引用排行

Baidu   Google scholar   CSCD   Crossref   Web of science   Sciencedirect  

文章出版日期: 一年内 | 两年内 | 三年内 | 全部
当前选项: Baidu + 全部
Please wait a minute...
  • 全选
    |
  • Man-Land Relationship
    CHANG Jiang, LI Jingbao, LU Dianqing, ZHU Xiang, LU Chengzhi, ZHOU Yueyun, DENG Chuxiong
    Journal of Geographical Sciences. 2010, 20(5): 771-786. https://doi.org/10.1007/s11442-010-0810-9
    Baidu(190) CSCD(18)

    Based on the measured hydrological data from 1951 to 2008, the chain hydrological effect between Jingjiang River and Dongting Lake is analyzed by comparative method after the Three Gorges Project operation. The result indicates that 1) the scouring amount in Jingjiang River made up 78.9% of the total from Yichang to Chenglingji, and its average scouring intensity was higher than the latter; 2) the water and sand diversion rates at the three outlets of the Jingjiang River were reduced by 2.33% and 2.78% separately; 3) the proportion of multi-year average runoff and sediment through the three outlets in the total into the Dongting Lake decreased by 7.7% and 24.4% respectively; 4) in Dongting Lake, the speed of sediment accumulation was lowered by 26.7%, in flood season, the runoff amount was 20.2% less than the multi-year average value, leading to seasonal scarcity of water year by year. The former prolonged the lake life, while the latter induced droughts in summer and fall in successive years, shortage of drinking and industrial water, shipping insecurity, as well as ecological problems such as decrease of birds and quick increase of Microtus fortis; 5) The multi-year average values of sediment and flood transporting capacity at the lake outlet were respectively increased by 26.6% and 3.7%, the embankments were protected effectively. Then, to adapt to the new change of the river-lake relation, some suggestions were put forward, such as optimizing further operation program of the Three Gorges Reservoir, reexamining the idea of river and lake regulation, and maintaining connection of the river and the lake.

  • Climate and Environmental Change
    WU Li, WANG Xinyuan, ZHOU Kunshu, MO Duowen, ZHU Cheng, GAO Chao, ZHANG Guangsheng, LI Lan, LIU Li, HAN Weiguang
    Journal of Geographical Sciences. 2010, 20(5): 687-700. https://doi.org/10.1007/s11442-010-0804-7
    Baidu(97) CSCD(9)

    Based on the temporal-spatial distribution features of ancient settlement sites from the middle and late Neolithic Age to the Han dynasty in the Chaohu Lake Basin of Anhui Province, East China, using the methods of GIS combined with the reconstructed paleoenvironment by the records of lake sediment since Holocene, the transmutation of ancient settlements with response to environmental changes in this area has been discussed. Studies show that the main feature of transmutation of ancient settlements from the middle and late Neolithic Age to the Han Dynasty was that the distribution of settlements in this area changed from high altitudes to low ones and kept approaching the Chaohu Lake with the passage of time. These could be the response to the climate change from warm-moist to a relatively warm-dry condition during the middle Holocene, leading to the lake level fluctuations. The large area of exposed land provided enough space for human activities. These indicate that the above changes in geomorphologic evolution and hydrology influenced by climate conditions affected the transmutation of ancient settlements greatly. The distribution pattern of settlement sites was that the number of sites in the west was more than in the east. This pattern may be related to the geomorphologic conditions such as frequent channel shifting of the Yangtze River as well as flood disasters during the Holocene optimum. Therefore, climate change was the inducement of the transmutation of ancient settlements in the Chaohu Lake Basin, which exerted great influence on the distribution, expansion and development of the ancient settlements.

  • Research Articles
    MU Shaojie, YANG Hongfei, LI Jianlong, CHEN Yizhao, GANG Chengcheng, ZHOU Wei, JU Weimin
    Journal of Geographical Sciences. 2013, 23(2): 231-246. https://doi.org/10.1007/s11442-013-1006-x
    Baidu(87) CSCD(13)

    The vegetation coverage dynamics and its relationship with climate factors on different spatial and temporal scales in Inner Mongolia during 2001–2010 were analyzed based on MODIS-NDVI data and climate data.The results indicated that vegetation coverage in Inner Mongolia showed obvious longitudinal zonality,increasing from west to east across the region with a change rate of 0.2/10°N.During 2001–2010,the mean vegetation coverage was 0.57,0.4 and 0.16 in forest,grassland and desert biome,respectively,exhibiting evident spatial heterogeneities.Totally,vegetation coverage had a slight increasing trend during the study period.Across Inner Mongolia,the area of which the vegetation coverage showed extremely significant and significant increase accounted for 11.25%and 29.13%of the area of whole region,respectively,while the area of which the vegetation coverage showed extremely significant and significant decrease accounted for 7.65%and 26.61%,respectively. On inter-annual time scale,precipitation was the dominant driving force of vegetation coverage for the whole region.On inter-monthly scale,the change of vegetation coverage was consistent with both the change of temperature and precipitation,implying that the vegetation growth within a year is more sensitive to the combined effects of water and heat rather than either single climate factor.The vegetation coverage in forest biome was mainly driven by temperature on both inter-annual and inter-monthly scales,while that in desert biome was mainly influenced by precipitation on both the two temporal scales.In grassland biome,the yearly vegetation coverage had a better correlation with precipitation,while the monthly vegetation coverage was influenced by both temperature and precipitation.In grassland biome,the impacts of precipitation on monthly vegetation coverage showed time-delay effects.

  • Research Articles
    LIU Yansui, YANG Ren, LI Yuheng
    Journal of Geographical Sciences. 2013, 23(3): 503-512. https://doi.org/10.1007/s11442-013-1024-8
    Baidu(83) CSCD(19)

    There exists great potential of rural land consolidation in China due to the aggravated hollowed villages against the background of rapid rural-urban transformation. The paper aims to investigate the potential of rural land consolidation within four urbanization scenarios: Complete urbanization, Semi-urbanization, Urbanization in batches and prospective urbanization in 2020. Research findings show that, (1) the potentials of rural land consolidation in complete and semi-urbanization are 809.89×104 hm2 and 699.19×104 hm2 respectively while rural consolidation rates are 50.70% and 43.77%. As for the urbanization in batches and urbanization in 2020, the potentials are 757.89×104 hm2 and 992.16×104 hm2. (2) Beside Tibet and Ningxia, rural consolidation rates in most provinces are between 40% and 60%, and the land increase rates are between 3% and 12%. Significant correlation between potential of rural land consolidation and the degree of hollowed villages is also found. (3) Evident differences of potential of rural land consolidation exist across provinces. Rural consolidation rates in the East and Central provinces are higher than that in the West provinces. Villages in the developed areas have higher consolidation rates than those in the less developed areas, and villages in the plain areas tend to have higher consolidation rates than those in the mountainous areas.

  • Research Articles
    ZHAO Lingling, XIA Jun, XU Chong-yu, WANG Zhonggen, SOBKOWIAK Leszek, LONG Cangrui
    Journal of Geographical Sciences. 2013, 23(2): 359-369. https://doi.org/10.1007/s11442-013-1015-9
    Baidu(74) CSCD(1)

    Actual evapotranspiration is a key process of hydrological cycle and a sole term that links land surface water balance and land surface energy balance.Evapotranspiration plays a key role in simulating hydrological effect of climate change,and a review of evapotranspiration estimation methods in hydrological models is of vital importance.This paper firstly summarizes the evapotranspiration estimation methods applied in hydrological models and then classifies them into the integrated converting methods and the classification gathering methods by their mechanism.Integrated converting methods are usually used in hydrological models and two differences exist among them:one is in the potential evaporation estimation methods,while the other in the function for defining relationship between potential evaporation and actual evapotranspiration.Due to the higher information requirements of the Penman-Monteith method and the existing data uncertainty,simplified empirical methods for calculating potential and actual evapotranspiration are widely used in hydrological models. Different evapotranspiration calculation methods are used depending on the complexity of the hydrological model,and importance and difficulty in the selection of the most suitable evapotranspiration methods is discussed.Finally,this paper points out the prospective development trends of the evapotranspiration estimating methods in hydrological modeling.

  • Research Articles
    HE Fanneng, LI Shicheng, ZHANG Xuezhen, GE Quansheng, DAI Junhu
    Baidu(72) CSCD(15)

    Land use/cover change is an important parameter in the climate and ecological simulations. Although they had been widely used in the community, SAGE dataset and HYDE dataset, the two representative global historical land use datasets, were little assessed about their accuracies in regional scale. Here, we carried out some assessments for the traditional cultivated region of China (TCRC) over last 300 years, by comparing SAGE2010 and HYDE (v3.1) with Chinese Historical Cropland Dataset (CHCD). The comparisons were performed at three spatial scales: entire study area, provincial area and 60 km by 60 km grid cell. The results show that (1) the cropland area from SAGE2010 was much more than that from CHCD; moreover, the growth at a rate of 0.51% from 1700 to 1950 and -0.34% after 1950 were also inconsistent with that from CHCD. (2) HYDE dataset (v3.1) was closer to CHCD dataset than SAGE dataset on entire study area. However, the large biases could be detected at provincial scale and 60 km by 60 km grid cell scale. The percent of grid cells having biases greater than 70% (<-70% or >70%) and 90% (<-90% or >90%) accounted for 56%-63% and 40%-45% of the total grid cells respectively while those having biases range from -10% to 10% and from -30% to 30% account for only 5%-6% and 17% of the total grid cells respectively. (3) Using local historical archives to reconstruct historical dataset with high accuracy would be a valuable way to improve the accuracy of climate and ecological simulation.

  • Review Articles
    SHI Wenjiao, TAO Fulu, ZHANG Zhao
    Journal of Geographical Sciences. 2013, 23(3): 567-576. https://doi.org/10.1007/s11442-013-1029-3
    Baidu(61) CSCD(3)

    Statistical models using historical data on crop yields and weather to calibrate relatively simple regression equations have been widely and extensively applied in previous studies, and have provided a common alternative to process-based models, which require extensive input data on cultivar, management, and soil conditions. However, very few studies had been conducted to review systematically the previous statistical models for indentifying climate contributions to crop yields. This paper introduces three main statistical methods, i.e., time-series model, cross-section model and panel model, which have been used to identify such issues in the field of agrometeorology. Generally, research spatial scale could be categorized into two types using statistical models, including site scale and regional scale (e.g. global scale, national scale, provincial scale and county scale). Four issues exist in identifying response sensitivity of crop yields to climate change by statistical models. The issues include the extent of spatial and temporal scale, non-climatic trend removal, colinearity existing in climate variables and non-consideration of adaptations. Respective resolutions for the above four issues have been put forward in the section of perspective on the future of statistical models finally.

  • Research Articles
    LIU Zhenhuan, LI Zhengguo, TANG Pengqin, LI Zhipeng, WU Wenbin, YANG Peng, YOU Liangzhi, TANG Huajun
    . 2013, 23(6): 1005-1018. https://doi.org/10.1007/s11442-013-1059-x
    Baidu(56) CSCD(6)

    Rice's spatial-temporal distributions, which are critical for agricultural, environmental and food security research, are affected by natural conditions as well as socio-economic developments. Based on multi-source data, an effective model named the Spatial Production Allocation Model (SPAM) which integrates arable land distribution, administrative unit statistics of crop data, agricultural irrigation data and crop suitability data, was used to get a series of spatial distributions of rice area and production with 10-km pixels at a national scale - it was applied from the early 1980s onwards and used to analyze the pattern of spatial and temporal changes. The results show that significant changes occurred in rice in China during 1980-2010. Overall, more than 50% of the rice area decreased, while nearly 70% of rice production increased in the change region during 1980-2010. Spatially, most of the increased area and production were in Northeast China, especially, in Jilin and Heilongjiang; most of the decreased area and production were located in Southeast China, especially, in regions of rapidly urbanization in Guangdong, Fujian and Zhejiang. Thus, the centroid of rice area was moved northeast approximately 230 km since 1980, and rice production about 320 km, which means rice production moved northeastward faster than rice area because of the significant rice yield increase in Northeast China. The results also show that rice area change had a decisive impact on rice production change. About 54.5% of the increase in rice production is due to the expansion of sown area, while around 83.2% of the decrease in rice production is due to contraction of rice area. This implies that rice production increase may be due to area expansion and other non-area factors, but reduced rice production could largely be attributed to rice area decrease.

  • Research Articles
    LI Baofu, CHEN Yaning, CHEN Zhongsheng, LI Weihong, ZHANG Baohuan
    Journal of Geographical Sciences. 2013, 23(1): 17-30. https://doi.org/10.1007/s11442-013-0990-1
    Baidu(56) CSCD(7)

    Water resources in the arid land of Northwest China mainly derive from snow and glacier melt water in mountainous areas. So the study on onset, cessation, length, temperature and precipitation of snowmelt period is of great significance for allocating limited water resources reasonably and taking scientific water resources management measures. Using daily mean temperature and precipitation from 8 mountainous weather stations over the period 1960?2010 in the arid land of Northwest China, this paper analyzes climate change of snowmelt period and its spatial variations and explores the sensitivity of runoff to length, temperature and precipitation of snowmelt period. The results show that mean onset of snowmelt period has shifted 15.33 days earlier while mean ending date has moved 9.19 days later. Onset of snowmelt period in southern Tianshan Mountains moved 20.01 days earlier while that in northern Qilian Mountains moved only 10.16 days earlier. Mean precipitation and air temperature increased by 47.3 mm and 0.857℃ in the mountainous areas of Northwest China, respectively. The precipitation of snowmelt period increased the fastest, which is observed in southern Tianshan Mountains, up to 65 mm, and the precipitation and temperature in northern Kunlun Mountains increased the slowest, an increase of 25 mm and 0.617℃, respectively, while the temperature in northern Qilian Mountains increased the fastest, increasing by 1.05℃. The annual runoff is also sensitive to the variations of precipitation and temperature of snowmelt period, because variation of precipitation induces annual runoff change by 7.69% while change of snowmelt period temperature results in annual runoff change by 14.15%.

  • Research Articles
    CHENG Bo, CHEN Fahu, ZHANG Jiawu
    Journal of Geographical Sciences. 2013, 23(1): 136-146. https://doi.org/10.1007/s11442-013-0999-5
    Baidu(54) CSCD(10)

    Paleoenvironmental history in the monsoonal margin in the northeast Tibetan Plateau provides important clue to the regional climate. Previous researches have been limited by either poor chronology or low resolution. Here we present a high-resolution pollen record from a 40.92-m-long sediment core (DLH) taken from Dalianhai, a terminal lake situated in the Gonghe Basin, the northeast Tibetan Plateau for reconstructing the vegetation and climate history since the last deglacial on the basis of a chronology controlled by 10 AMS 14C dates on plant remains preserved in the core sediments. The pollen assemblages in DLH core can be partitioned into 6 pollen zones and each zone is mainly characterized by the growth and decline of tree or herb pollen percentage. During the periods of 14.8-12.9 ka and 9.4-3.9 ka, the subalpine arboreal and local herbaceous pollen increased, indicating the subalpine forest developed in the surrounding mountains and a desert steppe or typical steppe developed in Gonghe Basin under a relatively moister climate. During the periods of 15.8-14.8 ka, 12.9-9.4 ka and 3.9-1.4 ka, the forest shrank or disappeared according to different degrees of aridity, and the desert steppe degraded to a more arid steppe desert in the basin, indicating a dry climate. After 1.4 ka, vegetation type around Dalianhai was mainly dominated by steppe suggested by increased Artemisia. Our results suggested the climate history in this region was dry from 15.8-14.8 ka, humid from 14.8-12.9 ka and dry from 12.9-9.4 ka, after which the climate was humid during 9.4-3.9 ka, followed by dry conditions during 3.9-1.4 ka and humid conditions in the last 1.4 ka. The change of pollen percentage and the evolution of palaeovegetation in Dalianhai since the last deglacial were similar to those recorded in Qinghai Lake. The forest expanded in the mountains around Dalianhai during the B?lling-Aller?d period, shrank during the Younger Dryas and the early Holocene, then it developed and reached its maximum in the mid-Holocene. During the late Holocene, the vegetation began to shrink till disappearance. However, the timing of forest expansion in the Holocene lagged behind that of Qinghai Lake, and this spatial heterogeneity was probably caused by the different forest species between these two places. The maximum of forest development in the mid-Holocene was inconsistent with the period of stronger summer monsoon in the early Holocene indicated by stalagmite records, the reason might be related to the complexity of vegetation response to a large-scale climatic change.

  • Hydrology
    WANG Suiji, YAN Yunxia, YAN Ming, ZHAO Xiaokun
    Journal of Geographical Sciences. 2012, 22(5): 906-918. https://doi.org/10.1007/s11442-012-0972-8
    Baidu(50)

    The runoff of some rivers in the world especially in the arid and semi-arid areas has decreased remarkably with global or regional climate change and enhanced human activities. The runoff decrease in the arid and semi-arid areas of northern China has brought severe problems in livelihoods and ecology. To reveal the variation characteristics, trends of runoff and their influencing factors have been important scientific issues for drainage basin management. The objective of this study was to analyze the variation trends of the runoff and quantitatively assess the contributions of precipitation and human activities to the runoff change in the Huangfuchuan River Basin based on the measured data in 1960-2008. Two inflection points (turning years) of 1979 and 1998 for the accumulative runoff change, and one inflection point of 1979 for the accumulative precipitation change were identified using the methods of accumulative anomaly analysis. The linear relationships between year and accumulative runoff in 1960-1979, 1980-1997 and 1998-2008 and between year and accumulative precipitation in 1960-1979 and 1980-2008 were fitted. A new method of slope change ratio of accumulative quantity (SCRAQ) was put forward and used in this study to calculate the contributions of different factors to the runoff change. Taking 1960-1979 as the base period, the contribution rate of the precipitation and human activities to the decreased runoff was 36.43% and 63.57% in 1980-1997, and 16.81% and 83.19% in 1998-2008, respectively. The results will play an important role in the drainage basin management. Moreover, the new method of SCRAQ can be applied in the quantitative evaluation of runoff change and impacts by different factors in the river basin of arid and semi-arid areas.

  • Research Articles
    WANG Zhenbo, FANG Chuanglin, CHENG Shaowen, WANG Jing
    Journal of Geographical Sciences. 2013, 23(1): 147-162. https://doi.org/10.1007/s11442-013-1000-3
    Baidu(45) CSCD(11)

    On the basis of Landsat TM data of the Yangtze River Delta (YRD) Economic Zone in 1991, 2001 and 2008, this article, taking 90 counties in this region as study units, built spatial data transformation models, ecosystem service value (ESV) and coordination degree of eco-economic system (CDES) models. With the aid of ArcGIS9.3, mass grid and vector data has been processed for spatial analyses. ESV and CDES indexes have demonstrated the relationship between economic development and eco-environment system and its evolution characteristics in the researched areas. Furthermore, the indexes have also been used for functional zoning and pattern recognition. Some results can be shown as follows. Firstly, since 1991, land use in the YRD has greatly changed: urban land area has increased primarily from original paddy land, dry land, grassland, garden plot and other land. Secondly, the ESV model has proved the deterioration trend of the YRD ecological system from 1991 to 2001 and slower degradation trend during 2001-2008. Also, it is illustrated that land-use conversion from water area and paddy field to urban area and dry land could cause great damage to ecosystem stabilization. Thirdly, GDP in the central and southern parts of the YRD is higher than that in the northern part since 1991. GDP growth rate in the central part is higher than that in the northern part during 1991-2001. This growth rate in the central part is also higher than that in the southern and northern parts of the YRD from 2001 to 2008. Fourthly, the YRD could be categorized into 12 types of subregions in terms of CDES index. According to its spatial characteristic of CDES index value in the study area, eco-economic conflict area with low CDES value which is located in the central part is surrounded by eco-coordinated areas with high CDES values. This illustrates a core-periphery spatial structure exists in the YRD. During 1991-2001, the CDES value implied the convergent deterioration trend of eco-economic system in the study area; while it gradually stepped into coexistence of divergent deterioration and coordination during 2001-2008. Finally, this paper analyzed five subregions in the YRD, including initially degrading zone, initially coordinative zone, continuously degrading zone, coordination-declined zone and coordination-promoted zone, based on eco-economic coordination and evolution patterns. And these subregions can be recognized and categorized by spatial transformation model.

  • Research Articles
    DAI Junhu, WANG Huanjiong, GE Quansheng
    Baidu(35) CSCD(3)

    The temperate monsoon area of China is an important agricultural region but late spring frosts have frequently caused significant damage to plants there. Based on phenological data derived from the Chinese Phenological Observation Network (CPON), corresponding meteorological data from 12 study sites and phenological modeling, changes in flowering times of multiple woody plants and the frequency of frost occurrence were analyzed. Through these analyses, frost risk during the flowering period at each site was estimated. Results of these estimates suggested that first flowering dates (FFD) in the study area advanced significantly from 1963 to 2009 at an average rate of -1.52 days/decade in Northeast China (P<0.01) and -2.22 days/decade (P<0.01) in North China. Over the same period, the number of frost days in spring decreased and the last frost days advanced across the study area. Considering both flowering phenology and occurrence of frost, the frost risk index, which measures the percentage of species exposed to frost during the flowering period in spring, exhibited a decreasing trend of -0.37% per decade (insignificant) in Northeast China and -1.80% per decade (P<0.01) in North China, implying that frost risk has reduced over the past half century. These conclusions provide important inform

  • Research Articles
    YANG Yu, LIU Yi
    Baidu(35) CSCD(7)

    This paper examines the spatial pattern of land and water resources as well as urbanization and their interactions in the Tarim River Basin, Xinjiang, China. In order to do so, we extract the data associated with efficiency of land and water resources and urbanization for the years of 1995, 2000, 2005 and 2008. Specifically the paper investigates the extent to which agglomeration of population and economic activities varies geographically and interplays with spatial pattern of resources efficiency through computation of Global Moran's I index, Getis-Ord Gi* index and a coordinated development model. The method used provides clear evidence that urbanization, land and water resources efficiency have shown uneven spatial pattern due to oasis distribution, climate, and initial phase of urban development. Some conclusions can be drawn as follows. (1) Agglomeration and dispersion of urbanization are not consistent with those of land and water resources efficiency. (2) Evolution of the hot and cold spots of urbanization, and land and water resources efficiency, in different trajectories, indicate that there are no significant interactions between them. (3) The evidence that numbers of hot and cold spots of the three factors present varying structures reveals the dominance of unequal urban development in the study area. (4) Significant differences are also found between sub-river basins in terms of the three factors, which is a reflection of the complex physical geography of the area. (5) The degree of coordinated development of cities in the Tarim River Basin is generally low in part as a reflection of difference in spatial patterns of the three factors. It is also shown that the pattern of the degree of coordinated development is relatively stable compared with evolution of hot and cold spots of the three factors.

  • Research Articles
    TAN Jieyang, YANG Peng, LIU Zhenhuan, WU Wenbin, ZHANG Li, LI Zhipeng, YOU Liangzhi, TANG Huajun, LI Zhengguo
    Baidu(29) CSCD(4)

    Understanding crop patterns and their changes on regional scale is a critical requirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are still lacking. Based on the cross-entropy theory, a spatial production allocation model (SPAM) has been developed for presenting spatio-temporal dynamics of maize cropping system in Northeast China during 1980-2010. The simulated results indicated that (1) maize sown area expanded northwards to 48°N before 2000, after that the increased sown area mainly occurred in the central and southern parts of Northeast China. Meanwhile, maize also expanded eastwards to 127°E and lower elevation (less than 100 m) as well as higher elevation (mainly distributed between 200 m and 350 m); (2) maize yield has been greatly promoted for most planted area of Northeast China, especially in the planted zone between 42°N and 48°N, while the yield increase was relatively homogeneous without obvious longitudinal variations for whole region; (3) maize planting density increased gradually to a moderately high level over the investigated period, which reflected the trend of aggregation of maize cultivation driven by market demand.

  • Research Articles
    Watinee THAVORNTAM, Netnapid TANTEMSAPYA
    . 2013, 23(6): 1052-1068. https://doi.org/10.1007/s11442-013-1062-2
    Baidu(27) CSCD(5)

    In Northeast Thailand, the climate change has resulted in erratic rainfall and temperature patterns. The region has experienced both periods of drought and seasonal floods with the increasing severity. This study investigated the seasonal variation of vegetation greenness based on the Normalized Difference Vegetation Index (NDVI) in major land cover types in the region. An assessment of the relationship between climate patterns and vegetation conditions observed from NDVI was made. NDVI data were collected from year 2001 to 2009 using multi-temporal Terra MODIS Vegetation Indices Product (MOD13Q1). NDVI profiles were developed to measure vegetation dynamics and variation according to land cover types. Meteorological information, i.e. rainfall and temperature, for a 30 year time span from 1980 to 2009 was analyzed for their patterns. Furthermore, the data taken from the period of 2001-2009, were digitally encoded into GIS database and the spatial patterns of monthly rainfall and temperature maps were generated based on kriging technique. The results showed a decreasing trend in NDVI values for both deciduous and evergreen forests. The highest productivity and biomass were observed in dry evergreen forests and the lowest in paddy fields. Temperature was found to be increasing slightly from 1980 to 2009 while no significant trends in rainfall amounts were observed. In dry evergreen forest, NDVI was not correlated with rainfall but was significant negatively correlated with temperature. These results indicated that the overall productivity in dry evergreen forest was affected by increasing temperatures. A vegetation greenness model was developed from correlations between NDVI and meteorological data using linear regression. The model could be used to observe the change in vegetation greenness and dynamics affected by temperature and rainfall.

  • Special Research on Sanjiangyuan
    Brendon BLUE, Gary BRIERLEY, YU Guo-an
    Baidu(24)

    It is a key premise of ‘ecosystem approaches' to natural resources management that we must have an appropriate understanding of biodiversity values, and controls upon them, if we wish to manage them effectively. These biodiversity values, and associated ecosystem functionality, vary with space and time and are tied directly to landscape-scale relationships and evolutionary traits. In riverine systems, nested hierarchical principles provide a useful platform to assess relationships between landscape components across a range of scales. These understandings are most instructively synthesized through catchment-scale analyses. This paper outlines a rationale for systematic catchment-wide appraisals of river geodiversity. An initial application of these principles is presented for the Yellow River source zone in Qinghai Province, western China. Geo-ecological relationships are outlined for five broad sections of the trunk stream, highlighting implications for the management of these individual landscape compartments and for the system as a whole.

  • Research Articles
    YI Xiangsheng, LI Guosheng, YIN Yanyu
    Journal of Geographical Sciences. 2013, 23(3): 447-464. https://doi.org/10.1007/s11442-013-1021-y
    Baidu(22) CSCD(3)

    Based on a monthly dataset of precipitation time series (1961-2010) from 12 meteorological stations across the Three-River Headwater Region (THRHR) of Qinghai Province, China, the spatio-temporal variation and abrupt change analysis of precipitation were examined by using moving average, linear regression, spline interpolation, the Mann-Kendall test and so on. Major conclusions were as follows. (1) The long-term annual and seasonal precipitation in the study area indicated an increasing trend with some oscillations during 1961-2010; however, the summer precipitation in the Lantsang (Lancang) River Headwater Region (LARHR), and the autumn precipitation in the Yangtze River Headwater Region (YERHR) of the THRHR decreased in the same period. (2) The amount of annual precipitation in the THRHR and its three sub-headwater regions was greater in the 1980s and 2000s. The springs were fairly wet after the 1970s, while the summers were relatively wet in the 1960s, 1980s and 2000s. In addition, the amount of precipitation in the autumn was greater in the 1970s and 1980s, but it was relatively less for the winter precipitation, except in the 1990s. (3) The normal values of spring, summer, winter and annual precipitation in the THRHR and its three sub-headwater regions all increased, but the normal value of summer precipitation in the LARHR had a negative trend and the normal value of winter precipitation declined in general. (4) The spring and winter precipitation increased in most of the THRHR. The summer, autumn and annual precipitation increased mainly in the marginal area of the west and north and decreased in the regions of Yushu, Zaduo, Jiuzhi and Banma. (5) The spring and winter precipitation in the THRHR and its three sub-headwater regions showed an abrupt change, except for the spring precipitation in the YARHR. The abrupt changes of spring precipitation were mainly in the late 1980s and early 1990s, while the abrupt changes of winter precipitation were primary in the mid- to late 1970s. This research would be helpful for further understanding the trends and periodicity of precipitation and for watershed-based water resource management in the THRHR.

  • Special Research on Sanjiangyuan
    YU Guo-an, LIU Le, LI Zhiwei, LI Yanfu, HUANG Heqing, Gary BRIERLEY, Brendon BLUE, WANG Zhaoyin, PAN Baozhu
    Baidu(22) CSCD(2)

    The spatial distribution of valley setting (laterally-unconfined, partly-confined, or confined) and fluvial morphology in the source region of the Yangtze and Yellow Rivers is contrasted and analyzed. The source region of the Yangtze River is divided into 3 broad sections (I, II and III) based on valley setting and channel gradient, with the upstream and downstream sections being characterized by confined (some reaches partly-confined) valleys, while the middle section is characterized with wide and shallow, laterally-unconfined valleys. Gorges are prominent in sections I and III, while braided channel patterns dominate section II. By contrast, the source region of the Yellow River is divided into 5 broad sections (sections I-V) based on valley characteristics and channel gradient. Sections I, II and IV are alluvial reaches with mainly laterally-unconfined (some short reaches partly-confined) valleys. Sections III and V are mainly confined or partly-confined. Greater morphological diversity is evident in the source region of the Yellow River relative to the upper Yangtze River. This includes braided, anabranching, anastomosing, meandering and straight alluvial patterns, with gorges in confined reaches. The macro-relief (elevation, gradient, aspect, valley alignment and confinement) of the region, linked directly to tectonic movement of the Qinghai-Tibet Plateau, tied to climatic, hydrologic and biotic considerations, are primary controls upon the patterns of river diversity in the region.

  • Research Articles
    QIN Yuanwei, YAN Huimin, LIU Jiyuan, DONG Jinwei, CHEN Jingqing, XIAO Xiangming
    Journal of Geographical Sciences. 2013, 23(3): 404-416. https://doi.org/10.1007/s11442-013-1018-6
    Baidu(20) CSCD(2)

    The changes in cropland quantity and quality due to land use are critical concerns to national food security, particularly for China. Despite the significant ecological effects, the ecological restoration program (ERP), started from 1999, has evidently altered the spatial patterns of China’s cropland and agricultural productivity. Based on cropland dynamic data from 2000 to 2008 primarily derived from satellite images with a 30-m resolution and satellite-based net primary productivity models, we identified the impacts on agricultural productivity caused by ERP, including “Grain for Green” Program (GFGP) and “Reclaimed Cropland to Lake” (RCTL) Program. Our results indicated that the agricultural productivity lost with a rate of 132.67×104 t/a due to ERP, which accounted for 44.01% of the total loss rate caused by land use changes during 2000-2005. During 2005-2008, the loss rate due to ERP decreased to 77.18×104 t/a, which was equivalent to 58.17% of that in the first five years and 30.22% of the total loss rate caused by land use changes. The agricultural productivity loss from 2000-2008 caused by ERP was more attributed to GFGP (about 70%) than RCTL. Although ERP had a certain influence on cropland productivity during 2000-2008, its effect was still much less than that of urbanization; moreover, ERP was already converted from the project implementation phase to the consolidation phase.

  • Climate Change
    PANG Hongxi, LI Zongxing, Wilfred H. THEAKSTONE
    Journal of Geographical Sciences. 2012, 22(5): 771-780. https://doi.org/10.1007/s11442-012-0962-x
    Baidu(19)

    Studying the response to warming of hydrological systems in China’s temperate glacier region is essential in order to provide information required for sustainable development. The results indicated the warming climate has had an impact on the hydrological cycle. As the glacier area subject to melting has increased and the ablation season has become longer, the contribution of meltwater to annual river discharge has increased. The earlier onset of ablation at higher elevation glaciers has resulted in the period of minimum discharge occurring earlier in the year. Seasonal runoff variations are dominated by snow and glacier melt, and an increase of meltwater has resulted in changes of the annual water cycle in the Lijiang Basin and Hailuogou Basin. The increase amplitude of runoff in the downstream region of the glacial area is much stronger than that of precipitation, resulting from the prominent increase of meltwater from glacier region in two basins. Continued observations in the glacierized basins should be undertaken in order to monitor changes, to reveal the relationships between climate, glaciers, hydrology and water supplies, and to assist in maintaining sustainable regional development.

  • Climate Change
    ZHANG Xiangping, YE Yu, FANG Xiuqi
    Journal of Geographical Sciences. 2012, 22(5): 810-824. https://doi.org/10.1007/s11442-012-0965-7
    Baidu(18) CSCD(2)

    The proxy records on typhoons in the Yangtze River Delta from 1644 to 1949AD were extracted from historical chorographies in the Qing Dynasty and the Republic of China Period. In reference to the basic principles for identifying historical typhoons, time series on the Yangtze River Delta over a period of 306 years were developed. The conclusions are as follows. (1) There were a total of 241 typhoons from 1644 to 1949AD. Using the historical chorographies from 1884 to 1949AD, the number of typhoons was 65, equal to 87.8% recorded by meteorological observation. The number of years with differences in typhoon activities reconstructed using two ways no more than once is 55, reaching 83.3% in the period from 1884 to 1949AD. This result means the series of historical typhoons reconstructed using historical chorographies can represent the change of typhoon activities over years. (2) The average number of typhoon activities is 0.79 times per year from 1644 to 1949AD, and they show an increasing trend. These 306 years can be divided into three periods by the average number of typhoon activities: it is low from 1644 to 1784AD, and more typhoon activities are found from 1785 to 1904AD. It is worth noting that the number of typhoon activities reaches the summit in the last period, which is 1.2 times per year from 1905 to 1949AD. (3) Before the 20th century, the number of typhoon activities in warm periods is less than the number of cold periods. However, the number of typhoon activities increased dramatically in the early 20th century. Comparing the typhoon activities with El Ni駉 events, the data show that the number of typhoon activities did not increase when El Ni駉 occurred.

  • Research Articles
    WANG Zheng, ZHU Yongbin, PENG Yongming
    Baidu(17) CSCD(5)

    It is believed that the global CO2 emissions have to begin dropping in the near future to limit the temperature increase within 2 degrees by 2100. So it is of great concern to environmentalists and national decision-makers to know how the global or national CO2 emissions would trend. This paper presented an approach to project the future CO2 emissions from the perspective of optimal economic growth, and applied this model to the cases of China and the United States, whose CO2 emissions together contributed to more than 40% of the global emissions. The projection results under the balanced and optimal economic growth path reveal that the CO2 emissions will peak in 2029 for China and 2024 for the USA owing to their empirically implied pace of energy efficiency improvement. Moreover, some abatement options are analyzed for China, which indicate that 1) putting up the energy price will decrease the emissions at a high cost; 2) enhancing the decline rate of energy intensity can significantly mitigate the emissions with a modest cost; and 3) the energy substitution policy of replacing carbon intensive energies with clean ones has considerable potential to alleviate emissions without compromising the economic development.

  • Research Articles
    LIN Zhenming, XIA Bin
    Journal of Geographical Sciences. 2013, 23(3): 417-435. https://doi.org/10.1007/s11442-013-1019-5
    Baidu(16) CSCD(2)

    The urban ecosystem possesses dissipating structures that can absorb substances and energy from the external environment and export products and wastes to maintain order within the system. Given these circumstances, this paper analyzed the ability of the urban ecosystem in Guangzhou City to sustain development from the perspective of entropy. The research was carried out in three steps. First, an evaluation index system that considers the ability of the urban ecosystem for sustainable development was formed based on the structures and functions of the urban ecosystem and the change in the entropy of the urban socioeconomic ecosystem. Second, the sustainable development ability assessment model for the urban ecosystem was built using information entropy. Last, by combining the time series variation of the evaluation indicators with the entropy weights, this paper analyzed the influence of the combined factors on the sustainable development ability of the urban ecosystem in Guangzhou and suggested some measures to promote the sustainable development of the urban ecosystem in Guangzhou. The conclusions of this study can be summarized as follows: (1) The urban ecosystem has developed in an orderly and healthy direction, with effective control over the urban environmental pollution problems in Guangzhou between 2004 and 2010. (2) The sustainable development ability of the urban ecosystem had been on an upward trend in Guangzhou during the study period. The ability of the natural urban ecosystem to support the urban socioeconomic ecosystem increased continuously, and the improved ecoenvironment enhanced the harmony and vitality of the urban ecosystem in Guangzhou.

  • Human-Environment Interactions
    DUAN Jinlong, ZHANG Xuelei
    Journal of Geographical Sciences. 2012, 22(6): 1101-1116. https://doi.org/10.1007/s11442-012-0985-3
    Baidu(15) CSCD(4)

    Two typical provincial capitals (Nanjing and Zhengzhou) and two counties (Rugao and Yuanyang) in east (Jiangsu Province) and central (Henan Province) China were chosen respectively as the developed and less developed comparative cases for pedodiversity and land use diversity correlative analysis by borrowing the recently better developed pedodiversity methodology. Land use classification was worked out using remote sensing images in three different periods (1986-1988, 2000-2001 and 2004-2006) for these studied case areas before the calculation of the constituent diversity index and spatial distribution diversity index modified after Shannon entropy in 2 km×2 km grid scale of the soil and land use pattern were conducted and then a connection index was proposed to evaluate the relationship between soil and land use diversity. Results show that during the years from 1986 to 2006, the composition and spatial distribution of regional land use pattern had changed greatly. The agricultural land area of all the studied case areas decreased obviously in which Nanjing has the highest decrement of 895.98 km2 mainly into urban use while the other land use type area changes show the same trend. The connection index of four typical soil family types and typical urban land use types, i.e., urban construction land, transportation land and industrial and mining area all increased in this period. In the studied case areas, there is the highest soil constituent diversity in Zhengzhou at 0.779 while the simplest soil constituent diversity in Rugao at 0.582. Meanwhile we have higher land use diversity in the more urbanized Jiangsu Province than Henan Province, Nanjing is ranking the first that has been getting higher and higher in the three periods at 0.366 in 1986-1988, 0.483 in 2000-2001 and 0.545 in 2004-2006. Finally, the connection index figures to evaluate the relationship between soil and land use diversity of the studied areas were compared to show the similar phenomenon that this figure grows fastest in Nanjing followed by Zhengzhou and other places.

  • Research Articles
    XIA Fei, ZHANG Yongzhan, WANG Qiang, YIN Yong, Karl W. WEGMANN, J. Paul LIU
    Baidu(13) CSCD(8)

    An evolutionary model of sedimentary environments since late Marine Isotope Stage 3 (late MIS 3, i.e., ca. 39 cal ka BP) along the middle Jiangsu coast is presented based upon a reinterpretation of core 07SR01, new correlations between adjacent published cores, and shallow seismic profiles recovered in the Xiyang tidal channel and adjacent northern sea areas. Geomorphology, sedimentology, radiocarbon dating and seismic and sequence stratigraphy are combined to confirm that environmental changes since late MIS 3 in the study area were controlled primarily by sea-level fluctuations, sediment discharge of paleo-rivers into the South Yellow Sea (SYS), and minor tectonic subsidence, all of which impacted the progression of regional geomorphic and sedimentary environments (i.e., coastal barrier island, freshwater lacustrine swamp, river floodplain, coastal marsh, tidal sand ridge, and tidal channel). This resulted in the formation of a fifth-order sequence stratigraphy, comprised of the parasequence of the late stage of the last interstadial (Para-Sq2), including the highstand and forced regressive wedge system tracts (HST and FRWST), and the parasequence of the postglacial period (Para-Sq1), including the transgressive and highstand system tracts (TST and HST). The tidal sand ridges likely began to develop during the postglacial transgression as sea-level rise covered the middle Jiangsu coast at ca. 9.0 cal ka BP. These initially submerged tidal sand ridges were constantly migrating until the southward migration of the Yellow River mouth to the northern Jiangsu coast during AD 1128 to 1855. The paleo-Xiyang tidal channel that was determined by the paleo-tidal current field and significantly different from the modern one, was in existence during the Holocene transgressive maxima and lasted until AD 1128. Following the capture of the Huaihe River in AD 1128 by the Yellow River, the paleo-Xiyang tidal channel was infilled with a large amount of river-derived sediments from AD 1128 to 1855, causing the emergence of some of the previously submerged tidal sand ridges. From AD 1855 to the present, the infilled paleo-Xiyang tidal channel has undergone scouring, resulting in its modern form. The modern Xiyang tidal channel continues to widen and deepen, due both to strong tidal current scouring and anthropogenic activities.

  • Research Articles
    ZHANG Yong, HE Daming, LU Ying, FENG Yan, Jake REZNICK
    Baidu(12) CSCD(2)

    This paper seeks to quantify the social and economic impact of resettlement based on the physiographic element changes post relocation. We focus on communities affected by the Nuozhadu hydropower project, the largest existing hydropower project on the mainstream of the Upper Mekong River. Soil and meteorological data were collected from the Soil Spatial Database and the China Terrestrial Ecological Information Spatial Meteorology Database, while social and economic data were collected via field surveys. We have three major conclusions: (1) Communities will be relocated to a new climate and new elevation, moving from a north tropical climate zone under 700 m to a subtropical climate zone above 700 m. (2) Physiographic element changes due to relocation will reduce household economic income. After relocation, the annual family income of the Shidaimao group decreased by 62%; the annual family income of the other 5 study groups (Lasa, Hani, Nochangchangyi, Mengsa, and Dawazi) dropped by 65%. (3) Communities relocated across the study township are 61.1% less connected with their former relatives after relocation while family-to-family free labor exchange, a previous community norm, decreased by 91%. China's dam resettlement compensation system focuses on the loss of economic resources after relocation. However, this study finds that the physiographic elements of the relocation sites are an important driver of ensuring economic growth and stability after relocation. As a result, we recommend more attention be paid to physiographic continuity when designing relocation models.

  • Research Articles
    DU Jiankuo, HE Yuanqing, LI Shuang, WANG Shijin, NIU Hewen, XIN Huijuan, PU Tao
    Baidu(11) CSCD(5)

    The accumulation and ablation of a glacier directly reflect its mass income and wastage, and ice temperature indicates glacier's climatic and dynamic conditions. Glaciological studies at Baishui Glacier No.1 in Mt. Yulong are important for estimating recent changes of the cryosphere in Hengduan Mountains. Increased glacier ablation and higher ice temperatures can cause the incidents of icefall. Therefore, it is important to conduct the study of glacier mass balance and ice temperature, but there are few studies in relation to glacier's mass balance and active-layer temperature in China's monsoonal temperate glacier region. Based on the field observations of mass balance and glacier temperature at Baishui Glacier No.1, its accumulation, ablation, net balance and near-surface ice temperature structure were analyzed and studied in this paper. Results showed that the accumulation period was ranged from October to the following mid-May, and the ablation period occurred from mid-May to October, suggesting that the ablation period of temperate glacier began about 15 days earlier than that of continental glaciers, while the accumulation period began about 15 days later. The glacier ablation rate was 6.47 cm d-1 at an elevation of 4600 m between June 23 and August 30, and it was 7.4 cm d-1 at 4800 m between June 26 and July 11 in 1982, moreover, they respectively increased to 9.2 cm d-1 and 10.8 cm d-1 in the corresponding period and altitude in 2009, indicating that glacier ablation has greatly intensified in the past years. The temperature of the main glacier body was close to melting point in summer, and it dropped from the glacier surface and reached a minimum value at a depth of 4-6 m in the ablation zone. The temperature then rose to around melting point with the depth increment. In winter, the ice temperature rose gradually with the increasing depth, and close to melting point at the depth of 10 m. Compared with the data from 1982, the glacier temperature has risen in the ablation zone in recent decades.

  • Research Articles
    PENG Jun, MA Suisui, CHEN Hongquan, LI Zhiwen
    Journal of Geographical Sciences. 2013, 23(3): 490-502. https://doi.org/10.1007/s11442-013-1023-9
    Baidu(10) CSCD(3)

    Based on measured data of coastline and bathometry, processed by softwares of Surfer and Mapinfo, and combined with sediment loads in different phases at Lijin gauging station, temporal and spatial evolution of coastline and subaqueous geomorphology in muddy coast of the Yellow River Delta is analyzed. The results show that ~68% of sediments were delivered by the Yellow River deposited around the river mouth and in the littoral area from 1953 to 2000. Coastline in different coasts had distinctive changes in response to shifts of river course. Coastline was stable in the west of the Diaokou river mouth. Coastline from the east of the Diaokou river mouth to the north of the Gudong oilfield had experienced siltation, then serious erosion, and finally kept stable with sea walls conservation. Generally, coastline of the survived river mouth of the Qingshuigou river course stretched seaward, whereas the south side of sand spit at the Qingshuigou old river mouth was eroded after the Yellow River inpouring near the position at the Qing 8. The subaqueous geomorphology off the survived river mouth exhibited siltation from 1976 to 1996, with flat topset beds and steeper foreset beds. From 1996 to 2005, the subaqueous geomorphology off the Qingshuigou old river mouth was eroded in the topset and foreset beds, but silted in the bottomset beds. The subaqueous geomorphology off the new river mouth sequentially performed siltation with small degree compared to that of 1976-1996.

  • Research Articles
    LONG Kaisheng, ZHAO Yali, ZHANG Honghui, CHEN Ligen, LU Fangfang, GU Yuanyuan
    Journal of Geographical Sciences. 2013, 23(3): 387-403. https://doi.org/10.1007/s11442-013-1017-7
    Baidu(10) CSCD(1)

    Ecological land rent is the excess profit produced by resource scarcity, and is also an important indicator for measuring the social and economic effects of resource scarcity. This paper, by calculating the respective ecological land rents of all the provinces in China for the years 2002 and 2007, and with the assistance of the software programs ArcGIS and GeoDA, analyzes the spatial differentiation characteristics of ecological land rent; then, the influencing factors of ecological land rent differentiation among the provinces are examined using the methods of traditional regression and spatial correlation analysis. The following results were obtained: First, ecological land rent per unit of output in China shows stable distribution characteristics of being low in the southwestern and northeastern provinces, and high in Hebei and Henan provinces. There is also an increasing tendency in the central and western provinces, and a decreasing one in the eastern provinces. In general, the spatial distribution of ecological land rent per unit of output in China is quite scattered. Second, the total ecological land rent shows significant spatial aggregation characteristics, in particular the provinces in China possessing high total amounts of ecological land rent tend to be adjacent to one another, as do those with low total amounts, and the spatial difference characteristics of the eastern, central and western provinces are distinguished. The Bohai Rim, Yangtze River Delta and Pearl River Delta are shown to be highly clustering regions of total ecological land rent, while the western provinces have very low ecological land rent in terms of total amount. Third, population distribution, economic level and industrial structure were all important influencing factors influencing ecological land rent differentiation among provinces in China. Furthermore, population density, urbanization level, economic density, per capita consumption level and GDP per capita were all shown to be positively related to total ecological land rent, which indicates that spatial clustering exists between ecological land rent and these factors. However, there was also a negative correlation between ecological land rent and agricultural output percentage, indicating that spatial scattering exists between ecological land rent and agricultural output percentage.