Journal of Geographical Sciences ›› 2023, Vol. 33 ›› Issue (8): 1569-1586.doi: 10.1007/s11442-023-2143-5
• Special Issue: Human-environment interactions and Ecosystems • Next Articles
LI Yu(), GAO Mingjun, ZHANG Zhansen, ZHANG Yuxin, PENG Simin
Received:
2022-09-30
Accepted:
2023-03-24
Online:
2023-08-25
Published:
2023-08-29
About author:
Li Yu (1981-), PhD and Professor, specialized in paleoclimatology. E-mail: liyu@lzu.edu.cn
Supported by:
LI Yu, GAO Mingjun, ZHANG Zhansen, ZHANG Yuxin, PENG Simin. Time-scale effects in human-nature interactions, regionally and globally[J].Journal of Geographical Sciences, 2023, 33(8): 1569-1586.
Figure 1
Records of climate change and cultural succession. (a) 18O isotope content from DLH tree rings; (b) TOC content from the Juyan Lake section; (c) 13C isotope content from Sugan Lake cores; (d) Carbonate content from Keluke Lake; (e) TOC content from Qinghai Lake; (f) 18O isotope content from Hala Lake; (g) C/N from Zhuye Lake; (h) TOC content from Bian Dukou section; (i) Carbonate content from the Haxi section; (j) TOC content from Huangyang River; (k) 18O isotope content from Dunde Ice Core. (Supplementary Figure S1 and Table S1). C1-C8 represent the ancient civilization of the Hexi Corridor (Supplementary Table S2).
Figure 2
Records of climate change around the Hexi Corridor and ancient oases (A) (a) 18O isotope content from Dunde Ice Core; (b) Wulan tree ring index (grey shaded), orange line is 30a moving average; (c) Duran tree ring index anomaly; (d) The reconstructed runoff of Black River (gray shaded), yellow line is 30a moving average; (e) Reconstruction of precipitation in Qaidam Basin; (f) Reconstructed precipitation over the northeastern Tibetan Plateau (grey shadow), orange line is 50a moving average; (g) Carbonate content from the Juyan Lake section; (h) 13C isotope content from Sugan Lake cores; (i) Redness from Qinghai Lake profile (Supplementary Figure S1 and Table S1). D1-D10 represents the dynasties (Supplementary Table S3). (B-D) The ancient city and oasis of Han, Tang and Qing dynasties (Supplementary Table S4).
Figure 5
Records of climate change globally. (a) 18O isotope content from Belize Blue Hole; (b) Variations in amounts of Ca2+ from Faiyum Oasis; (c) 18O isotope content from Indus delta; (d) 13C isotope content from Alpi Apuane karst of central-western Italy; (e) Magnetic susceptibility from Qishan section; (f) Carbonate content from Gulf of Oman core M5-422; (g) 18O isotope content from Lago Umayo (Supplementary Figure S4 and Table S7).
Table S1
The locations, elevations, proxies used and proxy indication of sampling sites in the Hexi Corridor. H1-H11 indicate the proxy of the decadal and centennial scale, M1-M14 indicate the proxy of the millennium scale.
Number | Material | Site name | Lat (°N) | Long (°E) | Elevation (m) | Proxies used | Proxy indication | References | |||
---|---|---|---|---|---|---|---|---|---|---|---|
H1 | Tree ring | Delingha | 37.5 | 97.1 | 3193-4175 | Tree-ring width, 18O | Temperature, Precipitation | Shao et al., 2004; Shao et al., 2006; Yang et al., 2014 | |||
H2 | Dulan | 36.5 | 98.1 | 3617-4040 | Tree-ring width, 18O | Temperature, Precipitation | Yang et al., | ||||
H3 | Haiyagou | 38.5 | 99.9 | 2863-3517 | Tree-ring width, 18O | Precipitation | Yang et al., | ||||
H4 | Zhamashi | 38.2 | 99.1 | 3300-3574 | Tree-ring width, 18O | Precipitation | Kang et al., 2002 | ||||
H5 | Wulan | 37 | 98.6 | 3700 | Tree-ring width, 18O | Temperature, Precipitation | Shao et al., 2004; Shao et al., 2006; Yang et al., 2014; Zhu et al., | ||||
H6 | Heihe | 38.4 | 100 | 3325 | Tree-ring width, 18O | Runoff | Kang et al., 2002 | ||||
H7 | Qilian | 38.4 | 99.9 | 3400-3500 | Tree-ring width, 18O | Temperature | Liu et al., | ||||
H8 | Lake | Juyan Lake | 42.1 | 102.1 | 894 | Carbonate content | Moisture | Qu et al., 2000 | |||
H9 | Sugan Lake | 38.9 | 93.9 | 2800-3200 | 13C, 18O | Temperature, Moisture | Qiang et al., 2004 | ||||
H10 | Qinghai Lake | 37.1 | 100.4 | 3196 | Redness | Moisture | Ji et al., 2005 | ||||
M1 | 36.5 | 99.6 | 3196 | TOC | Moisture | Li and Liu, 2014 | |||||
M2 | Hala Lake | 38.4 | 97.4 | 4078 | 18O | Temperature, Moisture | Yan and Wünnemann, 2014 | ||||
M3 | Zhuye Lake | 39.05 | 103.7 | 1309 | C/N | Temperature, Moisture | Li et al., 2014 | ||||
M4 | Gahai Lake | 37.1 | 97.5 | 3428-3472 | Carbonate content, 13C, 18O | Temperature, Moisture | Chen et al., | ||||
M5 | Huahai Lake | 40 | 97.5 | 1200 | Carbonate content,TOC | Temperature, Moisture | Wang, | ||||
M7 | Mingze Lake | 40.3 | 96.3 | 1289 | TOC, C/N, 13C | Temperature, Moisture | Wang, | ||||
M8 | YanchiLake | 39.8 | 99.3 | 1200 | TOC, pollen, grain-size | Temperature, Moisture | Li et al., | ||||
M9 | Hurleg Lake | 37.3 | 96.9 | 2817 | Carbonate content | Moisture | Zhao et al., | ||||
M10 | Juyan Lake | 41.9 | 101.9 | 892 | TOC | Moisture | Liu et al., | ||||
M11 | Sugan Lake | 39.1 | 93.7 | 2795 | 13C | Temperature, Moisture | Qiang et al., 2002 | ||||
M12 | Loess | Biandukou | 38.2 | 102.9 | 2844 | TOC | Moisture | Wu et al., | |||
M13 | Haxi | 37.5 | 102.4 | 2450 | Carbonate content | Moisture | Wu et al., | ||||
M14 | Huangyang River | 37.4 | 102.6 | 2447 | TOC | Moisture | Li and Morrill, 2015 | ||||
H11 | Ice core | Dunde | 38.1 | 96.4 | 5325 | 18O | Temperature | Thompson et al., 2006 | |||
M15 | Dunde | 38.1 | 96.4 | 5325 | 18O | Temperature | Shi et al., |
Table S2
Prehistoric cultural sequence of the Hexi Corridor (Gao et al., 2019; Yang et al., 2019)
Number | Cultural style | Age (cal a BP) | Subsistence | Productivity level |
---|---|---|---|---|
C1 | Yangshao | 5600-4600 | Agriculture | Neolithic |
C2 | Majiayao | 4800-4000 | Agriculture | Neolithic |
C3 | Qijia | 4000-3600 | Agriculture and Animal husbandry | Bronze and stone |
C4 | Siba | 3700-3300 | Agriculture and Animal husbandry | Bronze |
C5 | Dongjiatai | 3200-3000 | Animal husbandry | Bronze |
C6 | Xindian | 3000-2100 | Animal husbandry | Bronze |
C7 | Shanma | 2900-2100 | Animal husbandry | Bronze |
C8 | Shajing | 2700-2100 | Animal husbandry | Iron |
Table S3
Dynasty sequence of the Hexi Corridor (Fan, 2020)
Number | Dynasty | Age (yr) | Number | Dynasty | Age (yr) |
---|---|---|---|---|---|
D1 | Han Dynasty | -121-220 | D6 | Uighurs-Guiyijun | 851-1036 |
D2 | Wei and Jin dynasties | 220-316 | D7 | Xixia | 1036-1227 |
D3 | Five liang and Northern Dynasty | 316-581 | D8 | Yuan Dynasty | 1227-1368 |
D4 | Sui and Tang dynasties | 581-755 | D9 | Ming Dynasty | 1368-1644 |
D5 | Tubo | 755-851 | D10 | Qing Dynasty | 1644-1911 |
Table S4
Ancient citys in the Hexi Corridor (Ma, 1992)
Number | Dynasty | Site name | Lat (°N) | Long (°E) | Number | Dynasty | Site name | Lat (°N) | Long (°E) |
---|---|---|---|---|---|---|---|---|---|
1 | Han | Cangsong | 102.83 | 37.38 | 42 | Tang | Liancheng | 103.24 | 38.80 |
2 | Zhangye | 102.66 | 37.61 | 43 | Zhagucheng | 101.71 | 38.33 | ||
3 | Luci | 102.94 | 37.91 | 44 | Gaigucheng | 101.50 | 38.27 | ||
4 | Xuanwei | 102.96 | 38.59 | 45 | Nangucheng | 100.32 | 39.07 | ||
5 | Gucheng | 103.17 | 38.75 | 46 | Luotuocheng | 99.54 | 39.35 | ||
6 | Wuwei | 103.44 | 38.80 | 47 | Minghaicheng | 99.36 | 39.51 | ||
7 | Sanjiaocheng | 103.40 | 39.00 | 48 | Xusanwangucehng | 99.24 | 39.41 | ||
8 | Luanniaocheng | 101.46 | 38.12 | 49 | Yangtigucheng | 99.18 | 39.17 | ||
9 | Lixuancheng | 101.98 | 38.19 | 50 | Shuangtacheng | 96.15 | 40.64 | ||
10 | Fanhecheng | 101.74 | 38.32 | 51 | Pochengzi | 95.65 | 40.48 | ||
11 | Rilegucheng | 101.52 | 38.43 | 52 | Chengwancheng | 94.94 | 40.42 | ||
12 | Xianticheng | 101.18 | 38.78 | 53 | Yangguan | 93.72 | 40.06 | ||
13 | Yonggucheng | 100.94 | 38.41 | 54 | Shibaocehng | 95.83 | 39.95 | ||
14 | Biegucheng | 100.39 | 39.15 | 55 | Dangcheng | 94.51 | 39.62 | ||
15 | Biaoshicheng | 99.36 | 39.44 | 56 | Shuangjingbao | 98.88 | 39.85 | ||
16 | Leguan | 99.04 | 39.51 | 57 | Qing | Taerwan | 97.92 | 39.84 | |
17 | Lufu | 98.59 | 39.76 | 58 | Hongquanbao | 97.77 | 39.75 | ||
18 | Huishui | 99.13 | 39.92 | 59 | Yingerbao | 98.05 | 39.79 | ||
19 | Dawancheng | 99.78 | 40.35 | 60 | Shiguanery | 97.94 | 39.97 | ||
20 | Jinguan | 99.95 | 40.52 | 61 | Shuangjingzi | 97.86 | 39.92 | ||
21 | Shanmacheng | 98.61 | 39.76 | 62 | Shiwozhuangzi | 98.14 | 40.02 | ||
22 | Yumen | 97.84 | 39.95 | 63 | Yemawan | 98.26 | 40.02 | ||
23 | Pochengzi | 97.88 | 40.41 | 64 | Duancheng | 98.32 | 39.96 | ||
24 | Qianqi | 97.21 | 40.35 | 65 | Jiuquancheng | 98.35 | 39.84 | ||
25 | Chitou | 97.06 | 40.42 | 66 | Liangshankoubao | 98.47 | 39.90 | ||
26 | Bangecheng | 96.57 | 40.44 | 67 | Xiagucehng | 98.56 | 39.87 | ||
27 | Mingan | 96.73 | 40.26 | 68 | Yancibao | 99.23 | 39.81 | ||
28 | Yuanquan | 96.08 | 40.44 | 69 | Zijincheng | 98.81 | 39.65 | ||
29 | Guangzhi | 95.64 | 40.31 | 70 | Hexibao | 99.39 | 39.82 | ||
30 | Tianshuijingcheng | 95.25 | 40.30 | 71 | Shuangjingzi | 99.35 | 39.78 | ||
31 | Liugongcheng | 95.31 | 40.38 | 72 | Hongsipobao | 99.43 | 39.74 | ||
32 | Xiaogu | 95.20 | 40.43 | 73 | Xiaqiaoerwan | 99.30 | 39.71 | ||
33 | Daijiaduncheng | 94.70 | 40.33 | 74 | Zhenyibao | 99.47 | 39.83 | ||
34 | Hechang | 94.10 | 40.45 | 75 | Luocheng | 99.50 | 39.76 | ||
35 | Yangguan | 94.22 | 39.97 | 76 | Yanzhibao | 99.58 | 39.67 | ||
36 | Shouchang | 94.00 | 39.87 | 77 | Zhenjiangbao | 99.52 | 39.67 | ||
37 | Yumenguan | 94.03 | 40.32 | 78 | Heiquanbao | 99.54 | 39.63 | ||
38 | Cangsong | 102.83 | 37.38 | 79 | Shiba | 99.62 | 39.63 | ||
39 | Tang | Shenniao | 102.36 | 37.92 | 80 | Baba | 99.63 | 39.59 | |
40 | Xiutu | 102.69 | 38.15 | 81 | Yongfengbao | 99.54 | 39.57 | ||
41 | Shacheng | 102.63 | 38.25 | 82 | Andingbao | 99.66 | 39.54 | ||
83 | Qing | Lesanbao | 99.72 | 39.47 | 96 | Qing | Xibaying | 102.24 | 37.94 |
84 | Shangqiaoerwan | 99.78 | 39.83 | 97 | Nanbaying | 102.45 | 37.80 | ||
85 | Xiamenchengbao | 101.41 | 38.52 | 98 | Daheyi | 102.82 | 37.81 | ||
86 | Fengchengbao | 101.30 | 38.58 | 99 | Gaogoubao | 102.93 | 37.90 | ||
87 | Xinhebao | 101.21 | 38.65 | 100 | Huoxingbao | 102.83 | 38.32 | ||
88 | Shandanwei | 101.13 | 38.73 | 101 | Yezhuwanbao | 102.87 | 38.40 | ||
89 | Majiabao | 101.02 | 38.89 | 102 | Changningbao | 102.79 | 38.45 | ||
90 | Yongchangcheng | 101.98 | 38.29 | 103 | Heishanbao | 102.93 | 38.56 | ||
91 | Hexibao | 102.06 | 38.46 | 104 | Hongyabao | 102.90 | 38.50 | ||
92 | Yonganbao | 102.00 | 38.17 | 105 | Liuba | 103.34 | 38.65 | ||
94 | Qingshanbao | 102.27 | 38.13 | 106 | Hongshabao | 103.30 | 38.87 | ||
95 | Huaianyi | 102.53 | 37.92 |
Table S5
Years of historical wars in the Hexi Corridor (AD) (Guo, 1986)
Wars | ||||||
---|---|---|---|---|---|---|
7 | 25 | 30 | 31 | 32 | 34 | 34 |
35 | 36 | 56 | 57 | 76 | 77 | 80 |
87 | 87 | 89 | 93 | 96 | 97 | 101 |
102 | 108 | 108 | 111 | 113 | 114 | 114 |
115 | 115 | 116 | 116 | 117 | 120 | 124 |
126 | 133 | 138 | 141 | 143 | 144 | 159 |
160 | 161 | 163 | 168 | 185 | 187 | 211 |
212 | 215 | 218 | 220 | 221 | 228 | 229 |
231 | 247 | 249 | 254 | 255 | 256 | 262 |
263 | 271 | 274 | 279 | 296 | 301 | 305 |
320 | 320 | 322 | 323 | 329 | 330 | 334 |
346 | 347 | 349 | 353 | 367 | 367 | 371 |
373 | 376 | 385 | 386 | 386 | 386 | 387 |
389 | 389 | 391 | 392 | 395 | 396 | 397 |
397 | 397 | 397 | 398 | 400 | 400 | 401 |
401 | 401 | 402 | 406 | 407 | 407 | 408 |
408 | 409 | 409 | 410 | 410 | 411 | 411 |
411 | 411 | 411 | 412 | 413 | 414 | 415 |
416 | 416 | 417 | 420 | 421 | 421 | 423 |
424 | 425 | 426 | 428 | 428 | 429 | 430 |
430 | 430 | 431 | 431 | 439 | 439 | 440 |
442 | 443 | 444 | 446 | 447 | 458 | 460 |
471 | 472 | 477 | 497 | 506 | 506 | 530 |
581 | 583 | 583 | 617 | 617 | 618 | 622 |
626 | 635 | 678 | 696 | 700 | 706 | 720 |
727 | 756 | 768 | 775 | 779 | 819 | 845 |
851 | 909 | 911 | 915 | 925 | 993 | 1008 |
1009 | 1010 | 1011 | 1016 | 1016 | 1016 | 1026 |
1034 | 1036 | 1041 | 1042 | 1049 | 1050 | 1064 |
1066 | 1070 | 1072 | 1073 | 1074 | 1081 | 1083 |
1087 | 1087 | 1092 | 1103 | 1105 | 1114 | 1133 |
1140 | 1205 | 1205 | 1207 | 1213 | 1215 | 1220 |
1226 | 1227 | 1230 | 1235 | 1236 | 1296 | 1369 |
1371 | 1372 | 1379 | 1385 | 1395 | 1396 | 1410 |
1412 | 1438 | 1449 | 1457 | 1458 | 1461 | 1472 |
1473 | 1485 | 1486 | 1488 | 1495 | 1495 | 1496 |
1498 | 1511 | 1517 | 1525 | 1528 | 1531 | 1536 |
1558 | 1565 | 1567 | 1590 | 1598 | 1607 | 1635 |
1643 | 1649 | 1676 | 1680 | 1723 | 1724 | 1781 |
1784 | 1863 | 1869 | 1871 | 1872 | 1873 | 1895 |
Table S6
Years of Disasters in the Hexi Corridor (AD) (Feng, 1982; Li, 1996; Yu et al., 2011; Shun et al., 2016)
Disaster | ||||||
---|---|---|---|---|---|---|
2 | 26 | 53 | 61 | 62 | 108 | 109 |
109 | 110 | 115 | 122 | 122 | 122 | 138 |
142 | 142 | 143 | 144 | 180 | 181 | 183 |
235 | 249 | 270 | 270 | 285 | 300 | 301 |
304 | 304 | 320 | 345 | 350 | 351 | 352 |
354 | 361 | 362 | 365 | 366 | 369 | 369 |
371 | 384 | 387 | 393 | 397 | 398 | 399 |
399 | 401 | 401 | 402 | 402 | 405 | 405 |
408 | 410 | 414 | 417 | 419 | 429 | 433 |
449 | 451 | 479 | 479 | 480 | 481 | 485 |
496 | 496 | 501 | 503 | 503 | 504 | 504 |
505 | 507 | 507 | 507 | 508 | 508 | 509 |
510 | 520 | 531 | 618 | 618 | 627 | 629 |
650 | 676 | 678 | 682 | 720 | 726 | 726 |
785 | 786 | 786 | 821 | 939 | 941 | 942 |
942 | 943 | 962 | 965 | 968 | 993 | 994 |
996 | 1006 | 1008 | 1009 | 1015 | 1017 | 1018 |
1025 | 1027 | 1041 | 1042 | 1074 | 1076 | 1110 |
1117 | 1143 | 1176 | 1176 | 1177 | 1223 | 1226 |
1226 | 1260 | 1260 | 1262 | 1262 | 1286 | 1288 |
1288 | 1289 | 1290 | 1290 | 1293 | 1293 | 1294 |
1295 | 1297 | 1298 | 1299 | 1300 | 1303 | 1308 |
1308 | 1311 | 1313 | 1313 | 1316 | 1319 | 1319 |
1319 | 1322 | 1323 | 1324 | 1325 | 1326 | 1328 |
1330 | 1330 | 1332 | 1332 | 1371 | 1406 | 1418 |
1425 | 1426 | 1427 | 1433 | 1436 | 1439 | 1441 |
1447 | 1448 | 1450 | 1452 | 1453 | 1453 | 1455 |
1457 | 1457 | 1458 | 1459 | 1459 | 1460 | 1468 |
1468 | 1468 | 1470 | 1477 | 1478 | 1479 | 1482 |
1483 | 1483 | 1484 | 1484 | 1485 | 1485 | 1486 |
1487 | 1489 | 1490 | 1494 | 1495 | 1495 | 1503 |
1504 | 1504 | 1505 | 1506 | 1506 | 1506 | 1507 |
1508 | 1509 | 1511 | 1514 | 1516 | 1517 | 1517 |
1517 | 1520 | 1521 | 1521 | 1527 | 1527 | 1528 |
1529 | 1531 | 1532 | 1534 | 1534 | 1535 | 1538 |
1539 | 1539 | 1544 | 1545 | 1546 | 1547 | 1548 |
1550 | 1551 | 1551 | 1553 | 1553 | 1554 | 1556 |
1557 | 1557 | 1557 | 1558 | 1559 | 1560 | 1561 |
1562 | 1563 | 1564 | 1564 | 1565 | 1566 | 1568 |
1587 | 1588 | 1588 | 1602 | 1604 | 1604 | 1608 |
1608 | 1609 | 1609 | 1616 | 1618 | 1634 | 1638 |
1640 | 1640 | 1641 | 1647 | 1649 | 1649 | 1649 |
1655 | 1665 | 1665 | 1666 | 1666 | 1667 | 1668 |
1671 | 1684 | 1684 | 1685 | 1686 | 1686 | 1686 |
1690 | 1692 | 1695 | 1697 | 1700 | 1702 | 1702 |
1708 | 1708 | 1708 | 1709 | 1712 | 1712 | 1713 |
1718 | 1722 | 1727 | 1728 | 1728 | 1728 | 1729 |
1730 | 1731 | 1732 | 1733 | 1734 | 1735 | 1735 |
1738 | 1738 | 1739 | 1739 | 1740 | 1740 | 1741 |
1742 | 1744 | 1744 | 1745 | 1745 | 1745 | 1746 |
1746 | 1749 | 1749 | 1749 | 1750 | 1750 | 1752 |
1752 | 1753 | 1753 | 1753 | 1753 | 1754 | 1756 |
1756 | 1757 | 1757 | 1757 | 1757 | 1757 | 1758 |
1758 | 1759 | 1759 | 1760 | 1762 | 1762 | 1762 |
1762 | 1763 | 1763 | 1764 | 1764 | 1764 | 1764 |
1764 | 1765 | 1765 | 1765 | 1765 | 1766 | 1766 |
1767 | 1767 | 1767 | 1768 | 1768 | 1768 | 1771 |
1771 | 1772 | 1772 | 1772 | 1773 | 1773 | 1774 |
1774 | 1774 | 1774 | 1774 | 1775 | 1775 | 1775 |
1776 | 1776 | 1776 | 1776 | 1777 | 1778 | 1778 |
1778 | 1779 | 1779 | 1779 | 1780 | 1780 | 1780 |
1781 | 1783 | 1784 | 1785 | 1785 | 1785 | 1787 |
1787 | 1790 | 1792 | 1795 | 1797 | 1798 | 1799 |
1800 | 1800 | 1801 | 1801 | 1803 | 1803 | 1805 |
1809 | 1810 | 1810 | 1810 | 1811 | 1812 | 1812 |
1814 | 1817 | 1818 | 1818 | 1820 | 1820 | 1821 |
1821 | 1821 | 1821 | 1822 | 1823 | 1824 | 1824 |
1824 | 1824 | 1826 | 1826 | 1826 | 1826 | 1826 |
1827 | 1827 | 1829 | 1829 | 1831 | 1831 | 1831 |
1833 | 1833 | 1834 | 1836 | 1836 | 1837 | 1837 |
1838 | 1838 | 1839 | 1841 | 1841 | 1841 | 1844 |
1844 | 1844 | 1845 | 1847 | 1847 | 1847 | 1847 |
1847 | 1848 | 1849 | 1849 | 1850 | 1851 | 1852 |
1852 | 1856 | 1857 | 1858 | 1860 | 1860 | 1861 |
1862 | 1863 | 1864 | 1865 | 1866 | 1867 | 1868 |
1868 | 1869 | 1870 | 1872 | 1873 | 1874 | 1874 |
1877 | 1877 | 1877 | 1878 | 1879 | 1879 | 1880 |
1881 | 1882 | 1882 | 1883 | 1884 | 1884 | 1884 |
1884 | 1885 | 1885 | 1885 | 1886 | 1886 | 1886 |
1887 | 1887 | 1888 | 1889 | 1890 | 1891 | 1892 |
1893 | 1894 | 1894 | 1895 | 1895 | 1896 | 1896 |
1898 | 1899 | 1899 | 1900 |
Table S7
The locations, elevations, proxies used and proxy indication of sections globally
Number | Site name | Lat (°N) | Long (°E) | Elevation (m) | Proxies used | Proxy indication | Civilization | References |
---|---|---|---|---|---|---|---|---|
1 | Lago Umayo | -15.44 | -70.1 | 3880 | 18O | Temperature | Tiwanaku | Baker et al., 2009 |
2 | Belize Blue Hole | -17.5 | -87.5 | -125 | 18O | Temperature | Maya | Gischler et al., 2008 |
3 | Faiyum Oasis | 29.43933 | 30.3977778 | 250 | Ca2+ | Temperature, moisture | Egypt | Marks et al., 2018 |
4 | Qishan section | 34.45 | 107.65 | 687 | Magnetic susceptibility | Temperature, moisture | Xia | Pang et al., 2001 |
5 | Gulf of Oman | 23.4457 | 58.7454 | -2732 | Carbonate content | Temperature, moisture | Akkadian | Cullen et al., |
6 | Indus delta | 23.5812 | 66.7159 | -316 | 18O | Temperature, moisture | Harappan | Staubwasser et al., |
7 | Alpi Apuane karst | 45 | 10 | 300 | 13C | Temperature, moisture | Europe | Drysdale et al., 2006 |
[1] |
Aldenderfer M, 1988. Middle Archaic period domestic architecture from southern Peru. Science, 241(4874): 1828-1830.
pmid: 17783130 |
[2] |
Alley R, Marotzke J, Nordhaus W et al., 2003. Abrupt climate change. Science, 299(5615): 2005-2010.
pmid: 12663908 |
[3] |
An C, Feng Z, Tang L et al., 2003. Environmental changes and cultural transition at 4 cal. ka BP in central Gansu. Acta Geographica Sinica, 58(5): 743-748. (in Chinese)
doi: 10.11821/xb200305013 |
[4] |
An C, Wang W, Duan F et al., 2017. Environmental changes and cultural exchange between East and West along the Silk Road in arid Central Asia. Acta Geographica Sinica, 72(5): 875-891. (in Chinese)
doi: 10.11821/dlxb201705009 |
[5] |
Bellprat O, Guemas V, Doblas-Reyes F et al., 2019. Towards reliable extreme weather and climate event attribution. Nature Communications, 10(1): 1-7.
doi: 10.1038/s41467-018-07882-8 |
[6] | Bevan A, Colledge S, Fuller D et al., 2017. Holocene fluctuations in human population demonstrate repeated links to food production and climate. Proceedings of the National Academy of Sciences, 114(49): E10524-E10531. |
[7] |
Binford M, Kolata A, Brenner M et al., 1997. Climate variation and the rise and fall of an Andean civilization. Quaternary Research, 47(2): 235-248.
doi: 10.1006/qres.1997.1882 |
[8] |
Bond G, Showers W, Cheseby M et al., 1997. A pervasive millennial: Scale cycle in north Atlantic Holocene and glacial climates. Science, 278(5341): 1257-1266.
doi: 10.1126/science.278.5341.1257 |
[9] | Brunson K, Ren L, Zhao X et al., 2020. Zooarchaeology, ancient mtDNA, and radiocarbon dating provide new evidence for the emergence of domestic cattle and caprines in the Tao River Valley of Gansu province, northwest China. Journal of Archaeological Science: Reports, 31: 102262. |
[10] |
Buckley B, Anchukaitis K, Penny D et al., 2010. Climate as a contributing factor in the demise of Angkor, Cambodia. Proceedings of the National Academy of Sciences, 107(15): 6748-6752.
doi: 10.1073/pnas.0910827107 |
[11] | Carleton T, Hsiang S, 2016. Social and economic impacts of climate. Science, 353(6304): 1112-1112. |
[12] |
Chen F, Chen S, Zhang X et al., 2020. Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP. Nature Communications, 11(1): 1-7.
doi: 10.1038/s41467-019-13993-7 |
[13] | Chen F, Dong G, Chen et al., 2019. Climate change and Silk Road civilization evolution in arid central Asia: Progress and issues. Advances in Earth Science, 34(6): 561-572. (in Chinese) |
[14] |
Chen F, Dong G, Zhang D et al., 2015a. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science, 347(6219): 248-250.
doi: 10.1126/science.1259172 |
[15] | Chen F, Xu Q, Chen J et al., 2015b. East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Reports, 5(1): 1-11. |
[16] |
Chen J, Chen F, Feng S et al., 2015c. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms. Quaternary Science Reviews, 107: 98-111.
doi: 10.1016/j.quascirev.2014.10.012 |
[17] |
Chen N, Ren L, Du L et al., 2020. Ancient genomes reveal tropical bovid species in the Tibetan Plateau contributed to the prevalence of hunting game until the late Neolithic. Proceedings of the National Academy of Sciences, 117(45): 28150-28159.
doi: 10.1073/pnas.2011696117 |
[18] | Cheng H, 2007. The desertification of the Hexi area in historical time[D]. Lanzhou: Lanzhou University. (in Chinese) |
[19] | Cui J, Chang H, Burr G et al., 2019. Climatic change and the rise of the Manchu from Northeast China during AD 1600-1650. Climatic Change, 156: 405-423. |
[20] |
Cullen H, deMenocal P, Hemming S et al., 2002. Climate change and the collapse of the Akkadian empire: Evidence from the deep sea. Geology, 28(4): 379-382.
doi: 10.1130/0091-7613(2000)28<379:CCATCO>2.0.CO;2 |
[21] |
Cullen H, Hajdas I, Bonani G, 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278(5341): 1257-1266.
doi: 10.1126/science.278.5341.1257 |
[22] | Di Cosmo N, 2002. Ancient China and Its Enemies:The Rise of Nomadic Power in East Asian History. Cambridge: Cambridge University Press. |
[23] |
Dodson J, Li X, Zhou X et al., 2013. Origin and spread of wheat in China. Quaternary Science Reviews, 72: 108-111.
doi: 10.1016/j.quascirev.2013.04.021 |
[24] |
Dong G, Liu F, Chen F et al., 2017. Environmental and technological effects on ancient social evolution at different spatial scales. Science China Earth Sciences, 60(12): 2067-2077.
doi: 10.1007/s11430-017-9118-3 |
[25] | Dong G, Lu Y, Liu P et al., 2022. Spatio-temporal pattern of human activities and their influencing factors along the Ancient Silk Road in Northwest China from 6000 a B.P. to 2000 a B. P. Quaternary Sciences, 42(1): 1-16. (in Chinese) |
[26] |
Dong G, Wang L, Cui Y et al., 2013. The spatiotemporal pattern of the Majiayao cultural evolution and its relation to climate change and variety of subsistence strategy during late Neolithic period in Gansu and Qinghai provinces, northwest China. Quaternary International, 316: 155-161.
doi: 10.1016/j.quaint.2013.07.038 |
[27] |
Dong G, Yang Y, Liu X et al., 2018. Prehistoric trans-continental cultural exchange in the Hexi Corridor, Northwest China. The Holocene, 28(4): 621-628.
doi: 10.1177/0959683617735585 |
[28] | Dong G, Zhang S, Yang Y et al., 2016. Agricultural intensification and its impact on environment during Neolithic Age in northern China. Chinese Science Bulletin, 61(26): 2913-2925. (in Chinese) |
[29] |
Drake B, 2017. Changes in North Atlantic oscillation drove population migrations and the collapse of the Western Roman Empire. Scientific Reports, 7(1): 1-7.
doi: 10.1038/s41598-016-0028-x |
[30] |
Evans N, Bauska T, Gázquez-Sánchez F et al., 2018. Quantification of drought during the collapse of the classic Maya civilization. Science, 361(6401): 498-501.
doi: 10.1126/science.aas9871 pmid: 30072537 |
[31] |
Fan J, Jiang H, Xu H et al., 2022. Impacts of seismic activity and climatic change on Chinese history in the recent millennium. Journal of Geographical Sciences, 32(11): 2328-2348.
doi: 10.1007/s11442-022-2050-1 |
[32] | Fan X, Chen G, Jin G, East Asia Archaeology (14). 2017. Analysis of flotation plant remains in Xichengyi site. In:Institute of Cultural Heritage of Shandong University eds.eds. Beijing: Science Press, 228-244. |
[33] |
Feng Q, Yang L, Deo R et al., 2019. Domino effect of climate change over two millennia in ancient China’s Hexi Corridor. Nature Sustainability, 2(10): 957-961.
doi: 10.1038/s41893-019-0397-9 |
[34] | Feng S, 1963. The evolution of the drainage system of the Minqin oasis. Acta Geographica Sinica, 29: 242-249. (in Chinese) |
[35] | Feng S, 1981. The evolution of the Shulehe river system. Journal of Lanzhou University, (4): 138-143. (in Chinese) |
[36] | Feng S, 1982. Compilation of historical and climate data on the Qilian Mountain and its surrounding areas. Northwest Historical Geography, (1): 1-18. (in Chinese) |
[37] | Feng X, 2011. Social reaction to Jiangnan Delta flooding in the reign of the Emperor Wanli. Ming Study, 16. (in Chinese) |
[38] |
Flad R, Li S, Wu X et al., 2010. Early wheat in China: Results from new studies at Donghuishan in the Hexi Corridor. The Holocene, 20(6): 955-965.
doi: 10.1177/0959683609358914 |
[39] | Fraedrich K, Jiang J, Gerstengarbe F et al., 1997. Multiscale detection of abrupt climate changes: Application to River Nile flood levels. International Journal of Climatology: A Journal of the Royal Meteorological Society, 17(12): 1301-1315. |
[40] | Gao J, Hou G, Lancuo Z et al., 2019. Spatiotemporal evolution and environmental change of ancient sites in Hexi Corridor. Journal of Earth Environment, 10(1): 12-26. |
[41] |
Gatto M, Zerboni A, 2015. Holocene supra-regional environmental changes as trigger for major socio-cultural processes in northeastern Africa and the Sahara. African Archaeological Review, 32: 301-333.
doi: 10.1007/s10437-015-9191-x |
[42] | Ge J, 2002. Population History of China. Shanghai: Fudan University Press. (in Chinese) |
[43] | Ge Q, Chen P, Fang X et al., 2004. Adaptation to global change: Challenge and research strategy. Advances in Earth Science, 19(4): 516-524. |
[44] | Guo R, 1986. Military History of China. Beijing: PLA Publishing Press. (in Chinese) |
[45] | Hassan F, 1997. Nile floods and political disorder in early Egypt. In: Dalfes H N, Kukla G, Weiss H eds. Third Millennium BC Climate Change and Old World Collapse. NATO ASI Series, 49. |
[46] |
Haug G, Günther D, Peterson L et al., 2003. Climate and the collapse of Maya civilization. Science, 299(5613): 1731-1735.
pmid: 12637744 |
[47] |
Holliday V, 1989. Middle Holocene drought on the southern High Plains. Quaternary Research, 31(1): 74-82.
doi: 10.1016/0033-5894(89)90086-0 |
[48] | Hu Y, 2015. Research of charred botanical remains from Shannashuzha Site in Gansu province[D]. Xi’an: Northwest University. (in Chinese) |
[49] | Jiang Q J, 2008. Population Research in Hexi for the Past Dynasties. Hohhot: Inner Mongolia People’s Publishing House. (in Chinese) |
[50] | Jie Y W, Yu L, Wang G S et al., 2013. Reconstruction of spatial distribution of cultivated oasis in Han-Dynasty Heihe River Basin. Journal of Lanzhou University (Natural Science), 49(3): 307-319. (in Chinese) |
[51] |
Kathayat G, Cheng H, Sinha A et al., 2017. The Indian monsoon variability and civilization changes in the Indian subcontinent. Science Advances, 3(12): e1701296.
doi: 10.1126/sciadv.1701296 |
[52] |
Kerr R, 1998. Sea-floor dust shows drought felled Akkadian Empire. Science, 279(5349): 325-326.
doi: 10.1126/science.279.5349.325 |
[53] | Li B, 1996. Study on the changes of climate about aridity and humidity in history in Hexi Corridor. Journal of Northwest Normal University (Natural Science), 32(4): 56-61. (in Chinese) |
[54] | Li B, 1998. An investigation and study on the desertification of the ancient oases from Han to Tang dynasties in the Hexi Corridor. Acta Geographica Sinica, 53(2): 106-115. (in Chinese) |
[55] | Li B, 2003. Desertification of the ancient oasis in the Hexi Corridor. Geographical Teaching, (2): 1-4. (in Chinese) |
[56] | Li S, Shui T, Wang H et al., 2010. Report on prehistoric archaeological survey in Hexi Corridor. Acta Archaeologica Sinica, (2): 229-262. (in Chinese) |
[57] |
Li Y, Ge Q, Wang H et al., 2019. Relationships between climate change, agricultural development and social stability in the Hexi Corridor over the last 2000 years. Science China Earth Sciences, 62(9): 1453-1460.
doi: 10.1007/s11430-018-9323-3 |
[58] |
Li Y, Zhang C, Wang N et al., 2017. Substantial inorganic carbon sink in closed drainage basins globally. Nature Geoscience, 10(7): 501-506.
doi: 10.1038/NGEO2972 |
[59] | Li Z, 2020. Qing History. Beijing: People’s Literature Publishing House. (in Chinese) |
[60] | Ma H, 1992. Ancient Settlements, Cultural Cities and Important Towns in the Hexi Corridor, Gansu, China. Chengdu: Sichuan Science and Technology Press. (in Chinese) |
[61] |
Ma M, Dong G, Jia X et al., 2016. Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: Evidence from stable isotopes. Quaternary Science Reviews, 145: 57-70.
doi: 10.1016/j.quascirev.2016.05.041 |
[62] |
Ma M, Ren L, Li Z et al., 2021. Early emergence and development of pastoralism in Gan-Qing region from the perspective of isotopes. Archaeological and Anthropological Sciences, 13(6): 1-15.
doi: 10.1007/s12520-020-01240-w |
[63] |
Madella M, Fuller D, 2006. Palaeoecology and the Harappan Civilisation of South Asia: A reconsideration. Quaternary Science Reviews, 25(11/12): 1283-1301.
doi: 10.1016/j.quascirev.2005.10.012 |
[64] |
Medina-Elizalde M, Rohling E, 2012. Collapse of Classic Maya civilization related to modest reduction in precipitation. Science, 335(6071): 956-959.
doi: 10.1126/science.1216629 pmid: 22363005 |
[65] |
Moreno A, Pérez A, Frigola J et al., 2012. The Medieval Climate Anomaly in the Iberian Peninsula reconstructed from marine and lake records. Quaternary Science Reviews, 43: 16-32.
doi: 10.1016/j.quascirev.2012.04.007 |
[66] | Na D, 2018. Investigation and research on the roads and the sites of Dunhuang section in Jiuquan, the Silk Road in Han and Tang dynasties[D]. Lanzhou: Northwest Normal University. (in Chinese) |
[67] |
Nunez L, Grosjean M, Cartajena I, 2002. Human occupations and climate change in the Puna de Atacama, Chile. Science, 298(5594): 821-824.
pmid: 12399589 |
[68] | Pei Q, Zhang D, 2014. Long-term relationship between climate change and nomadic migration in historical China. Ecology and Society, 19(2): 68. |
[69] |
Pei Q, Zhang D, Lee H, 2015. Evaluating the effectiveness of agricultural adaptation to climate change in preindustrial society. Asian Geographer, 32(2): 85-98.
doi: 10.1080/10225706.2015.1034735 |
[70] |
Ren L, Dong G, Liu F et al., 2020. Foraging and farming: archaeobotanical and zooarchaeological evidence for Neolithic exchange on the Tibetan Plateau. Antiquity, 94(375): 637-652.
doi: 10.15184/aqy.2020.35 |
[71] |
Ren L, Yang Y, Qiu M et al., 2022. Direct dating of the earliest domesticated cattle and caprines in northwestern China reveals the history of pastoralism in the Gansu-Qinghai region. Journal of Archaeological Science, 144: 105627.
doi: 10.1016/j.jas.2022.105627 |
[72] |
Ren L, Yang Y, Wang Q et al., 2021. The transformation of cropping patterns from Late Neolithic to Early Iron Age (5900-2100 BP) in the Gansu-Qinghai region of northwest China. The Holocene, 31(2): 183-193.
doi: 10.1177/0959683620941137 |
[73] |
Ruan H, Wang N, Niu Z, 2016. Spatial pattern of ancient city sites and its driving forces in Mu Us Sandy Land during Han Dynasty. Acta Geographica Sinica, 71(5): 873-882. (in Chinese)
doi: 10.11821/dlxb201605015 |
[74] |
Shen J, Liu X, Wang S et al., 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International, 136(1): 131-140.
doi: 10.1016/j.quaint.2004.11.014 |
[75] | Shui T, 2001. Papers on the Bronze Age Archaeology of Northwest China. Beijing: Science Press, 3-10. (in Chinese) |
[76] | Shun J, He Y, He Z et al., 2016. On the flood disasters and climate changes in the Hexi Corridor during Qing Dynasty and the Republic of China. Journal of Arid Land Resources and Environment, 30(1): 60-65. |
[77] | Sima G, 2013. History as a Mirror. Beijing: Zhonghua Book Company. (in Chinese) |
[78] |
Sinha A, Kathayat G, Weiss H et al., 2019. Role of climate in the rise and fall of the Neo-Assyrian Empire. Science Advances, 5: eaax6656.
doi: 10.1126/sciadv.aax6656 |
[79] | Smith A, 1992. Origins and spread of pastoralism in Africa. Origins and Spread of Pastoralism in Africa, 21(1): 125-141. |
[80] | Staubwasser M, Sirocko F, Grootes P et al., 2003. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters, 30(8): 7-1. |
[81] | Tan Q, 1982. The Historical Atlas of China. Beijing: China Cartographic Publishing House. (in Chinese) |
[82] |
Tang X, Feng Q, 2021a. Analysis of drought and flood disasters during 0-1950 AD in the Hexi Corridor, China, based on historical documents. Frontiers in Environmental Science, 9: 781179.
doi: 10.3389/fenvs.2021.781179 |
[83] | Tang X, Li S, 2021b. An Analysis on the oasis evolution of Hexi Corridor in historical period. Journal of Arid Land Resources and Environment, 35(7): 48-55. (in Chinese) |
[84] | Tian Z, 2019. History of Chinese War. Nanjing: Jiangsu People’s Publishing House. (in Chinese) |
[85] | Tuo T, 1977. Song History. Beijing: Zhonghua Book Company. (in Chinese) |
[86] |
Wang J, Sun L, Chen L et al., 2016. The abrupt climate change near 4,400 yr BP on the cultural transition in Yuchisi, China and its global linkage. Scientific Reports, 6(1): 1-7.
doi: 10.1038/s41598-016-0001-8 |
[87] | Wang L, 2018. Investigation and research on the roads and the sites of Zhangye section in Jiuquan, the Silk Road in Han and Tang dynasties[D]. Lanzhou: Northwest Normal University. |
[88] | Wang N, Li Z, Li Y et al., 2013. Millennial-scale environmental changes in the Asian monsoon margin during the Holocene, implicated by the lake evolution of Huahai Lake in the Hexi Corridor of northwest China. Quaternary International, 313: 100-109. |
[89] |
Wang N, Ning K, Li Z et al., 2016. Holocene high lake-levels and pan-lake period on Badain Jaran Desert. Science China Earth Sciences, 59(8): 1633-1641.
doi: 10.1007/s11430-016-5307-7 |
[90] | Wang N, Zhao Q, Hu G et al., 2003. Climatic and humanistic background of desertification process in the recent 2000 years in Hexi Corridor China. Journal of Desert Research, 23(1): 96-100. (in Chinese) |
[91] | Weiss H, 2017. Megadrought and Collapse:From Early Agriculture to Angkor. Oxford: Oxford University Press. |
[92] |
Weiss H, Bradley R, 2001. What drives societal collapse? Science, 291(5504): 609-610.
pmid: 11158667 |
[93] |
Weiss H, Courty M, Wetterstrom W et al., 1993. The genesis and collapse of third millennium north Mesopotamian civilization. Science, 261(5124): 995-1004.
pmid: 17739617 |
[94] |
Wu L, Wang X, Zhou K et al., 2010. Transmutation of ancient settlements and environmental changes between 6000-2000 a BP in the Chaohu Lake Basin, East China. Journal of Geographical Sciences, 20(5): 687-700.
doi: 10.1007/s11442-010-0804-7 |
[95] | Wu T, 2010. Xixia History. Beijing: The Commercial Press. (in Chinese) |
[96] |
Wu W, Zheng H, Hou M et al., 2018. The 5.5 cal ka BP climate event, population growth, circumscription and the emergence of the earliest complex societies in China. Science China Earth Sciences, 61(2): 134-148.
doi: 10.1007/s11430-017-9157-1 |
[97] |
Xiao L, Fang X, Zheng J et al., 2015. Famine, migration and war: Comparison of climate change impacts and social responses in North China between the late Ming and late Qing dynasties. The Holocene, 25(6): 900-910.
doi: 10.1177/0959683615572851 |
[98] | Xie D, 2002. Prehistorical Archaeology of Gansu and Qinghai Provinces. Beijing: Cultural Relics Publishing House. (in Chinese) |
[99] |
Yancheva G, Nowaczyk N, Mingram J et al., 2007. Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445(7123): 74-77.
doi: 10.1038/nature05431 |
[100] |
Yang L, Feng Q, Adamowski J et al., 2020a. Causality of climate, food production and conflict over the last two millennia in the Hexi Corridor, China. Science of the Total Environment, 713: 136587.
doi: 10.1016/j.scitotenv.2020.136587 |
[101] |
Yang L, Shi Z, Zhang S et al., 2020b. Climate change, geopolitics, and human settlements in the Hexi Corridor over the last 5,000 years. Acta Geologica Sinica‐English Edition, 94(3): 612-623.
doi: 10.1111/acgs.v94.3 |
[102] | Yang Y, 2017. The transition of human subsistence strategy and its influencing factors during prehistoric times in the Hexi Corridor, Northwest China[D]. Lanzhou: Lanzhou University. (in Chinese) |
[103] |
Yang Y, Dong G, Zhang S et al., 2017. Copper content in anthropogenic sediments as a tracer for detecting smelting activities and its impact on environment during prehistoric period in Hexi Corridor, Northwest China. The Holocene, 27(2): 282-291.
doi: 10.1177/0959683616658531 |
[104] |
Yang Y, Ren L, Dong G et al., 2019a. Economic change in the prehistoric Hexi Corridor (4800-2200 BP), northwest China. Archaeometry, 61(4): 957-976.
doi: 10.1111/arcm.v61.4 |
[105] |
Yang Y, Zhang S, Oldknow C et al., 2019b. Refined chronology of prehistoric cultures and its implication for re-evaluating human-environment relations in the Hexi Corridor, northwest China. Science China Earth Sciences, 62(10): 1578-1590.
doi: 10.1007/s11430-018-9375-4 |
[106] |
Yin J, Su Y, Fang X, 2016. Climate change and social vicissitudes in China over the past two millennia. Quaternary Research, 86(2): 133-143.
doi: 10.1016/j.yqres.2016.07.003 |
[107] | Yu K, Zhao J, Luo D, 2011. Preliminary study on drought disasters and drought events in the Hexi Corridor in the Ming and Qing dynasties. Arid Zone Research, 28(2): 288-293. (in Chinese) |
[108] |
Zhang D, Brecke P, Lee H et al., 2007. Global climate change, war, and population decline in recent human history. Proceedings of the National Academy of Sciences, 104(49): 19214-19219.
doi: 10.1073/pnas.0703073104 |
[109] |
Zhang D, Lee H, Wang C et al., 2011. The causality analysis of climate change and large-scale human crisis. Proceedings of the National Academy of Sciences, 108(42): 17296-17301.
doi: 10.1073/pnas.1104268108 |
[110] |
Zhang G, Zhu C, Wang J H et al., 2010. Environmental archaeology on Longshan Culture (4500-4000 a BP) at Yuhuicun Site in Bengbu, Anhui province. Journal of Geographical Sciences, 20(3): 455-468.
doi: 10.1007/s11442-010-0455-8 |
[111] |
Zhang J, Huang X, Wang Z et al., 2018. A late-Holocene pollen record from the western Qilian Mountains and its implications for climate change and human activity along the Silk Road, northwestern China. The Holocene, 28(7): 1141-1150.
doi: 10.1177/0959683618761548 |
[112] |
Zhang P, Cheng H, Edwards R et al., 2008. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 322(5903): 940-942.
doi: 10.1126/science.1163965 pmid: 18988851 |
[113] |
Zhang Y, Mo D, Hu K et al., 2017. Holocene environmental changes around Xiaohe Cemetery and its effects on human occupation, Xinjiang, China. Journal of Geographical Sciences, 27(6): 752-768.
doi: 10.1007/s11442-017-1404-6 |
[114] | Zhang Y, Qi C, 1998. Brief description of the population of Hexi past dynasties. Northwest Population Journal, (2): 6-12. (in Chinese) |
[115] |
Zheng J, Xiao L, Fang X et al., 2014. How climate change impacted the collapse of the Ming Dynasty. Climatic Change, 127: 169-182.
doi: 10.1007/s10584-014-1244-7 |
[116] |
Zhou L, Garvie-Lok S, 2015. Isotopic evidence for the expansion of wheat consumption in northern China. Archaeological Research in Asia, 4: 25-35.
doi: 10.1016/j.ara.2015.10.001 |
[117] |
Zhou X, Li X, Dodson J et al., 2012. Land degradation during the Bronze Age in Hexi Corridor (Gansu, China). Quaternary International, 254: 42-48.
doi: 10.1016/j.quaint.2011.06.046 |
[118] |
Zhou X, Li X, Dodson J et al., 2016. Rapid agricultural transformation in the prehistoric Hexi Corridor, China. Quaternary International, 426: 33-41.
doi: 10.1016/j.quaint.2016.04.021 |
[119] | Zhou Z, 2017. Western Han Political Region Geography. Beijing: The Commercial Press. (in Chinese) |
[1] | MENG Xiujing, ZHANG Shifeng, ZHANG Yongyong, WANG Cuicui. Temporal and spatial changes of temperature and precipitation in Hexi Corridor during 1955-2011 [J]. , 2013, 23(4): 653-667. |
[2] | BAO Chao, FANG Chuanglin. Integrated assessment model of water resources constraint intensity on urbanization in arid area [J]. Journal of Geographical Sciences, 2009, 19(3): 273-286. |
[3] | QIAO Biao, FANG Chuanglin. The dynamic coupling model and its application of urbanization and eco-environment in Hexi Corridor [J]. Journal of Geographical Sciences, 2005, 15(4): 491-499. |
[4] | CHANG Bin, XIONG Liya. Ecological footprint analysis based on RS and GIS in arid land [J]. Journal of Geographical Sciences, 2005, 15(1): 44-52. |
[5] | MENG Jijun, WU Xiuqin, LI Zhengguo. Landuse/landcover changes in Zhangye oasis of Hexi Corridor [J]. Journal of Geographical Sciences, 2003, 13(1): 71-75. |
|