Journal of Geographical Sciences ›› 2023, Vol. 33 ›› Issue (8): 1725-1746.doi: 10.1007/s11442-023-2150-6
• Special Issue: Human-environment interactions and Ecosystems • Previous Articles Next Articles
WEN Xinyuan1(), LIU Dianfeng1,2,*(
), QIU Mingli1, WANG Yinjie1, NIU Jiqiang3, LIU Yaolin1
Received:
2022-11-30
Accepted:
2023-05-06
Online:
2023-08-25
Published:
2023-08-29
Contact:
* Liu Dianfeng (1985-), Professor, specialized in land use optimization and simulation. E-mail: About author:
Wen Xinyuan (1999-), Master Candidate, specialized in land use change and sustainable development. E-mail: wenxy221@whu.edu.con
Supported by:
WEN Xinyuan, LIU Dianfeng, QIU Mingli, WANG Yinjie, NIU Jiqiang, LIU Yaolin. Estimation of maize yield incorporating the synergistic effect of climatic and land use change in Jilin, China[J].Journal of Geographical Sciences, 2023, 33(8): 1725-1746.
Table 1
Data and sources
Data | Data type | Original spatial resolution | Temporal coverage | Data source |
---|---|---|---|---|
Expenditure and production value of agriculture, forestry, animal husbandry and fishery | Excel | N/A | 2000-2015 | Jilin Province Statistical Yearbook |
Total mechanical power, total grain production | ||||
The proportion of urban population, total urban and rural population | ||||
Science and technology expenditure | ||||
County-level maize yield data | ||||
Historical climate data | 2000-2015 | | ||
Annual precipitation and annual average temperature | NetCDF | 1.125° | 2006-2100 | |
Land use map | TIFF | 30 m | 2000-2015 | |
Spatial distribution of GDP | 1 km | 2000, 2015 | | |
Spatial distribution of population density | ||||
DEM | 30 m | |||
Road network | shapefile | N/A | | |
Administrative boundary | 2015 | |
Table A1
Regression coefficients
Model | Unstandardized coefficient | t | Sig. | |
---|---|---|---|---|
B | Standard error | |||
(constant) | -6.226 | 7.759 | -0.802 | 0.423 |
T | 1.598 | 0.788 | 2.029 | 0.043 |
T2 | -0.043 | 0.020 | -2.163 | 0.031 |
P | 0.006 | 0.003 | 2.254 | 0.025 |
P2 | -2.622E-05 | 0.000 | -2.146 | 0.032 |
machine | -0.006 | 0.001 | -4.633 | 0.000 |
machine2 | 1.284E-04 | 0.000 | 3.153 | 0.002 |
SH | 2.750E-04 | 8.02 E-04 | 0.342 | 0.732 |
Area=Dongfeng County | 0.243 | 0.104 | 2.329 | 0.020 |
Area=Dongchang District | 0.265 | 0.135 | 1.971 | 0.049 |
Area=Dongliao County | 0.251 | 0.105 | 2.392 | 0.017 |
Area = Fengman District | 0.095 | 0.115 | 0.821 | 0.412 |
Area=Jiutai City | 0.035 | 0.104 | 0.342 | 0.733 |
Area = Erdao District | -0.409 | 0.102 | -4.025 | 0.000 |
Area = Erdaojiang District | 0.148 | 0.134 | 1.105 | 0.269 |
Area=Yitong County | 0.267 | 0.102 | 2.623 | 0.009 |
Area=Gongzhuling City | 0.652 | 0.105 | 6.212 | 0.000 |
Area=Nong'an County | 0.431 | 0.105 | 4.085 | 0.000 |
Area = Nanguan District | -0.019 | 0.109 | -0.173 | 0.863 |
Area=Shuangyang District | 0.316 | 0.108 | 2.920 | 0.004 |
Area = Kuancheng District | -0.400 | 0.102 | -3.920 | 0.000 |
Area=Dehui City | 0.298 | 0.106 | 2.813 | 0.005 |
Area=Changyi District | 0.092 | 0.103 | 0.888 | 0.375 |
Area=Chaoyang District | -0.106 | 0.113 | -0.942 | 0.346 |
Area = Liuhe County | 0.255 | 0.112 | 2.263 | 0.024 |
Area = Huadian City | -0.020 | 0.121 | -0.167 | 0.867 |
Area=Meihekou City | 0.087 | 0.104 | 0.834 | 0.405 |
(constant) | -6.226 | 7.759 | -0.802 | 0.423 |
Area = Lishu County | 0.724 | 0.105 | 6.916 | 0.000 |
Area = Elm City | 0.313 | 0.104 | 3.019 | 0.003 |
Area=Yongji County | 0.028 | 0.103 | 0.268 | 0.788 |
Area=Panshi City | 0.106 | 0.103 | 1.024 | 0.306 |
Area = Green Park | 0.055 | 0.119 | 0.461 | 0.645 |
Area = Shulan City | 0.200 | 0.111 | 1.810 | 0.071 |
Area = Ship Camp Area | 0.063 | 0.105 | 0.599 | 0.549 |
Area = Jiaohe City | 0.102 | 0.116 | 0.877 | 0.381 |
Area = Xi'an District | -0.042 | 0.103 | -0.412 | 0.680 |
Area=Huinan County | 0.351 | 0.112 | 3.130 | 0.002 |
Area=Tonghua County | -0.051 | 0.110 | -0.460 | 0.646 |
Area=Tiedong District | 0.236 | 0.107 | 2.200 | 0.028 |
Area = Tiexi District | 0.449 | 0.185 | 2.427 | 0.016 |
Area = Ji'an City | -0.098 | 0.109 | -0.894 | 0.372 |
Area = Longshan District | -0.055 | 0.102 | -0.538 | 0.591 |
Area=Longtan District | 0.091 | 0.105 | 0.868 | 0.386 |
Table A2
Variance of county residual error
Region | Region | ||
---|---|---|---|
Changyi District | 0.025572075 | Liuhe County | 0.044541441 |
Chaoyang District | 0.195618882 | Yongsan District | 0.088251022 |
Ship Camp Area | 0.014275893 | Longtan District | 0.019158748 |
Dehui | 0.033632781 | Green Park | 0.249584034 |
Dongchang District | 0.014318566 | Meihekou | 0.009294256 |
Dongfeng County | 0.026302486 | Nanguan District | 0.14462959 |
Dongliao County | 0.049171297 | Nong'an County | 0.011689685 |
Erdaojiang District | 0.031237137 | rock city | 0.01400162 |
Erdao District | 0.431996676 | Shulan | 0.01074008 |
plump area | 0.048536536 | Shuangliao | 0.038542727 |
Gongzhuling | 0.010237088 | Shuangyang District | 0.072074432 |
Huadian | 0.026221195 | Tiedong District | 0.039590128 |
Huinan County | 0.070030835 | Tiexi District | 0.079287917 |
Ji'an | 0.023745877 | Tonghua County | 0.011766734 |
Jiaohe | 0.046481507 | Xi'an District | 0.344605244 |
Jiutai District | 0.0508169 | Yitong County | 0.071153589 |
Kuancheng District | 0.28749462 | Yongji County | 0.043845527 |
Lishu County | 0.030609236 | Elm City | 0.012829379 |
Table A3
The relation functions used in the SD model
Dependent variable | Independent variable | |||||
---|---|---|---|---|---|---|
Changchun | Jilin | Siping | Liaoyuan | Tonghua | ||
Population change | Population change rate ×Total population | |||||
Agricultural population | Agricultural population ratio ×Total population | |||||
Construction land change | Population change × Construction land per capita | |||||
Construction land per capita | 0.02808×(Time-2015) + 2.36822 | |||||
Total grain production | 196696× (Time-2015) + 7.02149e+06 | 38568.5× (Time-2015)+ 3.61855e+06 | 223246× (Time-2015)+ 5.19641e+06 | 17327.5× (Time-2015) + 1.213e+06 | 17500.5× (Time-2015)+ 1.62026e+06 | |
Technology expenditure ratio | 6.5×(Time-2015)+ 0.009628 | 6.38×(Time-2015)+ 0.005389 | 76.109× (Time-2015)- 1977.53 | 27.5× (Time-2015) + 1.23277e+06 | 1.089×(Time-2015)+ 0.008784 | |
Forestry output value | 1977.86× (Time-2015) + 8967.88 | 6855.19× (Time-2015) + 32268.6 | 765.905× (Time-2015)+ 12584 | 2158.23× (Time-2015) - 2693.16 | 11005.8× (Time-2015) - 22992.2 | |
Technology expenditure | 7437.71× (Time-2015) - 17716.6 | 4166.49× (Time-2015) - 10044.6 | 761.109× (Time-2015) - 1977.53 | 804.273× (Time-2015)- 2886.62 | 5366.08× (Time-2015) - 20759.7 | |
Pastoral output value | 144195× (Time-2015)+ 1.15857e+06 | 138068× (Time-2015)+ 249054 | 213037× (Time-2015)+ 556231 | 38851.8× (Time-2015)+ 118363 | 31078.9× (Time-2015)+ 216560 | |
Fishery output value | 4235.14× (Time-2015) - 1124.15 | 6211.77× (Time-2015) + 38328.4 | 1548.15× (Time-2015)- 5607.55 | 611.483× (Time-2015) - 1412.13 | 3972.97× (Time-2015)+ 2054.63 | |
Proportion of expenditure on agriculture | 0.0027× (Time-2015) + 0.0395 | 0.0027× (Time-2015)+ 0.0395 | -0.001092× (Time-2015)+ 0.129638 | 0.000930× (Time-2015)+ 0.0866 | -0.001715× (Time-2015)+ 0.1312 | |
Total power of agricultural machinery | 21.428 × (Time-2015)+ 205.236 | 25.8394× (Time-2015)+ 63.2892 | 18.9625× (Time-2015)+ 81.9124 | 10.4513× (Time-2015) + 2.82133 | 6.58964× (Time-2015)+ 84.9691 | |
Cultivated land change | -109.732+0.0976× Total power of agricultural machinery+ 0.195929× Agricultural population- 1.25146e-06× Total grain production | -108.152+0.0896× Total power of agricultural machinery+ 0.172859× Agricultural population-1.20816e-06× Total grain production | -107.362+0.0976×Total power of agricultural machinery+ 0.29653×Agricultural population+ 1.25146e-06× Total grain production | -45+0.0976×Total power of agricultural machinery+ 0.2× Agricultural population+ 1.25146e-06×Total grain production | -52.732+0.0976× Total power of agricultural machinery+ 0.195929× Agricultural population+ 1.25146e- 06×Total grain production | |
Water area change | 0.4719-2.48582e-05 ×Fishery output value- 9.75115× Proportion of expenditure on agriculture- 0.0114061× Unused land | 0.3287+2e-05× Fishery output value- 9.7× Proportion of expenditure on agriculture+ 0.014025×Unused land | 0.2693+2e-05× Fishery output value- 9.67103× Proportion of expenditure on agriculture+ 0.0100651×Unused land | 0.4+2e-05×Fishery output value- 9.35115×Proportion of expenditure on agriculture+ 0.01×Unused land | 0.4178+2e-05× Fishery output value- 9.5115× Proportion of expenditure on agriculture+ 0.024551×Unused land | |
Grassland change | 71.451-0.041978× Woodland -0.0281294×Total power of agricultural machinery+ 1.83056e-07×Pastoral output value-45.069× Technology expenditure ratio | 69.451-0.004× Woodland + 0.0311575× Total power of agricultural machinery+ 1.83056e-07× Pastoral output value- 38.405× Technology expenditure ratio | 70.895-0.04× Woodland +0.03× Total power of agricultural machinery+ 2.0056e-07× Pastoral output value+41.036× Technology expenditure ratio | 64.589-0.035× Woodland + 0.0281294×Total power of agricultural machinery- 1.83056e-07× Pastoral output value-40.853× Technology expenditure ratio | 75.186-0.0066× Woodland -0.028× Total power of agricultural machinery-1.8e-07× Pastoral output value+10.853× Technology expenditure ratio | |
Woodland change | 52.0559-0.096× Grassland+ 0.000108421× Forestry output value+ 0.0001×Technology expenditure | 46.0559-0.096× Grassland+ 0.000108421× Forestry output value+ 0.0001× Technology expenditure | 32.0559-0.097× Grassland- 0.000108421× Forestry output value+0.0001× Technology expenditure | 28-0.1×Grassland- 0.00011×Forestry output value +0.001× Technology expenditure | 40.0559-0.0966744×Grassland- 0.000108421× Forestry output value- 0.0001× Technology expenditure | |
Unused land | 20528-Cultivated land-Grassland- Woodland -Water area- Construction land | 27782.1-Cultivated land-Grassland- Woodland -Water area- Construction land | 14355.2-Cultivated land-Grassland- Woodland -Water area- Construction land | 5144.74-Cultivated land-Grassland- Woodland -Water area- Construction land | 15568.6-Cultivated land-Grassland- Woodland -Water area- Construction land |
[1] | Abate M C, Kuang Y-P, 2021. The impact of the supply of farmland, level of agricultural mechanisation, and supply of rural labour on grain yields in China. Studies in Agricultural Economics, 123(1): 33-42. |
[2] | Akhtar M K, Wibe J, Simonovic S P et al., 2013. Integrated assessment model of society-biosphere-climate-economy-energy system. Environmental Modelling & Software, 49: 1-21. |
[3] |
Akpoti K, Kabo-bah A T, Zwart S J, 2019. Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agricultural Systems, 173: 172-208.
doi: 10.1016/j.agsy.2019.02.013 |
[4] |
Altieri M A, Nicholls C I, 2017. The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change, 140(1): 33-45.
doi: 10.1007/s10584-013-0909-y |
[5] |
Archontoulis S V, Miguez F E, Moore K J, 2014. Evaluating APSIM maize, soil water, soil nitrogen, manure, and soil temperature modules in the Midwestern United States. Agronomy Journal, 106(3): 1025-1040.
doi: 10.2134/agronj2013.0421 |
[6] |
Asseng S, Ewert F, Rosenzweig C et al., 2013. Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3(9): 827-832.
doi: 10.1038/nclimate1916 |
[7] |
Banakara K B, Pandya H R, Garde Y A, 2019. Pre-harvest forecast of kharif rice yield using PCA and MLR technique in Naysari district of Gujarat. Journal of Agrometeorology, 21(3): 336-343.
doi: 10.54386/jam.v21i3 |
[8] |
Basse R M, Omrani H, Charif O et al., 2014. Land use changes modelling using advanced methods - Cellular automata and artificial neural networks: The spatial and explicit representation of land cover dynamics at the cross-border region scale. Applied Geography, 53: 160-171.
doi: 10.1016/j.apgeog.2014.06.016 |
[9] |
Basso B, Liu L, 2019. Seasonal crop yield forecast: Methods, applications, and accuracies. Advances in Agronomy, 154: 201-255.
doi: 10.1016/bs.agron.2018.11.002 |
[10] | Basso B, Liu L, Ritchie J T, 2016. A comprehensive review of the CERES-wheat, -maize and -rice models’ performances. Advances in Agronomy, 136: 27-132. |
[11] |
Camberlin P, Diop M, 1999. Inter-relationships between groundnut yield in Senegal, interannual rainfall variability and sea-surface temperatures. Theoretical and Applied Climatology, 63(3/4): 163-181.
doi: 10.1007/s007040050101 |
[12] |
Chen C Q, Lei C X, Deng A X et al., 2011. Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965-2008. Agricultural and Forest Meteorology, 151(12): 1580-1588.
doi: 10.1016/j.agrformet.2011.06.013 |
[13] |
Diaz-Zorita M, Buschiazzo D E, Peinemann N, 1999. Soil organic matter and wheat productivity in the semiarid argentine pampas. Agronomy Journal, 91(2): 276-279.
doi: 10.2134/agronj1999.00021962009100020016x |
[14] | Feng S, Hao Z, Zhang X et al., 2021. Changes in climate-crop yield relationships affect risks of crop yield reduction. Agricultural and Forest Meteorology, 304: 108401. |
[15] |
Foulkes M J, Slafer G A, Davies W J et al., 2011. Raising yield potential of wheat (III): Optimizing partitioning to grain while maintaining lodging resistance. Journal of Experimental Botany, 62(2): 469-486.
doi: 10.1093/jxb/erq300 pmid: 20952627 |
[16] |
Gao J, Liu L, Guo L et al., 2023. The effects of climate change and phenological variation on agricultural production and its risk pattern in the black soil area of northeast China. Journal of Geographical Sciences, 33(1): 37-58.
doi: 10.1007/s11442-023-2073-2 |
[17] |
Gao J Q, Yang X G, Zheng B Y et al., 2020. Does precipitation keep pace with temperature in the marginal double-cropping area of northern China? European Journal of Agronomy, 120: 126126.
doi: 10.1016/j.eja.2020.126126 |
[18] |
Giri A K, Bhan M, Agrawal K K, 2017. Districtwise wheat and rice yield predictions using meteorological variables in eastern Madhya Pradesh. Journal of Agrometeorology, 19(4): 366-368.
doi: 10.54386/jam.v19i4 |
[19] |
Grassini P, Yang H S, Cassman K G, 2009. Limits to maize productivity in Western Corn-Belt: A simulation analysis for fully irrigated and rainfed conditions. Agricultural and Forest Meteorology, 149(8): 1254-1265.
doi: 10.1016/j.agrformet.2009.02.012 |
[20] |
He Y, Liang H, Hu K L et al., 2018. Modeling nitrogen leaching in a spring maize system under changing climate and genotype scenarios in arid Inner Mongolia, China. Agricultural Water Management, 210: 316-323.
doi: 10.1016/j.agwat.2018.08.017 |
[21] |
Hengl T, de Jesus J M, Heuvelink G B M et al., 2017. SoilGrids250m: Global gridded soil information based on machine learning. Plos One, 12(2): e0169748.
doi: 10.1371/journal.pone.0169748 |
[22] | Hou R, Li H, 2021. Spatial-temporal change and coupling coordination characteristics of land use functions in Wuhan City: Based on the comparison before and after the resource-economical and environment-friendly society experimental zone establishment. China Land Science, 35(1): 69-78. (in Chinese) |
[23] |
Huang J, Tang Z, Liu D et al., 2020. Ecological response to urban development in a changing socio-economic and climate context: Policy implications for balancing regional development and habitat conservation. Land Use Policy, 97: 104772.
doi: 10.1016/j.landusepol.2020.104772 |
[24] | Huang J Y, Hartemink A E, Kucharik C J, 2021. Soil-dependent responses of US crop yields to climate variability and depth to groundwater. Agricultural Systems, 190: 103085. |
[25] |
Iglesias A, Garrote L, 2015. Adaptation strategies for agricultural water management under climate change in Europe. Agricultural Water Management, 155: 113-124.
doi: 10.1016/j.agwat.2015.03.014 |
[26] |
Jiang R, He W T, He L et al., 2021. Modelling adaptation strategies to reduce adverse impacts of climate change on maize cropping system in Northeast China. Scientific Reports, 11(1): 810.
doi: 10.1038/s41598-020-79988-3 pmid: 33436721 |
[27] | Kang Y H, Ozdogan M, Zhu X J et al., 2020. Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest. Environmental Research Letters, 15(6): 064005. |
[28] | Knutti R, 2014. IPCC Working Group I AR5 snapshot: The rcp26 experiment. Retrieved from: https://doi.org/10.1594/WDCC/ETHr2. |
[29] | Kolotii A, Kussul N, Shelestov A et al., 2015. Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. 36th International Symposium on Remote Sensing of Environment, 47(w3): 39-44. |
[30] |
Kowalik W, Dabrowska-Zielinska K, Meroni M et al., 2014. Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries. International Journal of Applied Earth Observation and Geoinformation, 32: 228-239.
doi: 10.1016/j.jag.2014.03.011 |
[31] |
Kriegler E, Edmonds J, Hallegatte S et al., 2014. A new scenario framework for climate change research: The concept of shared climate policy assumptions. Climatic Change, 122(3): 401-414.
doi: 10.1007/s10584-013-0971-5 |
[32] |
Laudien R, Schauberger B, Makowski D et al., 2020. Robustly forecasting maize yields in Tanzania based on climatic predictors. Scientific Reports, 10(1): 19650.
doi: 10.1038/s41598-020-76315-8 pmid: 33184303 |
[33] |
Leng G, Hall J W, 2020. Predicting spatial and temporal variability in crop yields: An inter-comparison of machine learning, regression and process-based models. Environmental Research Letters, 15(4): 044027.
doi: 10.1088/1748-9326/ab7b24 |
[34] |
Li E, Zhao J, Pullens J W M et al., 2022. The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China. Science of the Total Environment, 812: 152461.
doi: 10.1016/j.scitotenv.2021.152461 |
[35] |
Li X, Chen G Z, Liu X P et al., 2017. A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human-environment interactions. Annals of the American Association of Geographers, 107(5): 1040-1059.
doi: 10.1080/24694452.2017.1303357 |
[36] |
Li Y, Conway D, Xiong W et al., 2011. Effects of climate variability and change on Chinese agriculture: A review. Climate Research, 50(1): 83-102.
doi: 10.3354/cr01038 |
[37] |
Li Y, Hu Z, Wang X et al., 2020. Characterization of a polysaccharide with antioxidant and anti-cervical cancer potentials from the corn silk cultivated in Jilin province. International Journal of Biological Macromolecules, 155: 1105-1113.
doi: S0141-8130(19)36743-1 pmid: 31712136 |
[38] |
Li Z, Tan J, Tang P et al., 2016. Spatial distribution of maize in response to climate change in northeast China during 1980-2010. Journal of Geographical Sciences, 26(1): 3-14.
doi: 10.1007/s11442-016-1250-y |
[39] |
Liang S, Zhang X B, Sun N et al., 2019. Modeling crop yield and nitrogen use efficiency in wheat and maize production systems under future climate change. Nutrient Cycling in Agroecosystems, 115(1): 117-136.
doi: 10.1007/s10705-019-10013-4 |
[40] |
Lin Y M, Wu W X, Ge Q S, 2015. CERES-Maize model-based simulation of climate change impacts on maize yields and potential adaptive measures in Heilongjiang province, China. Journal of the Science of Food and Agriculture, 95(14): 2838-2849.
doi: 10.1002/jsfa.7024 pmid: 25428548 |
[41] |
Liu X, Liang X, Li X et al., 2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168: 94-116.
doi: 10.1016/j.landurbplan.2017.09.019 |
[42] |
Liu Y, Ren H L, Klingaman N P et al., 2021. Improving long-lead seasonal forecasts of precipitation over Southern China based on statistical downscaling using BCC_CSM1.1m. Dynamics of Atmospheres and Oceans, 94: 101222.
doi: 10.1016/j.dynatmoce.2021.101222 |
[43] |
Lobell D B, Burke M B, 2010. On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 150(11): 1443-1452.
doi: 10.1016/j.agrformet.2010.07.008 |
[44] |
Lobell D B, Schlenker W, Costa-Roberts J, 2011. Climate trends and global crop production since 1980. Science, 333(6042): 616-620.
doi: 10.1126/science.1204531 pmid: 21551030 |
[45] |
Loboguerrero A M, Campbell B M, Cooper P J M et al., 2019. Food and earth systems: Priorities for climate change adaptation and mitigation for agriculture and food systems. Sustainability, 11(5): 1372.
doi: 10.3390/su11051372 |
[46] |
Malik M A, Wani A H, Mir S H et al., 2021. Elucidating the role of silicon in drought stress tolerance in plants. Plant Physiology and Biochemistry, 165: 187-195.
doi: 10.1016/j.plaphy.2021.04.021 pmid: 34049031 |
[47] |
Manatsa D, Nyakudya I W, Mukwada G et al., 2011. Maize yield forecasting for Zimbabwe farming sectors using satellite rainfall estimates. Natural Hazards, 59(1): 447-463.
doi: 10.1007/s11069-011-9765-0 |
[48] |
Morugan-Coronado A, Perez-Rodriguez P, Insolia E et al., 2022. The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: A worldwide meta-analysis of agricultural sites. Agriculture Ecosystems & Environment, 329: 107867.
doi: 10.1016/j.agee.2022.107867 |
[49] |
Murchie E H, Niyogi K K, 2011. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology, 155(1): 86-92.
doi: 10.1104/pp.110.168831 pmid: 21084435 |
[50] |
Mustafa A, Heppenstall A, Omrani H et al., 2018. Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. Computers Environment and Urban Systems, 67: 147-156.
doi: 10.1016/j.compenvurbsys.2017.09.009 |
[51] |
Ning J, Liu J, Kuang W et al., 2018. Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015. Journal of Geographical Sciences, 28(5): 547-562.
doi: 10.1007/s11442-018-1490-0 |
[52] |
O'Neill B C, Kriegler E, Riahi K et al., 2014. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122(3): 387-400.
doi: 10.1007/s10584-013-0905-2 |
[53] |
Olesen J E, Trnka M, Kersebaum K C et al., 2011. Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34(2): 96-112.
doi: 10.1016/j.eja.2010.11.003 |
[54] |
Pan Z, He J, Liu D et al., 2020. Predicting the joint effects of future climate and land use change on ecosystem health in the Middle Reaches of the Yangtze River Economic Belt, China. Applied Geography, 124: 102293.
doi: 10.1016/j.apgeog.2020.102293 |
[55] |
Peng S S, Piao S L, Ciais P et al., 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501(7465): 88.
doi: 10.1038/nature12434 |
[56] |
Peralta N R, Assefa Y, Du J et al., 2016. Mid-season high-resolution satellite imagery for forecasting site-specific corn yield. Remote Sensing, 8(10): 848.
doi: 10.3390/rs8100848 |
[57] |
Pontius R G, Boersma W, Castella J C et al., 2008. Comparing the input, output, and validation maps for several models of land change. Annals of Regional Science, 42(1): 11-37.
doi: 10.1007/s00168-007-0138-2 |
[58] |
Poornima S, Pushpalatha M, 2019. Prediction of rainfall using intensified LSTM based recurrent neural network with weighted linear units. Atmosphere, 10(11): 668.
doi: 10.3390/atmos10110668 |
[59] |
Pu L M, Zhang S W, Yang J H et al., 2020. Assessing the impact of climate changes on the potential yields of maize and paddy rice in Northeast China by 2050. Theoretical and Applied Climatology, 140(1/2): 167-182.
doi: 10.1007/s00704-019-03081-7 |
[60] |
Rao A, Chandran M A S, Bal S K et al., 2022. Evaluating area-specific adaptation strategies for rainfed maize under future climates of India. Science of the Total Environment, 836: 155511.
doi: 10.1016/j.scitotenv.2022.155511 |
[61] |
Rojas O, 2007. Operational maize yield model development and validation based on remote sensing and agro-meteorological data in Kenya. International Journal of Remote Sensing, 28(17): 3775-3793.
doi: 10.1080/01431160601075608 |
[62] |
Rojas-Downing M M, Nejadhashemi A P, Harrigan T et al., 2017. Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16: 145-163.
doi: 10.1016/j.crm.2017.02.001 |
[63] |
Rotz S, Gravely E, Mosby I et al., 2019. Automated pastures and the digital divide: How agricultural technologies are shaping labour and rural communities. Journal of Rural Studies, 68: 112-122.
doi: 10.1016/j.jrurstud.2019.01.023 |
[64] |
Rutgersson A, Kjellstrom E, Haapala J et al., 2022. Natural hazards and extreme events in the Baltic Sea region. Earth System Dynamics, 13(1): 251-301.
doi: 10.5194/esd-13-251-2022 |
[65] |
Sakamoto T, 2020. Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm. Isprs Journal of Photogrammetry and Remote Sensing, 160: 208-228.
doi: 10.1016/j.isprsjprs.2019.12.012 |
[66] |
Shan Y, Huang Q, Guan D et al., 2020. China CO2 emission accounts 2016-2017. Scientific Data, 7(1): 54.
doi: 10.1038/s41597-020-0393-y |
[67] |
Sharma L K, Bali S K, Dwyer J D et al., 2017. A case study of improving yield prediction and sulfur deficiency detection using optical sensors and relationship of historical potato yield with weather data in maine. Sensors, 17(5): 1095.
doi: 10.3390/s17051095 |
[68] |
Shi W, Tao F, Zhang Z, 2013. A review on statistical models for identifying climate contributions to crop yields. Journal of Geographical Sciences, 23(3): 567-576.
doi: 10.1007/s11442-013-1029-3 |
[69] |
Tripathy R, Chaudhari K N, Mukherjee J et al., 2013. Forecasting wheat yield in Punjab state of India by combining crop simulation model WOFOST and remotely sensed inputs. Remote Sensing Letters, 4(1): 19-28.
doi: 10.1080/2150704X.2012.683117 |
[70] |
Urban D, Roberts M J, Schlenker W et al., 2012. Projected temperature changes indicate significant increase in interannual variability of U.S. maize yields. Climatic Change, 112(2): 525-533.
doi: 10.1007/s10584-012-0428-2 |
[71] |
van Vuuren D P, Carter T R, 2014. Climate and socio-economic scenarios for climate change research and assessment: Reconciling the new with the old. Climatic Change, 122(3): 415-429.
doi: 10.1007/s10584-013-0974-2 |
[72] |
Vancutsem C, Marinho E, Kayitakire F et al., 2013. Harmonizing and combining existing land cover/land use datasets for cropland area monitoring at the African continental scale. Remote Sensing, 5(1): 19-41.
doi: 10.3390/rs5010019 |
[73] | Vermeulen S J, Aggarwal P K, Ainslie A et al., 2012. Options for support to agriculture and food security under climate change. Environmental Science & Policy, 15(1): 136-144. |
[74] |
Wang X H, Peng L Q, Zhang X P et al., 2014. Divergence of climate impacts on maize yield in Northeast China. Agriculture Ecosystems & Environment, 196: 51-58.
doi: 10.1016/j.agee.2014.06.009 |
[75] |
Wang Y P, Chang K W, Chen R K et al., 2010. Large-area rice yield forecasting using satellite imageries. International Journal of Applied Earth Observation and Geoinformation, 12(1): 27-35.
doi: 10.1016/j.jag.2009.09.009 |
[76] | Wang Z M, Song K S, Li X Y et al., 2007. Effects of climate change on yield of maize in maize zone of Songnen Plain in the past 40 years. Arid Zone Resources and Environment, (9): 112-117. (in Chinese) |
[77] |
Wu T W, Yu R C, Zhang F et al., 2010. The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dynamics, 34(1): 123-147.
doi: 10.1007/s00382-008-0487-2 |
[78] |
Xie W, Huang J K, Wang J X et al., 2020. Climate change impacts on China’s agriculture: The responses from market and trade. China Economic Review, 62: 101256.
doi: 10.1016/j.chieco.2018.11.007 |
[79] |
Yang H, Huang J L, Liu D F, 2020. Linking climate change and socioeconomic development to urban land use simulation: Analysis of their concurrent effects on carbon storage. Applied Geography, 115: 102135.
doi: 10.1016/j.apgeog.2019.102135 |
[80] |
Yang Q, Shi L, Han J et al., 2019. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Research, 235: 142-153.
doi: 10.1016/j.fcr.2019.02.022 |
[81] |
Yang X, Lin E, Ma S M et al., 2007. Adaptation of agriculture to warming in Northeast China. Climatic Change, 84(1): 45-58.
doi: 10.1007/s10584-007-9265-0 |
[82] | Yin X G, Jabloun M, Olesen J E et al., 2016. Effects of climatic factors, drought risk and irrigation requirement on maize yield in the Northeast Farming Region of China. Journal of Agricultural Science, 154(7): 1171-1189. |
[83] |
Yu D, Hu S, Tong L et al., 2020. Spatiotemporal dynamics of cultivated land and its influences on grain production potential in Hunan province, China. Land, 9(12): 510.
doi: 10.3390/land9120510 |
[84] | Zhang H B, Qi Y, 2010. Strategic thinking on low-carbon economy development in China: The example of Beijing-Tianjin-Hebei economic circle. China Population· Resources and Environment, 20(5): 6-11. (in Chinese) |
[85] |
Zhang P, Yang Q, Zhao Y, 2012. Relationship between social economic agglomeration and labor productivity of core cities in Northeast China. Chinese Geographical Science, 22(2): 221-231.
doi: 10.1007/s11769-012-0522-4 |
[86] |
Zhang Y Q, Liu H P, Qi J Y et al., 2023. Assessing impacts of global climate change on water and food security in the black soil region of Northeast China using an improved SWAT-CO2 model. Science of the Total Environment, 857: 159482.
doi: 10.1016/j.scitotenv.2022.159482 |
[87] |
Zhong L H, Hu L N, Zhou H, 2019. Deep learning based multi-temporal crop classification. Remote Sensing of Environment, 221: 430-443.
doi: 10.1016/j.rse.2018.11.032 |
[1] | FAN Zemeng. Simulation of land-cover change in Jing-Jin-Ji region under different scenarios of SSP-RCP [J]. Journal of Geographical Sciences, 2022, 32(3): 421-440. |
[2] | LIU Ye, HUANG Cuiying, WU Rongwei, PAN Zehan, GU Hengyu. The spatial patterns and determinants of internal migration of older adults in China from 1995 to 2015 [J]. Journal of Geographical Sciences, 2022, 32(12): 2541-2559. |
[3] | DUNFORD Michael, LIU Zhigao, XUE Jiashun. Chinese overseas ports: Market potential, supply capacity and access to imports [J]. Journal of Geographical Sciences, 2020, 30(10): 1681-1701. |
[4] | Zhenkui GU, Changxing SHI, Jie PENG. Evolutionary dynamics of the main-stem longitudinal profiles of ten kongdui basins within Inner Mongolia, China [J]. Journal of Geographical Sciences, 2019, 29(3): 417-431. |
[5] | Qingling SUN, Baolin LI, Chenghu ZHOU, Fei LI, Zhijun ZHANG, Lingling DING, Tao ZHANG, Lili XU. A systematic review of research studies on the estimation of net primary productivity in the Three-River Headwater Region, China [J]. Journal of Geographical Sciences, 2017, 27(2): 161-182. |
[6] | Jianhui YU, Guanpeng DONG, Wenzhong ZHANG, Jiaming LI. Study on the synergy between intra-urban resident’s migration and job change in Beijing [J]. Journal of Geographical Sciences, 2015, 25(8): 978-990. |
[7] | Guangdong LI, Chuanglin FANG, Bo PANG. Quantitative measuring and influencing mechanism of urban and rural land intensive use in China [J]. Journal of Geographical Sciences, 2014, 24(5): 858-874. |
[8] | ROSI Ascanio, SEGONI Samuele, CATANI Filippo, CASAGLI Nicola. Statistical and environmental analyses for the definition of a regional rainfall threshold system for landslide triggering in Tuscany (Italy) [J]. Journal of Geographical Sciences, 2012, 22(4): 617-629. |
[9] | GUO Tengyun, HE Shujin, DONG Guanpeng. Metropolitan resources efficiencies, change trends and causes in China under the goal to build an international metropolis [J]. Journal of Geographical Sciences, 2011, 21(4): 746-756. |
[10] | ZHAO Yaolong, CUI Bingliang, MURAYAMA Yuji. Characteristics of neighborhood interaction in urban land-use changes: A comparative study between three metropolitan areas of Japan [J]. Journal of Geographical Sciences, 2011, 21(1): 65-78. |
[11] | WEI Xiang, LI Zhanbin. Applicative limitations of sediment transport on predictive modeling in geomorphology [J]. Journal of Geographical Sciences, 2004, 14(1): 94-104. |
[12] | ZHANG Xuelei, CHEN Jie, ZHANG Ganlin, TAN Manzhi, J.J. Ibá?ez. Figure 1 Linear fitness of the index H' respectively calculated by the number or the area of the related Sus Pedodiversity analysis in Hainan Island [J]. Journal of Geographical Sciences, 2003, 13(2): 181-186. |
|