Journal of Geographical Sciences ›› 2023, Vol. 33 ›› Issue (8): 1681-1701.doi: 10.1007/s11442-023-2148-0
• Special Issue: Human-environment interactions and Ecosystems • Previous Articles Next Articles
WANG Peng1,2,3(), XU Mingxiang1,2,3,4,*(
)
Received:
2022-11-18
Accepted:
2023-04-11
Online:
2023-08-25
Published:
2023-08-29
Contact:
* Xu Mingxiang, Professor, specialized in ecosystem services. E-mail: About author:
Wang Peng, PhD Candidate, specialized in ecosystem services. E-mail: wangpeng192@mails.ucas.ac.cn
Supported by:
WANG Peng, XU Mingxiang. Dynamics and interactions of water-related ecosystem services in the Yellow River Basin, China[J].Journal of Geographical Sciences, 2023, 33(8): 1681-1701.
Table 1
Areas of land cover from 1990 to 2020 (km2)
Types | 1990 | 2000 | 2010 | 2020 |
---|---|---|---|---|
Cropland | 207,040 | 202,112 | 188,083 | 183,597 |
Forest | 75,197 | 79,173 | 84,732 | 92,245 |
Shrub | 5500 | 5235 | 4394 | 3811 |
Grassland | 456,039 | 458,927 | 470,648 | 463,628 |
Water | 5030 | 4600 | 5537 | 5880 |
Snow | 264 | 289 | 558 | 220 |
Barren land | 37,143 | 32,478 | 24,265 | 23,948 |
Impervious land | 8797 | 12,608 | 17,486 | 22,071 |
Wetland | 916 | 504 | 223 | 526 |
Figure 6
(a) Hot/cold spots of annual average water yield (WY) and (b) its spatial cluster, (c) hot/cold spots of annual average nitrogen export (NE) and (d) its spatial cluster, and (e) hot/cold spots of annual average soil export (SE) and (f) spatial cluster. *, ** and *** indicated that significance at the p < 0.10, p < 0.05 and p < 0.01 level, respectively.
Figure 8
Trade-offs and synergies in different land management scenarios. WY, NE and SE denote water yield, nitrogen export and soil export, respectively; RP denotes riparian forest buffer scenario; GD denotes the Grain for Green project scenario; FS denotes the agricultural expansion scenario.
[1] | Bai P, Liu X, Zhang Y et al., 2020. Assessing the impacts of vegetation greenness change on evapotranspiration and water yield in China. Water Resources Research, 56(10): e2019WR027019. |
[2] |
Bai Y, Ochuodho T O, Yang J, 2019. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecological Indicators, 102: 51-64.
doi: 10.1016/j.ecolind.2019.01.079 |
[3] |
Bao H, Tang M, Lan H et al., 2022. Soil erosion and its causes in high-filling body: A case study of a valley area on the Loess Plateau, China. Journal of Mountain Science, 20(1): 182-196.
doi: 10.1007/s11629-021-7221-5 |
[4] | Budyko M I, 1974. Climate and Life. San Diego: Academic Press. |
[5] |
Cao S, Chen L, Shankman D et al., 2011. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Science Reviews, 104(4): 240-245.
doi: 10.1016/j.earscirev.2010.11.002 |
[6] |
Chen Y, Wang K, Lin Y et al., 2015. Balancing green and grain trade. Nature Geoscience, 8(10): 739-741.
doi: 10.1038/ngeo2544 |
[7] |
Feng X, Fu B, Piao S et al., 2016. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 6(11): 1019-1022.
doi: 10.1038/nclimate3092 |
[8] | Fu Bojie, 2022. Ecological and environmental effects of land-use changes in the Loess Plateau of China. Chinese Science Bulletin, 67(32): 3769-3779, 3768. (in Chinese) |
[9] |
Gao J, Bian H, Zhu C et al., 2022. The response of key ecosystem services to land use and climate change in Chongqing: Time, space, and altitude. Journal of Geographical Sciences, 32(2): 317-332.
doi: 10.1007/s11442-022-1949-x |
[10] | Gao J, Li F, Gao H et al., 2017. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. Journal of Cleaner Production, 163: S145-S155 |
[11] |
Gashaw T, Tulu T, Argaw M et al., 2018. Estimating the impacts of land use/land cover changes on ecosystem service values: The case of the Andassa watershed in the Upper Blue Nile Basin of Ethiopia. Ecosystem Services, 31: 219-228.
doi: 10.1016/j.ecoser.2018.05.001 |
[12] |
Ge G, Zhang J, Chen X et al., 2022. Effects of land use and land cover change on ecosystem services in an arid desert-oasis ecotone along the Yellow River of China. Ecological Engineering, 176: 106512.
doi: 10.1016/j.ecoleng.2021.106512 |
[13] | Gong J, Liu D Q, Gao B L et al., 2020. Tradeoffs and synergies of ecosystem services in western mountainous China: A case study of the Bailongiang watershed in Gansu, China. Chinese Journal of Applied Ecology, 31(4): 1278-1288. (in Chinese) |
[14] |
Jia X, Fu B, Feng X et al., 2014. The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in northern Shaanxi, China. Ecological Indicators, 43: 103-113.
doi: 10.1016/j.ecolind.2014.02.028 |
[15] |
Jia X, Shao M, Zhu Y et al., 2017. Soil moisture decline due to afforestation across the Loess Plateau, China. Journal of Hydrology, 546: 113-122
doi: 10.1016/j.jhydrol.2017.01.011 |
[16] |
Jiang W, Yuan L, Wang W et al., 2015. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecological Indicators, 51: 117-126.
doi: 10.1016/j.ecolind.2014.07.031 |
[17] |
Karimi J D, Corstanje R, Harris J A, 2021. Bundling ecosystem services at a high resolution in the UK: Trade-offs and synergies in urban landscapes. Landscape Ecology, 36(6): 1817-1835.
doi: 10.1007/s10980-021-01252-4 |
[18] |
Li C, Zhang Y, Shen Y et al., 2020. Decadal water storage decrease driven by vegetation changes in the Yellow River Basin. Science Bulletin, 65(22): 1859-1861.
doi: 10.1016/j.scib.2020.07.020 pmid: 36738045 |
[19] |
Li Y, Piao S, Li Z et al., 2018. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Science Advances, 4(5): eaar4182.
doi: 10.1126/sciadv.aar4182 |
[20] |
Liang H, Xue Y, Li Z et al., 2018. Soil moisture decline following the plantation of Robinia pseudoacacia forests: Evidence from the Loess Plateau. Forest Ecology and Management, 412: 62-69.
doi: 10.1016/j.foreco.2018.01.041 |
[21] | Liang J, Li S, Li X et al., 2021. Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. Journal of Cleaner Production, 279: 12385. |
[22] |
Liu M, Min L, Zhao J et al., 2021. The impact of land use change on water-related ecosystem services in the Bashang area of Hebei province, China. Sustainability, 13(2): 716.
doi: 10.3390/su13020716 |
[23] | Ma Z G, Fu C B, Zhou T J et al., 2020. Status and ponder of climate and hydrology changes in the Yellow River Basin. Bulletin of Chinese Academy of Sciences, 35(1): 52-60. (in Chinese) |
[24] | Millennium Ecosystem Assessment MA, 2005. Millennium Ecosystem Assessment Synthesis Report. Island Press, Washington, D.C. |
[25] |
Ouyang Z, Zheng H, Xiao Y et al., 2016. Improvements in ecosystem services from investments in natural capital. Science, 352(6292): 1455-1459.
doi: 10.1126/science.aaf2295 pmid: 27313045 |
[26] |
Pei H, Liu M, Shen Y et al., 2022. Quantifying impacts of climate dynamics and land-use changes on water yield service in the agro-pastoral ecotone of northern China. Science of the Total Environment, 809: 151153.
doi: 10.1016/j.scitotenv.2021.151153 |
[27] |
Peng K, Jiang W, Deng Y et al., 2020. Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: A case study of Wuhan Urban Agglomeration. Ecological Indicators, 117: 106671.
doi: 10.1016/j.ecolind.2020.106671 |
[28] | Redhead J W, May L, Oliver T H et al., 2018. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Science of the Total Environment, 610-616: 666-677. |
[29] |
Sanchez-Canales M, Benito A L, Passuello A et al., 2012. Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Science of the Total Environment, 440: 140-153.
doi: 10.1016/j.scitotenv.2012.07.071 |
[30] |
Sandeep K, Ranjan P B, 2022. Hydroponic farming hotspot analysis using the Getis-Ord Gi* statistic and high-resolution satellite data of Majuli Island, India. Remote Sensing Letters, 12(4): 408-418.
doi: 10.1080/2150704X.2021.1895446 |
[31] | Sharp R, Tallis H T, Ricketts T et al., 2016. InVEST+VERSION+User’s Guide. Stanford: Stanford University Press. |
[32] |
Sun G, Zhou G, Zhang Z et al., 2006. Potential water yield reduction due to forestation across China. Journal of Hydrology, 328(3/4): 548-558.
doi: 10.1016/j.jhydrol.2005.12.013 |
[33] |
Wang H, Yang Z, Saito Y et al., 2006. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Global and Planetary Change, 50(3/4): 212-225.
doi: 10.1016/j.gloplacha.2006.01.005 |
[34] |
Wang S, Fu B, Piao S et al., 2016. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience, 9(1): 38-41.
doi: 10.1038/ngeo2602 |
[35] | Wang Y, Li X, Shi F et al., 2019. The Grain for Green project intensifies evapotranspiration in the revegetation area of the Loess Plateau in China. Chinese Science Bulletin, 64(5/6): 588-599. |
[36] | Wei P J, Wu M H, Jia Y L et al., 2022. Spatiotemporal variation of water yield in the upstream regions of the Shule River Basin using the InVEST model. Acta Ecologica Sinica, 42(15): 6418-6429. (in Chinese) |
[37] | Wischmeier W H, Johnson C B, Cross B V, 1971. A soil erodibility monograph for farmland construction sites. Journal of Soil and Water Conservation, 6(5): 189-193. |
[38] |
Yang D, Liu W, Tang Y et al., 2019. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landscape and Urban Planning, 182: 133-143.
doi: 10.1016/j.landurbplan.2018.10.011 |
[39] |
Yang J, Huang X, 2022. The 30 m annual land cover datasets and its dynamics in China from 1990 to 2021. Earth System Science Data, 13(8): 3907-3925.
doi: 10.5194/essd-13-3907-2021 |
[40] |
Yang J, Xie B, Zhang D et al., 2021. Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin, China. Environmental Earth Sciences, 80(3): 72.
doi: 10.1007/s12665-020-09277-9 |
[41] |
Yang P, Li R, Gu Z et al., 2022. Runoff sediment characteristics affected by erosive rainfall patterns in a small watershed in karst areas of Southwest China. Catena, 219: 106591.
doi: 10.1016/j.catena.2022.106591 |
[42] | Zhang B, Tian L, Yang Y et al., 2022. Revegetation does not decrease water yield in the Loess Plateau of China. Geophysical Research Letters, 49(9): e2022GL098025. |
[43] |
Zhang L, Dawes W R, Walker G R, 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37(3): 701-708.
doi: 10.1029/2000WR900325 |
[44] |
Zhao M, Geruo A, Zhang J et al., 2021. Ecological restoration impact on total terrestrial water storage. Nature Sustainability, 4(1): 56-62.
doi: 10.1038/s41893-020-00600-7 |
[45] | Zhao Y R, Zhou J J, Lei L et al., 2019. Identification of drivers for water yield in the upstream of Shiyang River based on InVEST model. Chinese Journal of Ecology, 38(12):3789-3799. (in Chinese) |
[46] |
Zhu W, Zhang J, Cui Y et al., 2020. Ecosystem carbon storage under different scenarios of land use change in Qihe catchment, China. Journal of Geographical Sciences, 30(9): 1507-1522.
doi: 10.1007/s11442-020-1796-6 |
[47] |
Zhuo L, Li M, Zhang G et al., 2022. Volume versus value of crop-related water footprints and virtual water flows: A case study for the Yellow River Basin. Journal of Hydrology, 608: 127674.
doi: 10.1016/j.jhydrol.2022.127674 |
[1] | MA Jiahao, WANG Xiaofeng, ZHOU Jitao, JIA Zixu, FENG Xiaoming, WANG Xiaoxue, ZHANG Xinrong, TU You, YAO Wenjie, SUN Zechong, HUANG Xiao. Exploring the response of ecosystem services to landscape change: A case study from eastern Qinghai province [J]. Journal of Geographical Sciences, 2023, 33(9): 1897-1920. |
[2] | SHAO Quanqin, LIU Shuchao, NING Jia, LIU Guobo, YANG Fan, ZHANG Xiongyi, NIU Linan, HUANG Haibo, FAN Jiangwen, LIU Jiyuan. Remote sensing assessment of the ecological benefits provided by national key ecological projects in China during 2000-2019 [J]. Journal of Geographical Sciences, 2023, 33(8): 1587-1613. |
[3] | LIU Zhitao, WANG Shaojian, FANG Chuanglin. Spatiotemporal evolution and influencing mechanism of ecosystem service value in the Guangdong-Hong Kong-Macao Greater Bay Area [J]. Journal of Geographical Sciences, 2023, 33(6): 1226-1244. |
[4] | ZUO Liyuan, JIANG Yuan, GAO Jiangbo, DU Fujun, ZHANG Yibo. Separating the effects of two dimensions on ecosystem services: Environmental variables and net trade-offs [J]. Journal of Geographical Sciences, 2023, 33(4): 845-862. |
[5] | SHAO Yajing, LIU Yansui, LI Yuheng, YUAN Xuefeng. Regional ecosystem services relationships and their potential driving factors in the Yellow River Basin, China [J]. Journal of Geographical Sciences, 2023, 33(4): 863-884. |
[6] | ZHANG Fan, XU Ning, WANG Chao, GUO Mingjing, Pankaj KUMAR. Multi-scale coupling analysis of urbanization and ecosystem services supply-demand budget in the Beijing-Tianjin-Hebei region, China [J]. Journal of Geographical Sciences, 2023, 33(2): 340-356. |
[7] | WANG Chao, WANG Xuan, WANG Yifan, ZHAN Jinyan, CHU Xi, TENG Yanmin, LIU Wei, WANG Huihui. Spatio-temporal analysis of human wellbeing and its coupling relationship with ecosystem services in Shandong province, China [J]. Journal of Geographical Sciences, 2023, 33(2): 392-412. |
[8] | NIU Jinye, JIN Gui, ZHANG Lei. Territorial spatial zoning based on suitability evaluation and its impact on ecosystem services in Ezhou city [J]. Journal of Geographical Sciences, 2023, 33(11): 2278-2294. |
[9] | LIU Yan, CHENG Yu, ZHENG Ruijing, ZHAO Huaxue, WANG Yaping. Impact of the producer services agglomeration on PM2.5: A case study of the Yellow River Basin, China [J]. Journal of Geographical Sciences, 2023, 33(11): 2295-2320. |
[10] | LIU Mengxue, GAO Ya, WEI Hejie, DONG Xiaobin, ZHAO Bingyu, WANG Xue-Chao, ZHANG Peng, LIU Ranran, ZOU Xinyu. Profoundly entwined ecosystem services, land-use change and human well-being into sustainability management in Yushu, Qinghai-Tibet Plateau [J]. Journal of Geographical Sciences, 2022, 32(9): 1745-1765. |
[11] | CHEN Wanxu, BIAN Jiaojiao, LIANG Jiale, PAN Sipei, ZENG Yuanyuan. Traffic accessibility and the coupling degree of ecosystem services supply and demand in the middle reaches of the Yangtze River urban agglomeration, China [J]. Journal of Geographical Sciences, 2022, 32(8): 1471-1492. |
[12] | NIU Linan, SHAO Quanqin, NING Jia, HUANG Haibo. Ecological changes and the tradeoff and synergy of ecosystem services in western China [J]. Journal of Geographical Sciences, 2022, 32(6): 1059-1075. |
[13] | ZHANG Jingjing, ZHU Wenbo, ZHU Lianqi, LI Yanhong. Multi-scale analysis of trade-off/synergistic effects of forest ecosystem services in the Funiu Mountain Region, China [J]. Journal of Geographical Sciences, 2022, 32(5): 981-999. |
[14] | ZHANG Haitao, LI Jialin, TIAN Peng, PU Ruiliang, CAO Luodan. Construction of ecological security patterns and ecological restoration zones in the city of Ningbo, China [J]. Journal of Geographical Sciences, 2022, 32(4): 663-681. |
[15] | GAO Jie, BIAN Hongyan, ZHU Chongjing, TANG Shuang. The response of key ecosystem services to land use and climate change in Chongqing: Time, space, and altitude [J]. Journal of Geographical Sciences, 2022, 32(2): 317-332. |
|