between LUFs and LUEs, and used the geographical detector model to analyze the factors influencing this spatial mismatch. The results showed that production function (PDF), living function (LVF), ecological function (ELF), agricultural production efficiency (APE), urban construction efficiency (UCE), and ecological services efficiency (ESE) all displayed significant spatial heterogeneity. The high trade-off areas were widely distributed and long-lasting in agricultural space and urban space, while gradually decreasing in ecological space. Wuhan and Changsha showed high spatial mismatch coefficients in urban space, but low spatial mismatch coefficients in agricultural space. Hunan generally presented high spatial mismatch coefficients in ecological space. Furthermore, the interaction of the proportion of cultivated area and transportation accessibility exacerbated the mismatch in agricultural space. The interaction effects of capital investment and technology innovation with other factors have the most intense impact on the mismatch in urban space. The internal factor for cultivated area interacts with other external factors to drastically affect ecological spatial mismatch.

  • SUN Liying, WANG Chunhui, DUAN Guangyao
    地理学报(英文版). 2024, 34(3): 610-630. doi: 10.1007/s11442-024-2220-4

    In the present study, indoor experiments were carried out to investigate the effects of rainfall on subsequent wind erosion processes on the simulated Gobi surface, with soils and gravels collected from the Alax Gobi in northwestern China. The results showed that the wind erosion rate (WR) ranged from 0.4 to 1931.2 g m-2 min-1 and that the sediment transportation rate (STR) ranged from 0.00 to 51.47 g m-2 s-1 under different gravel coverage conditions (0%, 20%, 40% and 60%) when the wind velocity changed from 6 m s-1 to 18 m s-1. Both WR and STR increased with increasing wind velocity as a power function and decreased with increasing gravel coverage. The rainfall event had significant inhibitory effects on WR and STR, and the complex effects of soil crust formation and the changing soil surface roughness (SSR) by rainfall event played significant roles in reducing these rates during subsequent wind erosion. In this study, a valuable exploration of the effects of rainfall events on subsequent wind erosion processes in the Gobi area was conducted. The findings are of great significance for a better understanding and effective prediction of dust emissions in this region.

  • WANG Bin, NIU Zhongen, FENG Lili, ZENG Na, GE Rong, FAN Jiayi
    地理学报(英文版). 2025, 35(4): 699-715. doi: 10.1007/s11442-025-2342-3

    The transpiration-to-evapotranspiration ratio (T/ET) is a crucial indicator of the carbon-water cycle and energy balance. Despite the marked seasonality of warming and greening patterns, the differential responses of T/ET to environmental changes across the seasons remain unclear. To address this, we employed a model-data fusion method, integrating the Priestley-Taylor Jet Propulsion Lab model with observational datasets, to analyze the seasonal trends of T/ET in China’s terrestrial ecosystems from 1981 to 2021. The results showed that T/ET significantly increased in spring, summer, and autumn, with growth rates of 0.0018 a-1 (p<0.01), 0.0024 a-1 (p<0.01), and 0.0013 a-1 (p<0.01), respectively, whereas the winter trends remained statistically insignificant throughout the study period. Leaf area index dynamics were identified as the primary driver of the increase in T/ET during summer, accounting for 79% of the trend. By contrast, climate change was the main contributor to the rising T/ET trends in spring and autumn, accounting for 72% and 77% of the T/ET increase, respectively. Additionally, warming is pivotal for climate-driven changes in T/ET trends. This study elucidated seasonal variations in T/ET responses to environmental factors, offering critical insights for the sustainable management of ecosystems and accurate prediction of future environmental change impacts.

  • 研究论文
    GAO Dan, YIN Jie, WANG Dandan, YANG Yuhan, LU Yi, CHEN Ruishan
    地理学报(英文版). 2024, 34(1): 185-200. doi: 10.1007/s11442-024-2201-7

    In the context of climate change and human activities, flood disasters in arid mountainous areas have become increasingly frequent, and seriously threatened the safety of people’s lives and property. Rapid and accurate flash flood inundation modelling is an essential foundational research area, which can aid in the reduction of casualties and the minimization of disaster losses; however, this modelling is also very difficult, and models need to be urgently developed to address flash flood forecasting and warnings. The objective of this study is to construct a numerical modelling method for flash floods in drylands. Based on a 2D high-resolution flood numerical model (FloodMap-HydroInundation2D), we hindcasted the dynamic process of flash flooding and show the spatio-temporal characteristics of flash flood inundation for the “8·18” flash flood disaster that occurred in Datong county, Qinghai province. The results showed that the model output effectively agreed with the observed inundation after the event in terms of both spatial extent and temporal process. Extensive flooding mainly occurred between 00:00 and 01:00 on August 18, 2022. Qingshan, Hejiazhuang and Longwo villages were affected most heavily. We further conducted model sensitivity analysis and found that the model was highly sensitive to both roughness and hydraulic conductivity in drylands, and the effect of hydraulic conductivity was more pronounced. Our study confirmed the good performance of our model for the simulation of flash flooding in arid areas and provides a potential method for flash flood assessment and management in arid areas.

  • 研究论文
    WEN Kege, LI Cheng, HE Jianfeng, ZHUANG Dafang
    地理学报(英文版). 2024, 34(2): 355-374. doi: 10.1007/s11442-024-2208-0

    Significant changes to the world’s climate over the past few decades have had an impact on the development of plants. Vegetation in high latitude regions, where the ecosystems are fragile, is susceptible to climate change. It is possible to better understand vegetation’s phenological response to climate change by examining these areas. Traditional studies have mainly investigated how a single meteorological factor affects changes in vegetation phenology through linear correlation analysis, which is insufficient for quantitatively revealing the effects of various climate factor interactions on changes in vegetation phenology. We used the asymmetric Gaussian method to fit the normalized difference vegetation index (NDVI) curve and then used the dynamic threshold method to extract the phenological parameters, including the start of the season (SOS), end of the season (EOS), and length of the season (LOS), of the vegetation in this study area in the Tundra-Tagar transitional zone in eastern and western Siberia from 2000 to 2017. The monthly temperature and precipitation data used in this study were obtained from the climate research unit (CRU) meteorological dataset. The degrees to which the changes in temperature and precipitation in the various months and their interactions affected the changes in the three phenological parameters were determined using the GeoDetector, and the results were explicable. The findings demonstrate that the EOS was more susceptible to climate change than the SOS. The vegetation phenology shift was best explained by the climate in March, April, and September, and the combined effect of the temperature and precipitation had a greater impact on the change in the vegetation phenology compared with the effects of the individual climate conditions. The results quantitatively show the degree of interaction between the variations in temperature and precipitation and their effects on the changes in the different phenological parameters in the various months. Understanding how various climatic variations effect phenology changes in plants at different times may be more intuitive. This research provides as a foundation for research on how global climate change affects ecosystems and the global carbon cycle.

  • ZHOU Junju, XUE Dongxiang, YANG Lanting, LIU Chunfang, WEI Wei, YANG Xuemei, ZHAO Yaru
    地理学报(英文版). 2023, 33(11): 2237-2256. doi: 10.1007/s11442-023-2174-y

    Quantitative assessments of the impacts of climate change and anthropogenic activities on runoff help us to better understand the mechanisms of hydrological processes. This study analyzed the dynamics of mountainous runoff in the upper reaches of the Shiyang River Basin (USRB) and its sub-catchments, and quantified the impacts of climate change and human activities on runoff using the improved double mass curve (IDMC) method, which comprehensively considers the effects of precipitation and evapotranspiration on runoff, instead of only considering precipitation as before. The results indicated that the annual runoff depth in the USRB showed a slightly increased trend from 1961 to 2018, and sub-catchments were increased in the west and decreased in the east. The seasonal distribution pattern of runoff depth in the USRB and its eight sub-catchments all showed the largest in summer, followed by autumn and spring, and the smallest in winter with an increasing trend. Quantitative assessment results using the IDMC method showed that the runoff change in the USRB is more significantly affected by climate change, however, considerable differences are evident in sub-catchments. This study further developed and improved the method of runoff attribution analysis conducted at watershed scale, and these results will contribute to the ecological protection and sustainable utilization of water resources in the USRB and similar regions.

  • 研究论文
    LI Ying, FANG Yuanping, MENG Qinggang
    地理学报(英文版). 2024, 34(2): 289-308. doi: 10.1007/s11442-024-2205-3

    This study uses green patent data from 264 cities in China between 2006 and 2020 to examine the evolution of spatial patterns in urban green technology innovation (GTI) across the country and identify the underlying driving factors. Moran’s I index, Getis-Ord Gi* index, standard deviation ellipse, and geographical detector were used for the analysis. The findings indicate an increase in the overall level of GTI within Chinese cities. Provincial capitals, cities along the eastern coast, and planned cities emerge as the prominent “highlands” of GTI, whereas the “lowlands” of GTI predominantly lie in the western and northeastern regions, forming the spatial pattern of “hot in the east and center of the country, cold in the northwest and the northeast.” The distribution center of gravity of GTI is toward the southwest of China. The distribution pattern is in the “northeast-southwest” direction, which is characterized by “diffusion,” followed by “agglomeration.” Differences in economic development have the highest determining power on the spatial differentiation of GTI in Chinese cities, whereas differences in environmental regulation and industrial structure have the lowest degree of relative influence. The interaction between any two factors contributes to an amplified explanatory power in understanding the differences in GTI.

  • MA Libang, SHI Zhihao, LI Ziyan, ZHU Zhihang, CHEN Xianfei
    地理学报(英文版). 2023, 33(12): 2446-2466. doi: 10.1007/s11442-023-2184-9

    The construction of rural life circle has an essential impact on the change of rural social space. Analyzing the adaptation relationship between the two can be a new content in the study of “physical-social” space. Using social behavior as a link, we construct a logical relationship framework between rural life circle and social space. Based on the survey data of Baijia village in the loess hilly region, this paper analyzes the characteristics and adaptability of the two and discusses preliminary ideas of life circle reorganization and social space reconstruction. The study results are as follows: (1) Based on the location of four types of service facilities and the travel mode of villagers, two life circles of 15 min and 25 min have been formed in Baijia village. The rural social spaces such as communicative behavior space, health seeking behavior space, leisure behavior space, and consumption behavior space show a specific concentric circle structure and unique hierarchical structure. (2) The analysis of the adaptation between them shows that the 15 min life circle in Baijia village has a high level of adaptation to communicative and leisure behavior spaces. It plays a positive feedback role in the construction of social space. However, it has a low level of adaptability to the space of health seeking and consumption behavior spaces and has a negative feedback effect on the construction of social space. The 25 min life circle is the opposite. (3) The reorganization of facility layout, hierarchical structure, and service functions in the village life circle will lead to changes in the range, frequency, and purpose of villagers’ behavioral activities, resulting in a new social spatial pattern. These findings are important for formulating village development and construction plans, improving the settlement habitat, and reconstructing the order of social life.

  • 研究论文
    TIAN Hao, LIU Lin, ZHANG Zhengyong, CHEN Hongjin, ZHANG Xueying, WANG Tongxia, KANG Ziwei
    地理学报(英文版). 2024, 34(2): 375-396. doi: 10.1007/s11442-024-2209-z

    The variation of land surface temperature (LST) has a vital impact on the energy balance of the land surface process and the ecosystem stability. Based on MDO11C3, we mainly used regression analysis, GIS spatial analysis, correlation analysis, and center-of -gravity model, to analyze the LST variation and its spatiotemporal differentiation in China from 2001 to 2020. Furthermore, we employed the Geodetector to identify the dominant factors contributing to LST variation in 38 eco-geographic zones of China and investigate the underlying causes of its pattern. The results indicate the following: (1) From 2001 to 2020, the LST climate average in China is 9.6℃, with a general pattern of higher temperatures in the southeast and northwest regions, lower temperatures in the northeast and Qinghai-Tibet Plateau, and higher temperatures in plains compared to lower temperatures in mountainous areas. Generally, LST has a significant negative correlation with elevation, with a correlation coefficient of -0.66. China’s First Ladder has the most pronounced negative correlation, with a correlation coefficient of -0.76 and the lapse rate of LST is 0.57℃/100 m. (2) The change rate of LST in China during the study is 0.21℃/10 a, and the warming area accounts for 78%, demonstrating the overall spatial pattern a “multi-core warming and axial cooling”. (3) LST’s variation exhibits prominent seasonal characteristics in the whole country. The spatial distribution of average value in winter and summer differs significantly from other seasons and shows more noticeable fluctuations. The centroid trajectory of the seasonal warming/cooling area is close to a loop shape and displays corresponding seasonal reverse movement. Cooling areas exhibit more substantial centroid movement, indicating greater regional variation and seasonal variability. (4) China’s LST variation is driven by both natural influences and human activities, of which natural factors contribute more, with sunshine duration and altitude being key factors. The boundary trend between the two dominant type areas is highly consistent with the “Heihe-Tengchong Line”. The eastern region is mostly dominated by human activity in conjunction with terrain factors, while the western region is predominantly influenced by natural factors, which enhance/weaken the change range of LST through mutual coupling with climate, terrain, vegetation, and other factors. This study offers valuable scientific references for addressing climate change, analyzing surface environmental patterns, and protecting the ecological environment.

  • ZHEN Baiqin, DANG Guofeng, ZHU Li
    地理学报(英文版). 2025, 35(4): 763-782. doi: 10.1007/s11442-025-2345-0

    Regular quantitative assessments of regional ecological environment quality (EEQ) and driving force analyses are highly important for environmental protection and sustainable development. Northern China is a typical climate-sensitive and ecologically vulnerable area, however, the changes in EEQ in this region and their underlying causes remain unclear. Traditional evaluations of EEQ rely primarily on the remote sensing ecological index (RSEI), which lacks assessments of indicators such as greenness (NDVI), humidity (WET), heat (LST), and dryness (NDBSI). To address these issues, this study employs the principal component analysis method and the Google Earth Engine to construct an RSEI suitable for long-term and large-scale applications and analyzes the spatio-temporal variations in the RSEI, NDVI, WET, NDBSI, and LST. Additionally, geographical detectors are utilized to analyze the driving factors affecting EEQ. The results indicate the following. (1) The RSEI shows a fluctuating upward trend, with an average value of 0.4566, indicating a gradual improvement in EEQ. The EEQ exhibited significant spatial heterogeneity, with a pattern of lower values in the west and higher values in the east. (2) The NDVI and WET exhibit fluctuating increasing trends, indicating improvements in both indices. The NDBSI shows a fluctuating decreasing trend, whereas the LST presents a fluctuating increasing trend, suggesting an improvement in the NDBSI and a slight deterioration in the LST. NDVI and WET demonstrate a spatial pattern characterized by low values in the west and high values in the east. NDBSI and LST demonstrate a spatial pattern characterized by low values in the east and high values in the west. (3) Land use types and precipitation are the primary driving factors influencing the spatial differentiation of the EEQ. The explanatory power of these driving factors significantly increases under their interactions, particularly the interaction between land use types and other driving factors. This study fills the gap in existing EEQ evaluations that analyze only the RSEI without considering the NDVI, WET, NDBSI, and LST. The findings provide new insights for EEQ assessments and serve as a scientific reference for environmental protection and sustainable development.

  • JIN Wenwan, ZHU Shengjun, LIN Xiongbin
    地理学报(英文版). 2025, 35(2): 409-431. doi: 10.1007/s11442-025-2328-1

    Globalization has resulted in a notable rise in the flow of high-skilled talent from emerging countries to developed nations. Current research on transnational talent flow mainly focuses on the destination countries, with less attention given to the perspective of the sending countries, particularly lacking a dynamic discussion on its impact on technological evolution in the origin countries. Based on the OECD REGPAT database, this paper aims to explore how talent groups migrating to developed countries facilitate the return of knowledge and technology to emerging countries and achieve breakthroughs in their technological evolution paths, while further discussing the potential mechanisms involved. The findings of this paper are as follows: (1) The technological development of emerging countries is a path-dependent process, where countries often branch into new technologies related to their preexisting knowledge base. Consequently, knowledge feedback from high-skilled talents increases the likelihood of sending countries developing unrelated technologies. (2) The mobility of talents across borders fosters more international collaborations and citations for patents that are unrelated to the local knowledge base, thus enriching the technological paths of sending countries. (3) The mobility of high-skilled talents primarily affects complex technologies, which have significant economic effects that encourage imitation by other countries. However, the effect on novel technologies is less significant due to their strong geographical stickiness. In general, this paper addresses the gaps in existing research on talent outflow and the technological evolution of origin countries, providing empirical evidence for the positive role of transnational talent mobility in the technological catch-up of emerging nations. Besides, it offers recommendations for talent export, import, and innovation policy formulation in these countries.

  • 研究论文
    WANG Sheng, WANG Jianwen, ZHU Meilin, YAO Tandong, PU Jianchen, WANG Jinfeng
    地理学报(英文版). 2024, 34(10): 1904-1924. doi: 10.1007/s11442-024-2276-1

    Glaciers are considered to be ‘climate-sensitive indicators’ and ‘solid reservoirs’, and their changes significantly impact regional water security. The mass balance (MB) from 2011 to 2020 of the Qiyi Glacier in the northeast Tibetan Plateau is presented based on field observations. The glacier showed a persistent negative balance over 9 years of in-situ observations, with a mean MB of −0.51 m w.e. yr−1. The distributed energy-mass balance model was used for glacier MB reconstruction from 1980 to 2020. The daily meteorological data used in the model were from HAR v2 reanalysis data, with automatic weather stations located in the middle and upper parts of the glacier used for deviation correction. The average MB over the past 40 years of the Qiyi Glacier was −0.36 m w.e. yr−1 with the mass losses since the beginning of the 21st century, being greater than those in the past. The glacier runoff shows a significant increasing trend, contributing ~81% of the downstream river runoff. The albedo disparity indicates that the net shortwave radiation is much higher in the ablation zone than in the accumulation zone, accelerating ablation-area expansion and glacier mass depletion. The MB of the Qiyi Glacier is more sensitive to temperature and incoming shortwave radiation variation than precipitation. The MB presented a non-linear reaction to the temperature and incoming shortwave radiation. Under future climate warming, the Qiyi Glacier will be increasingly likely to deviate from the equilibrium state, thereby exacerbating regional water balance risks. It is found that the mass losses of eastern glaciers are higher than those of western glaciers, indicating significant spatial heterogeneity that may be attributable to the lower altitude and smaller area distribution of the eastern glaciers.

  • CHEN Youlin, YU Peiheng, WANG Lei, CHEN Yiyun, YUNG Hiu Kwan Esther
    地理学报(英文版). 2023, 33(12): 2400-2424. doi: 10.1007/s11442-023-2182-y

    Polycentric urban development has profound impacts on urban development worldwide. Most studies have identified its complex drivers of social economy and natural condition while ignoring the state-led policy factors. In recent years, China has undergone dramatic administrative division adjustment (ADA) during the process of unique state-led urbanization. However, as a crucial government strategy, the impacts of ADA on urban polycentricity remain unclear. This research investigates the relationship between ADA and urban polycentricity through spatial difference-in-differences models. The results reveal that ADA has contributed to the polycentric urban development in China. Specifically, boundary restructuring has more substantial impacts than hierarchy reorganization. In addition, ADA has significantly promoted urban polycentricity in local cities in central China and neighbouring cities in eastern China, while it has no significant effects in western China. Furthermore, ADA reshapes urban polycentricity mainly by the influencing mechanism of construction land and industrial structure. Policymakers should consider the various ADA’s impacts on urban polycentricity with socio-economic conditions. This research provides a deeper insight into urban spatial transformation with state-led drivers.