Journal of Geographical Sciences ›› 2023, Vol. 33 ›› Issue (8): 1631-1659.doi: 10.1007/s11442-023-2146-2
• Special Issue: Human-environment interactions and Ecosystems • Previous Articles Next Articles
CHAO Lumen1,2(), BAO Yulong1,3,*(
), ZHANG Jiquan4,5, BAO Yuhai1,3, MEI Li1, YUAN Zhihui1
Received:
2022-06-13
Accepted:
2023-03-22
Online:
2023-08-25
Published:
2023-08-29
Contact:
* Bao Yulong (1982-), Associate Professor, E-mail: About author:
Chao Lumen (1990-), PhD Candidate, E-mail: huiyouyitian654@126.com
Supported by:
CHAO Lumen, BAO Yulong, ZHANG Jiquan, BAO Yuhai, MEI Li, YUAN Zhihui. Quantitative assessment of fire occurrence Dead Fuel Index threshold and spatio-temporal variation in different grassland types of China-Mongolia border area[J].Journal of Geographical Sciences, 2023, 33(8): 1631-1659.
Table 1
Day-of-year (DOY) of the first day of each calendar month
Month | Non-leap year start DOY | Leap year start DOY | Month | Non-leap year start DOY | Leap year start DOY |
---|---|---|---|---|---|
January | 1 | 1 | July | 182 | 183 |
February | 32 | 32 | August | 213 | 214 |
March | 60 | 61 | September | 244 | 245 |
April | 91 | 92 | October | 274 | 275 |
May | 121 | 122 | November | 305 | 306 |
June | 152 | 153 | December | 335 | 336 |
Table 3
Burned area information statistics
Year | Area | Date of fire | Month | DFI date | Vegetation type |
---|---|---|---|---|---|
2001 | East Ujimqin Banner | 269 | September | 257 | Meadow steppe |
2001 | Xin Barag Right Banner | 256-259 | September | 249 | Typical steppe |
2002 | Prairie Chenbarhu banner | 132-133 | May | 129 | Typical steppe |
2004 | Erdenetsagaan border | 110-115 | April | 105 | Typical steppe |
2005 | Khalkhgol border | 284-288 | October | 281 | Meadow steppe and broadleaf forest |
2005 | East Ujimqin Banner | 289-290 | October | 281 | Meadow steppe |
2006 | East Ujimqin Banner | 267-268 | September | 265 | Meadow steppe and typical steppe |
2006 | Ewenki Autonomous Banner | 136-138 | May | 129 | Meadow steppe |
2006 | Khalkhgol border | 150 | May | 145 | Meadow steppe and typical steppe |
2007 | Xin Barag Left Banner | 121-127 | May | 113 | Typical steppe |
2007 | Khalkhgol border | 160-170 | June | 153 | Meadow steppe |
2008 | Xin Barag Left Banner border | 92-102 | April | 89 | Typical steppe |
2009 | Prairie Chenbarhu Banner border | 149-151 | May | 145 | Meadow steppe and typical steppe |
2009 | Khalkhgol border | 305-309 | November | 297 | Meadow steppe and broadleaf forest |
2010 | Khalkhgol | 247-248 | September | 241 | Meadow steppe and typical steppe |
2012 | Khalkhgol | 107-114 | April | 105 | Meadow steppe and typical steppe |
2013 | Xin Barag Right Banner border | 279-280 | October | 273 | Typical steppe |
2013 | East Ujimqin Banner | 271-273 | September | 265 | Typical steppe |
2013 | Khalkhgol and Matad | 133-136 | May | 129 | Meadow steppe and typical steppe |
2014 | Khalkhgol and Matad | 86-89 | March | 81 | Typical steppe |
2015 | Khalkhgol | 80-82 | March | 73 | Meadow steppe |
2015 | Khalkhgol | 83 | March | 81 | Meadow steppe |
2016 | Khalkhgol border | 188 | July | 185 | Typical steppe |
2016 | Khalkhgol | 112-113 | April | 105 | Meadow steppe |
2017 | Ewenki Autonomous Banner | 169-170 | June | 161 | Typical steppe |
2017 | Choibalsan | 176-181 | June | 169 | Typical steppe |
2017 | Choibalsan | 177-180 | June | 169 | Typical steppe |
2018 | Xin Barag Left Banner border | 123-129 | May | 121 | Typical steppe |
2019 | Manzhouli border | 110-113 | April | 105 | Typical steppe |
2019 | Xin Barag Left Banner border | 110-113 | April | 105 | Typical steppe |
2019 | Khalkhgol border | 271-276 | October | 265 | Typical steppe |
2020 | Tsagaan-Ovoo | 289-292 | October | 281 | Typical steppe |
2020 | East Ujimqin Banner | 265-267 | September | 257 | Typical steppe |
Table 4
The MCD64A1 burned area validation with Landsat burned area results
Year | Date | Test dataset | Validation method | Result | Year | Date | Test dataset | Validation method | Result | ||
---|---|---|---|---|---|---|---|---|---|---|---|
2001 | 256-259 | TP | Precision | 0.95 | 2007 | 121-127 | TP | Precision | 0.71 | ||
TN | Recall | 0.95 | TN | Recall | 0.75 | ||||||
FP | Specially | 0.97 | FP | Specially | 0.88 | ||||||
FN | Accuracy | 0.96 | FN | Accuracy | 0.85 | ||||||
AOC | 0.96 | AOC | 0.82 | ||||||||
2001 | 269 | TP | Precision | 0.77 | 2007 | 160-170 | TP | Precision | 0.83 | ||
TN | Recall | 0.47 | TN | Recall | 0.87 | ||||||
FP | Specially | 0.83 | FP | Specially | 0.85 | ||||||
FN | Accuracy | 0.64 | FN | Accuracy | 0.86 | ||||||
AOC | 0.65 | AOC | 0.86 | ||||||||
2002 | 132-133 | TP | Precision | 0.78 | 2008 | 92-102 | TP | Precision | 0.91 | ||
TN | Recall | 0.79 | TN | Recall | 0.91 | ||||||
FP | Specially | 0.74 | FP | Specially | 0.87 | ||||||
FN | Accuracy | 0.77 | FN | Accuracy | 0.89 | ||||||
AOC | 0.77 | AOC | 0.89 | ||||||||
2004 | 110-115 | TP | Precision | 0.80 | 2009 | 149-151 | TP | Precision | 0.80 | ||
TN | Recall | 0.95 | TN | Recall | 0.88 | ||||||
FP | Specially | 0.87 | FP | Specially | 0.83 | ||||||
FN | Accuracy | 0.90 | FN | Accuracy | 0.85 | ||||||
AOC | 0.91 | AOC | 0.85 | ||||||||
2005 | 284-288 | TP | Precision | 0.93 | 2009 | 305-309 | TP | Precision | 0.87 | ||
TN | Recall | 0.99 | TN | Recall | 0.95 | ||||||
FP | Specially | 0.95 | FP | Specially | 0.93 | ||||||
FN | Accuracy | 0.97 | FN | Accuracy | 0.94 | ||||||
AOC | 0.97 | AOC | 0.94 | ||||||||
2005 | 289-290 | TP | Precision | 0.90 | 2010 | 247-248 | TP | Precision | 0.80 | ||
TN | Recall | 0.98 | TN | Recall | 0.82 | ||||||
FP | Specially | 0.97 | FP | Specially | 0.76 | ||||||
FN | Accuracy | 0.97 | FN | Accuracy | 0.79 | ||||||
AOC | 0.97 | AOC | 0.79 | ||||||||
2006 | 136-138 | TP | Precision | 0.88 | 2012 | 107-114 | TP | Precision | 0.73 | ||
TN | Recall | 0.93 | TN | Recall | 0.75 | ||||||
FP | Specially | 0.83 | FP | Specially | 0.82 | ||||||
FN | Accuracy | 0.89 | FN | Accuracy | 0.79 | ||||||
AOC | 0.88 | AOC | 0.78 | ||||||||
2006 | 150 | TP | Precision | 0.71 | 2013 | 133-136 | TP | Precision | 0.78 | ||
TN | Recall | 0.65 | TN | Recall | 0.79 | ||||||
FP | Specially | 0.78 | FP | Specially | 0.86 | ||||||
FN | Accuracy | 0.72 | FN | Accuracy | 0.83 | ||||||
AOC | 0.71 | AOC | 0.86 | ||||||||
2006 | 267-268 | TP | Precision | 0.93 | 2013 | 271-273 | TP | Precision | 0.90 | ||
TN | Recall | 0.85 | TN | Recall | 0.80 | ||||||
FP | Specially | 0.96 | FP | Specially | 0.99 | ||||||
FN | Accuracy | 0.92 | FN | Accuracy | 0.95 | ||||||
AOC | 0.90 | AOC | 0.96 | ||||||||
2013 | 279-280 | TP | Precision | 0.89 | 2017 | 177-180 | TP | Precision | 0.74 | ||
TN | Recall | 0.96 | TN | Recall | 0.75 | ||||||
FP | Specially | 0.95 | FP | Specially | 0.87 | ||||||
FN | Accuracy | 0.95 | FN | Accuracy | 0.83 | ||||||
AOC | 0.95 | AOC | 0.81 | ||||||||
2014 | 86-89 | TP | Precision | 0.77 | 2018 | 123-129 | TP | Precision | 0.73 | ||
TN | Recall | 0.94 | TN | Recall | 0.77 | ||||||
FP | Specially | 0.83 | FP | Specially | 0.77 | ||||||
FN | Accuracy | 0.82 | FN | Accuracy | 0.77 | ||||||
AOC | 0.81 | AOC | 0.77 | ||||||||
2015 | 80-82 | TP | Precision | 0.94 | 2019 | 110-113 Manzhouli | TP | Precision | 0.85 | ||
TN | Recall | 0.96 | TN | Recall | 0.87 | ||||||
FP | Specially | 0.94 | FP | Specially | 0.92 | ||||||
FN | Accuracy | 0.94 | FN | Accuracy | 0.91 | ||||||
AOC | 0.94 | AOC | 0.90 | ||||||||
2015 | 83 | TP | Precision | 0.86 | 2019 | 110-113 East Chenbaerhu | TP | Precision | 0.94 | ||
TN | Recall | 0.96 | TN | Recall | 0.94 | ||||||
FP | Specially | 0.88 | FP | Specially | 0.94 | ||||||
FN | Accuracy | 0.92 | FN | Accuracy | 0.94 | ||||||
AOC | 0.92 | AOC | 0.94 | ||||||||
2016 | 188 | TP | Precision | 0.77 | 2019 | 271-276 | TP | Precision | 0.93 | ||
TN | Recall | 0.85 | TN | Recall | 0.83 | ||||||
FP | Specially | 0.73 | FP | Specially | 0.72 | ||||||
FN | Accuracy | 0.76 | FN | Accuracy | 0.79 | ||||||
AOC | 0.76 | AOC | 0.78 | ||||||||
2016 | 112-113 | TP | Precision | 0.94 | 2020 | 289-292 | TP | Precision | 1.00 | ||
TN | Recall | 0.94 | TN | Recall | 1.00 | ||||||
FP | Specially | 0.92 | FP | Specially | 1.00 | ||||||
FN | Accuracy | 0.88 | FN | Accuracy | 1.00 | ||||||
AOC | 0.88 | AOC | 1.00 | ||||||||
2017 | 169-170 | TP | Precision | 0.77 | 2020 | 265-267 | TP | Precision | 0.93 | ||
TN | Recall | 0.94 | TN | Recall | 0.96 | ||||||
FP | Specially | 0.91 | FP | Specially | 0.95 | ||||||
FN | Accuracy | 0.92 | FN | Accuracy | 0.95 | ||||||
AOC | 0.92 | AOC | 0.96 | ||||||||
2017 | 176-181 | TP | Precision | 0.79 | |||||||
TN | Recall | 0.79 | |||||||||
FP | Specially | 0.74 | |||||||||
FN | Accuracy | 0.77 | |||||||||
AOC | 0.77 |
Table 5
The meadow steppe area of each grade in each month (per km2)
Month Area | Level | ||||||
---|---|---|---|---|---|---|---|
March | April | May | June | September | October | November | |
(14, 16) | 1095.64 | 11767.36 | 26000.39 | 11669.39 | 36650.02 | 4085.66 | 172.35 |
(16, 18) | 1377.54 | 19295.78 | 16757.01 | 338.70 | 1053.62 | 12208.74 | 561.43 |
(18, 20) | 1932.75 | 15686.02 | 3281.13 | 24.87 | 40.30 | 23546.51 | 1594.91 |
(20, 22) | 3230.54 | 8809.07 | 326.48 | 11.58 | 18.22 | 19606.19 | 3424.12 |
(22, 24) | 4604.22 | 4539.69 | 65.38 | 8.15 | 9.86 | 8929.97 | 3300.85 |
(24, 26) | 5083.33 | 1568.97 | 7.29 | 4.07 | 7.07 | 1275.50 | 2917.13 |
Table 6
The typical steppe area of each grade in each month (per km2)
Month Area | Level | ||||||
---|---|---|---|---|---|---|---|
March | April | May | June | September | October | November | |
(12, 14) | 10295.07 | 44575.89 | 66123.62 | 93450.52 | 116313.19 | 23861.41 | 113.19 |
(14, 16) | 12305.64 | 49211.83 | 45419.00 | 29100.59 | 60913.38 | 38803.79 | 584.80 |
(16, 18) | 12161.37 | 34989.52 | 12417.97 | 1875.94 | 1794.27 | 62280.20 | 2831.81 |
(18, 20) | 10899.16 | 14609.68 | 1784.41 | 160.56 | 284.04 | 53837.06 | 8052.56 |
(20, 22) | 10983.41 | 3237.19 | 466.47 | 60.88 | 97.97 | 19267.70 | 11030.14 |
(22, 24) | 12779.18 | 750.72 | 220.37 | 36.66 | 52.95 | 3275.34 | 14193.80 |
(24, 26) | 16259.03 | 289.18 | 68.81 | 16.51 | 34.73 | 334.42 | 16869.77 |
[1] |
Aase J K, Tanaka D L, 1991. Reflectances from four wheat residue cover densities as influenced by three soil backgrounds. Agronomy Journal, 83(4): 753-757.
doi: 10.2134/agronj1991.00021962008300040020x |
[2] |
Abera T A, Heiskanen J, Maeda E E et al., 2022. Improved detection of abrupt change in vegetation reveals dominant fractional woody cover decline in Eastern Africa. Remote Sensing of Environment, 271: 112897.
doi: 10.1016/j.rse.2022.112897 |
[3] |
Aldersley A, Murray S J, Cornell S E, 2011. Global and regional analysis of climate and human drivers of wildfire. The Science of the Total Environment, 409: 3472-3481.
doi: 10.1016/j.scitotenv.2011.05.032 pmid: 21689843 |
[4] |
Bai X L, Zhao W Z, Ji S X et al., 2021. Estimating fractional cover of non-photosynthetic vegetation for various grasslands based on CAI and DFI. Ecological Indicators, 131: 108252.
doi: 10.1016/j.ecolind.2021.108252 |
[5] | Balshi M S, McGuire A D, Zhuang Q et al., 2007. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. Journal of Geophysical Research, 112(G2): G02029. |
[6] |
Bao G, Bao Y H, Qin Z H et al., 2016. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model. International Journal of Applied Earth Observation and Geoinformation, 46: 84-93.
doi: 10.1016/j.jag.2015.12.001 |
[7] |
Bao G, Jin H G J L T, Tong S Q et al., 2021. Autumn phenology and its covariation with climate, spring phenology and annual peak growth on the Mongolian Plateau. Agricultural and Forest Meteorology, 298/299: 108312.
doi: 10.1016/j.agrformet.2020.108312 |
[8] |
Bao G, Qin Z H, Bao Y H et al., 2014. NDVI-based long-term vegetation dynamics and its response to climatic change in the Mongolian Plateau. Remote Sensing, 6(9): 8337-8358.
doi: 10.3390/rs6098337 |
[9] | Bao Y L, 2013. Study on inversion of combustible characteristic parameters and evaluation of flammability and early warning of fire risk in Songnen grassland[D]. Changchun: Northeast Normal University. (in Chinese) |
[10] | Bao Y L, Zhang J Q, Liu X P et al., 2013. Analysis on grass fire traces extracted and pre-disaster characteristics of combustibles based on HJ-1B satellite data. Journal of Catastrophology, 28(1): 32-35. (in Chinese) |
[11] | Bao Y L, Zhang J Q, Zhao Y S et al., 2011. Estimation of moisture content of grassland fuel based on hyperspectra. Infrared, 32(7): 38-42. (in Chinese) |
[12] |
Bistinas I, Oom D, Sa A C et al., 2013. Relationships between human population density and burned area at continental and global scales. PloS One, 8(12): e81188.
doi: 10.1371/journal.pone.0081188 |
[13] |
Blickensdörfer L, Schwieder M, Pflugmacher D et al., 2022. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269: 112831.
doi: 10.1016/j.rse.2021.112831 |
[14] |
Cao X, Chen J, Matsushita B et al., 2010. Developing a MODIS-based index to discriminate dead fuel from photosynthetic vegetation and soil background in the Asian steppe area. International Journal of Remote Sensing, 31(6): 1589-1604.
doi: 10.1080/01431160903475274 |
[15] |
Carlson J D, Burgan R E, 2010. Review of users’ needs in operational fire danger estimation: The Oklahoma example. International Journal of Remote Sensing, 24(8): 1601-1620.
doi: 10.1080/01431160210144651 |
[16] |
Ceccato P, Gobron N, Flasse S et al., 2002. Designing a spectral index to estimate vegetation water content from remote sensing data (Part 1): Theoretical approach. Remote Sensing of Environment, 82(2): 188-197.
doi: 10.1016/S0034-4257(02)00037-8 |
[17] |
Chai G Q, Wang J P, Wu M Q et al., 2020. Mapping the fractional cover of non-photosynthetic vegetation and its spatiotemporal variations in the Xilingol grassland using MODIS imagery (2000-2019). Geocarto International, 37(7): 1-17.
doi: 10.1080/10106049.2019.1704071 |
[18] |
Chen B Z, Xu G, Coops N C et al., 2014. Changes in vegetation photosynthetic activity trends across the Asia-Pacific region over the last three decades. Remote Sensing of Environment, 144: 28-41.
doi: 10.1016/j.rse.2013.12.018 |
[19] |
Chen J Q, John R, Sun G et al., 2018. Prospects for the sustainability of social-ecological systems (SES) on the Mongolian plateau: Five critical issues. Environmental Research Letters, 13(12): 123004.
doi: 10.1088/1748-9326/aaf27b |
[20] |
Chen L F, Dou Q, Zhang Z M et al., 2019. Moisture content variations in soil and plant of post-fire regenerating forests in central Yunnan Plateau, Southwest China. Journal of Geographical Sciences, 29(7): 1179-1192.
doi: 10.1007/s11442-019-1652-8 |
[21] |
Claudia V, Francesca D G, Blazej K et al., 2019. Data descriptor: A 1980-2018 global fire danger re-analysis dataset for the Canadian fire weather indices. Scientific Data, 6(190032): 1-10.
doi: 10.1038/s41597-018-0005-2 |
[22] |
Dai E F, Huang Y, Wu Z et al., 2016. Analysis of spatio-temporal features of a carbon sourcesink and its relationship to climatic factors in the Inner Mongolia grassland ecosystem. Journal of Geographical Sciences, 26(3): 297-312.
doi: 10.1007/s11442-016-1269-0 |
[23] |
Donald M, Jeremy S L, 2017. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA? Ecological Applications, 27(1): 26-36.
doi: 10.1002/eap.1420 pmid: 28001335 |
[24] |
Douglas E M, Vogel R M, Kroll C N, 2000. Trends in floods and low flows in the United States: Impact of spatial correlation. Journal of Hydrology, 240(1/2): 90-105.
doi: 10.1016/S0022-1694(00)00336-X |
[25] |
Elvidge C D, 2007. Visible and near infrared reflectance characteristics of dry plant materials. International Journal of Remote Sensing. 11(10): 1775-1795.
doi: 10.1080/01431169008955129 |
[26] |
Feng Z D, Zhai X W, Ma Y Z et al., 2007. Eolian environmental changes in the northern Mongolian Plateau during the past -35,000 yr. Palaeogeography, Palaeoclimatology, Palaeoecology, 245(3/4): 505-517.
doi: 10.1016/j.palaeo.2006.09.009 |
[27] |
Fox D M, Carrega P, R en Y et al., 2018. How wildfire risk is related to urban planning and fire weather index in SE France (1990-2013). Science of the Total Environment, 621: 120-129.
doi: 10.1016/j.scitotenv.2017.11.174 |
[28] | French N H F, de Groot W J, Jenkins L K et al., 2011. Model comparisons for estimating carbon emissions from North American wildland fire. Journal of Geophysical Research: Biogeosciences, 116(G4): G00K05. |
[29] | Ghesquiere F, 2018. A decade of progress in disaster risk management. Global Facility for Disaster Reduction and Recovery GFDRR, N.W., Washington, D.C., U.S.A. |
[30] |
Guerschman J P, Hill M J, Renzullo L J et al., 2009. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sensing of Environment, 113(5): 928-945.
doi: 10.1016/j.rse.2009.01.006 |
[31] |
Guo Z K, Kurban A, Ablekim A et al., 2021. Estimation of photosynthetic and non-photosynthetic vegetation coverage in the lower reaches of Tarim River based on Sentinel-2A data. Remote Sensing, 13(8): 1458.
doi: 10.3390/rs13081458 |
[32] |
He T H, Lamont B B, Pausas J G, 2019. Fire as a key driver of Earth’s biodiversity. Biological Reviews of the Cambridge Philosophical Society, 94(6): 1983-2010.
doi: 10.1111/brv.v94.6 |
[33] |
Hilker T, Natsagdorj E, Waring R H et al., 2014. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Global Change Biology, 20(2): 418-428.
doi: 10.1111/gcb.12365 pmid: 23966315 |
[34] | Hong Y Y, 2016. Analysis of spatial-temporal changes of vegetation NDVI in border areas of China-Mongolia[D]. Hohhot: Inner Mongolia Normal University. (in Chinese) |
[35] |
Huang L, Ning J, Zhu P et al., 2021. The conservation patterns of grassland ecosystem in response to the forage-livestock balance in North China. Journal of Geographical Sciences, 31(4): 518-534.
doi: 10.1007/s11442-021-1856-6 |
[36] |
Jacques D C, Kergoat L, Hiernaux P et al., 2014. Monitoring dry vegetation masses in semi-arid areas with MODIS SWIR bands. Remote Sensing of Environment, 153: 40-49.
doi: 10.1016/j.rse.2014.07.027 |
[37] |
Jeong S J, Ho CH H, Gim H J et al., 2011. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Global Change Biology, 17(7): 2385-2399.
doi: 10.1111/j.1365-2486.2011.02397.x |
[38] |
Jin X M, Wan L, Zhang Y K et al., 2009. Quantification of spatial distribution of vegetation in the Qilian Mountain area with MODIS NDVI. International Journal of Remote Sensing, 30(21): 5751-5766.
doi: 10.1080/01431160902736635 |
[39] |
John R, Chen J Q, Yang O Z T et al., 2013. Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environmental Research Letters, 8(3): 035033.
doi: 10.1088/1748-9326/8/3/035033 |
[40] | Kirchmeier Y M C, Gillett N P, Zwiers F W et al., 2019. Attribution of the influence of human-induced climate change on an extreme fire season. Earth’s Future, 7(1): 2-10. |
[41] | Li C H, Sachula, Liu G X et al., 2020. Spatiotemporal changes of snow cover and its response to climate changes in the Mongolian Plateau from 2000 to 2017. Chinese Journal of Grassland, 42(2): 95-104. (in Chinese) |
[42] | Li N, Bao Y L, Yin S et al., 2016. Spatiotemporal characteristics of grassland fire in China-Mongolia border regions. Journal of Catastrophology, 31(3): 207-210. (in Chinese) |
[43] |
Li N, Zhang J Q, Bao Y L et al., 2018. Himawari-8 satellite based dynamic monitoring of grassland fire in China-Mongolia border regions. Sensors, 18(1): 1-15.
doi: 10.3390/s18010001 |
[44] |
Li W L, Kuang W H, Jun L et al., 2021. Adaptive evolution of the rural human-environment system in farming and pastoral areas of northern China from 1952-2017. Journal of Geographical Sciences, 31(6): 859-877.
doi: 10.1007/s11442-021-1875-3 |
[45] |
Li X S, Zheng G X, Wang J Y et al., 2016. Comparison of methods for estimating fractional cover of photosynthetic and non-photosynthetic vegetation in the Otindag Sandy Land using GF-1 wide-field view data. Remote Sensing, 8(10): 800.
doi: 10.3390/rs8100800 |
[46] |
Li Y P, Zhao J J, Guo X Y et al., 2017. The influence of land use on the grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region, China. Sensors, 17(3): 437.
doi: 10.3390/s17030437 |
[47] |
Liu J Y, Qi Y Q, Shi H D et al., 2008. Estimation of wind erosion rates by using 137Cs tracing technique: A case study in Tariat-Xilin Gol transect, Mongolian Plateau. Chinese Science Bulletin, 53(5): 751-758.
doi: 10.1007/s11434-008-0007-0 |
[48] |
Liu M F, Zhao J J, Guo X Y et al., 2017. Study on climate and grassland fire in Hulun Buir, Inner Mongolia Autonomous Region, China. Sensors, 17(3): 616.
doi: 10.3390/s17030616 |
[49] | Liu X P, Zhang J Q, Tong Z J, 2010. The dynamic danger assessment for grassland fire disaster in Xilingol, Inner Mongolia. Computational Intelligence: Foundations and Applications, 1110-1116. |
[50] |
Liu X P, Zhang J Q, Tong Z J et al., 2011. Grid-based multi-attribute risk assessment of snow disasters in the grasslands of Xilingol, Inner Mongolia. Human and Ecological Risk Assessment: An International Journal, 17(3): 712-731.
doi: 10.1080/10807039.2011.571123 |
[51] |
Liu X P, Zhang J Q, Tong Z J et al., 2012. GIS-based multi-dimensional risk assessment of the grassland fire in northern China. Natural Hazards, 64(1): 381-395.
doi: 10.1007/s11069-012-0244-z |
[52] |
Liu X P, Zhang J Q, Tong Z J, 2014. Modeling the early warning of grassland fire risk based on fuzzy logic in Xilingol, Inner Mongolia. Natural Hazards, 75(3): 2331-2342.
doi: 10.1007/s11069-014-1428-5 |
[53] |
Long T F, Zhang Z M, He G J et al., 2019. 30 m resolution global annual burned area mapping based on Landsat Images and Google Earth Engine. Remote Sensing, 11(5): 489.
doi: 10.3390/rs11050489 |
[54] | Louis G, Boschetti L, David R et al., 2018. . |
[55] | Louis G, James T R, Guido R et al., 2013. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 118(1): 317-328. |
[56] |
Louis G, Tatiana L, David P R et al., 2009. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sensing of Environment, 113(2): 408-420.
doi: 10.1016/j.rse.2008.10.006 |
[57] |
Louis G, Wilfrid S, Christopher O J, 2016. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178: 31-41.
doi: 10.1016/j.rse.2016.02.054 pmid: 30158718 |
[58] |
Luis C A, Raquel S A, Santos C et al., 2011. Identification of mangrove areas by remote sensing: The ROC curve technique applied to the northwestern Mexico coastal zone using landsat imagery. Remote Sensing, 3(1): 1568-1583.
doi: 10.3390/rs3081568 |
[59] | Miguel M P, Carlos C D, Alexandra H et al., 2020. Enhancing the fire weather index with atmospheric instability information. Environmental Research Letters, 15(9): 0940b0947. |
[60] |
Mu S J, Yang H F, Li J L et al., 2013. Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia, China. Journal of Geographical Sciences, 23(2): 231-246.
doi: 10.1007/s11442-013-1006-x |
[61] |
Nagler P L, Inoue Y, Glenn E P et al., 2003. Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes. Remote Sensing of Environment, 87(2/3): 310-325.
doi: 10.1016/j.rse.2003.06.001 |
[62] |
Neupert R F, 1999. Population, nomadic pastoralism and the environment in the Mongolian Plateau. Population and Environment, 20(5): 413-441.
doi: 10.1023/A:1023309002127 |
[63] |
Nikolaos N, Marios S, Lampros V, 2022. Contribution to the study of forest fires in semi-arid regions with the use of Canadian fire weather index application in Greece. Climate, 10(10): 143.
doi: 10.3390/cli10100143 |
[64] | Ol J, Bo L R, Ge R CH T, 2013. Present situation and protection in Daurian steppe ecological area. Journal of MUC (Natural Sciences Edition), 12(1): 24-26. (in Chinese) |
[65] |
Partal T, Kahya E, 2006. Trend analysis in Turkish precipitation data. Hydrological Processes, 20(9): 2011-2026.
doi: 10.1002/(ISSN)1099-1085 |
[66] | Puneet A, Tang J L, Adithya N L N, 2020. Big data and predictive analytics in fire risk using weather data. Risk Analysis, 13480. |
[67] | Qi J G, Robin M, Philip H et al., 2002. RANGES improves satellite-based information and land cover assessments in southwest United States. EOS Transactions American Geophysical Union, 83(51): 601-612. |
[68] | Qu Z P, Zheng S X, Bai Y F, 2010. Spatiotemporal patterns and driving factors of grassland fire on Mongolian Plateau. Chinese Journal of Applied Ecology, 21(4): 807-813. (in Chinese) |
[69] |
Quemada M, Daughtry C S T, 2016. Spectral indices to improve crop residue cover estimation under varying moisture conditions. Remote Sensing, 8(8): 660.
doi: 10.3390/rs8080660 |
[70] |
Reid C E, Brauer M, Johnston F H et al., 2016. Critical review of health impacts of wildfire smoke exposure. Environmental Health Perspectives, 124(9): 1334-1343.
doi: 10.1289/ehp.1409277 pmid: 27082891 |
[71] |
Ren H R, Zhang B, Guo X L, 2018. Estimation of litter mass in nongrowing seasons in arid grasslands using MODIS satellite data. European Journal of Remote Sensing, 51(1): 222-230.
doi: 10.1080/22797254.2017.1418186 |
[72] |
Ren S L, Qin Q M, Ren H Z et al., 2019. New model for simulating autumn phenology of herbaceous plants in the Inner Mongolian Grassland. Agricultural and Forest Meteorology, 275: 136-145.
doi: 10.1016/j.agrformet.2019.05.011 |
[73] | Roberts D A, Dennison P E, Gardner M E et al., 2015. Evaluation of the potential of hyperion for fire danger assessment by comparison to the airborne visible/infrared imaging spectrometer. Transactions on Geoscience & Remote Sensing IEEE, 41(6): 1297-1310. |
[74] |
Rong G Z, Alu S, Li K W et al., 2020. Rainfall induced landslide susceptibility mapping based on Bayesian optimized random forest and gradient boosting decision tree models: A case study of Shuicheng County, China. Water, 12(11): 3066.
doi: 10.3390/w12113066 |
[75] |
Sesnie S, Eagleston H, Johnson L et al., 2018. In-situ and remote sensing platforms for mapping fine-fuels and fuel-types in Sonoran semi-desert grasslands. Remote Sensing, 10(9): 1357-1387.
doi: 10.3390/rs10091357 |
[76] | Seyin B T, 2002. Preliminary study on grassland fire risk regionalization. Inner Mongolia Prataculture, 14(4): 32-35. (in Chinese) |
[77] | Suk B, Od G R, 2006. A study on e-government policy in Mongolia. In: Symposium on Information & Telecommunication Technologies. |
[78] |
Tong S Q, Zhang J Q, Bao Y H et al., 2018. Analyzing vegetation dynamic trend on the Mongolian Plateau based on the Hurst exponent and influencing factors from 1982-2013. Journal of Geographical Sciences, 28(5): 595-610.
doi: 10.1007/s11442-018-1493-x |
[79] |
Tucker C J, Daniel A S, Jorge E P et al., 2001. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology, 45(4): 184-190.
pmid: 11769318 |
[80] | Vermote E F, Roger J C, Ray J P, 2015. MODIS Surface Reflectance User’s Guide Collection 6. ttps://ladsweb.modaps.eosdis.nasa.gov/search/. |
[81] |
Wang J, Zhao M L, Willms W D et al., 2015. Can plant litter affect net primary production of a typical steppe in Inner Mongolia? Journal of Vegetation Science, 22(2): 367-376.
doi: 10.1111/jvs.2011.22.issue-2 |
[82] | Wang W Q, Chen X H, Cao X et al., 2020. A novel spectral linear transformation to estimate non-photosynthetic vegetation coverage in North Asian Steppe. In: The International Archives of the Photogrammetry, R.S.a.S.I.S. (ed.), 2020 XXIV ISPRS Congress Germany. |
[83] |
Wu L Z, Ma X F, Dou X et al., 2021. Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia. Science of the Total Environment, 796: 149055.
doi: 10.1016/j.scitotenv.2021.149055 |
[84] | Xie X Y, Liu Y M, Li J Z et al., 2016. Remote sensing estimation of plant litter cover based on the spectra of plant litter-soil mixed scenes. Spectroscopy and Spectral Analysis, 36(7): 2217-2223. (in Chinese) |
[85] | Yang J, Dong Q R, 2020. Simulation of the evolution of the 21 May 2009 wildfire from Mongolia to China using WRF-Fire Model. Transactions of Atmospheric Sciences, 43(4): 718-727. (in Chinese) |
[86] |
Yu S, Jiang L, Du W L et al., 2020. Estimation and spatio-temporal patterns of carbon emissions from grassland fires in Inner Mongolia, China. Chinese Geographical Science, 30(4): 572-587.
doi: 10.1007/s11769-020-1134-z |
[87] | Yue J B, Tian Q J, 2020. Estimating fractional cover of crop, crop residue, and soil in cropland using broadband remote sensing data and machine learning. International Journal of Applied Earth Observation and Geoinformation, 89: 1-15. |
[88] | Zahidi S, 2022. The Global Risks Report 2022. World Economic Forum, Geneva, Switzerland, p.7. |
[89] |
Zhang G L, Xu X L, Zhou C P et al., 2011. Responses of grassland vegetation to climatic variations on different temporal scales in Hulun Buir Grassland in the past 30 years. Journal of Geographical Sciences, 21(4): 634-650.
doi: 10.1007/s11442-011-0869-y |
[90] | Zhang J Q, Cui L, Tong Z J et al., 2013. Grid GIS and optimal segmentation based early warning of grassland fire disaster risk threshold in Hulunbeier grassland. Systems Engineering: Theory & Practice, 33(3): 770-775. (in Chinese) |
[91] |
Zhang J Q, Liu X P, Tong Z J, 2007. The study of grassland fire disaster risk assessment and regionalization: A case study in the western Jilin province. Geographical Research, 26(4): 755-762. (in Chinese)
doi: 10.11821/yj2007040012 |
[92] | Zhang J Q, Zhou D W, Song Z S et al., 2006. A new preception on risk assessment and risk management of grassland fire disaster. Journal of Basic Science and Engineering, 14(Suppl.): 56-62. (in Chinese) |
[93] |
Zhang X Y, Hu Y F, Zhuang D F et al., 2009. NDVI spatial pattern and its differentiation on the Mongolian Plateau. Journal of Geographical Sciences, 19(4): 403-415.
doi: 10.1007/s11442-009-0403-7 |
[94] |
Zhang Y H, Cao T, Kan X et al., 2016. Spatial and temporal variation analysis of snow cover using MODIS over Qinghai-Tibetan Plateau during 2003-2014. Journal of the Indian Society of Remote Sensing, 45(5): 887-897.
doi: 10.1007/s12524-016-0617-y |
[95] |
Zhang Z P, Liu J B, Chen S Q et al., 2022. Anthropogenic origin of a change in the fire-climate relationship in northern China after -2000 yr BP: Evidence from a 15,500-year black carbon record from Dali Lake. Journal of Geographical Sciences, 32(6): 1136-1156.
doi: 10.1007/s11442-022-1989-2 |
[96] |
Zhang Z X, Feng Z Q, Zhang H Y et al., 2017. Spatial distribution of grassland fires at the regional scale based on the MODIS active fire products. International Journal of Wildland Fire, 26(3): 209-218.
doi: 10.1071/WF16026 |
[97] |
Zhao H Y, Gong L J, Qu H H et al., 2016. The climate change variations in the northern Greater Khingan Mountains during the past centuries. Journal of Geographical Sciences, 26(5): 585-602.
doi: 10.1007/s11442-016-1287-y |
[98] |
Zhao X, Shen H H, Geng X Q et al., 2021. Three-decadal destabilization of vegetation activity on the Mongolian Plateau. Environmental Research Letters, 16(3): 034049.
doi: 10.1088/1748-9326/abd81d |
[99] | Zhou D W, Zhang Z S, 1996. Grassland fire factors and their ecological effects. Grassland of China, (2): 73-76. (in Chinese) |
[100] |
Zhuang Y Z, Fu R, Benjamin D S et al., 2021. Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. PNAS, 118(45): e2111875118.
doi: 10.1073/pnas.2111875118 |
No related articles found! |
|