Journal of Geographical Sciences ›› 2023, Vol. 33 ›› Issue (8): 1747-1764.doi: 10.1007/s11442-023-2151-5
• Special Issue: Human-environment interactions and Ecosystems • Previous Articles
CHEN Xin1(), CAI Anning2,*(
), GUO Renjie1, LIANG Chuanzhuang3, LI Yingying1
Received:
2022-10-12
Accepted:
2023-04-11
Online:
2023-08-25
Published:
2023-08-29
Contact:
* Cai Anning (1973-), PhD and Professor, specialized in urban and regional development. E-mail: About author:
Chen Xin (1996-), PhD, specialized in ecological climatology. E-mail: xin.chen19960607@gmail.com
Supported by:
CHEN Xin, CAI Anning, GUO Renjie, LIANG Chuanzhuang, LI Yingying. Variation of gross primary productivity dominated by leaf area index in significantly greening area[J].Journal of Geographical Sciences, 2023, 33(8): 1747-1764.
Figure 2
The spatial distribution and seasonal variation in LAI in the Yangtze River Delta from 2001 to 2020. a and b represent the multiyear mean and trend of LAI, c and d represent the LAI seasonal variation in cropland and natural vegetation, the blue line is the mean from 2001 to 2020, and the gray area is the standard deviation.
Figure 4
Spatial distribution and seasonal variation in GPP simulated by BEPS and the Revised-EC-LUE model in the Yangtze River Delta. a-d represent the multiyear mean, trend, and seasonal variation in GPP of cropland and natural vegetation simulated by BEPS from 2001 to 2020, e-h represent the multiyear mean, trend, and seasonal variation in GPP of cropland and natural vegetation simulated by the Revised-EC-LUE model from 2001 to 2020, the blue line is the mean from 2001 to 2020, and the gray area is the standard deviation.
Figure 7
The spatial distribution and seasonal variation in GPP simulated by 7 DGVMs in the Yangtze River Delta. a and b represent the multiyear mean and trend of GPP; c and d represent the seasonal variation in GPP of cropland and natural vegetation, the blue line is the mean from 2001 to 2019, and the gray area is the standard deviation. 1-7 are GLM5.0, ISAM, ISBA-CTRIP, JULES-ES, LPJ-LUESS, ORCHIDEEv3, and SDGVM, respectively.
Table 1
Multiyear mean and trend of GPP in the Yangtze River Delta simulated by 7 DGVMs (gC m-2 yr-1 for average and gC m-2 yr-2 for trend)
Study area | Cropland | Natural vegetation | ||||
---|---|---|---|---|---|---|
Average | Trend | Average | Trend | Average | Trend | |
CLM5.0 | 1.48×103 | 4.71* | 1.3×103 | 4.32* | 1.7×103 | 5.25* |
ISAM | 1.25×103 | 1.85* | 1.09×103 | 0.89 | 1.5×103 | 3.6* |
ISBA-CTRIP | 1.79×103 | 13.37* | 1.69×103 | 13.13 | 1.88×103 | 12.74* |
JULES-ES | 1.87×103 | 6.87* | 1.61×103 | 6.15 | 2.19×103 | 7.68* |
LPJ-GUESS | 1.51×103 | 11.05* | 1.36×103 | 13.61* | 1.73×103 | 8.49* |
ORCHIDEEv3 | 2.76×103 | 33.78* | 2.85×103 | 37.18* | 2.74×103 | 30.43* |
SDGVM | 1.32×103 | 1.62 | 1.23×103 | 1.04* | 1.47×103 | 2.73 |
Table 2
The trend of GPP simulated by the 7 DGVMs under different simulation scenarios and the response of GPP to different variables in the Yangtze River Delta (Tg C yr-1)
S0 | S1 | S2 | S3 | CO2 | Climate | LUCC | |
---|---|---|---|---|---|---|---|
CLM5.0 | 0 | 1.91* | 1.98* | 1.64* | 1.91 | 0.07 | -0.35 |
ISAM | -0.19 | 1.57* | 1.53* | 0.64* | 1.77* | -0.05 | -0.88* |
ISBA-CTRIP | -0.37 | 1.59 | 3.73 | 4.65* | 1.97* | 2.14 | 0.92* |
JULES-ES | -0.38 | 1.72 | 1.84 | 2.39* | 2.1* | 0.12 | 0.54 |
LPJ-GUESS | -0.07 | 1.94* | 2.03* | 3.84* | 2.01* | 0.09 | 1.81* |
ORCHIDEEv3 | -0.19 | 3* | 4.68* | 11.75* | 3.19* | 1.68* | 7.06* |
SDGVM | -0.92* | 0.23 | 2.27* | 0.56 | 1.15* | 2.04* | -1.7* |
Figure S1
Spatial distribution and seasonal variation in CSIF and GOSIF. a-d represent the multiyear mean, trend, and seasonal variation in cropland and natural vegetation of CSIF from 2001 to 2020, e-h represent the multiyear mean, trend, seasonal variation in cropland and natural vegetation of GOSIF from 2001 to 2020, the blue line is the mean from 2001 to 2020, and the gray area is the standard deviation.
Figure S5
The spatial distribution and seasonal variation in LAI simulated by 7 DGVMs in the Yangtze River Delta. a and b represent the multiyear mean and trend of LAI, c and d represent the seasonal variation in LAI of cropland and natural vegetation, the blue line is the mean from 2001 to 2019, and the gray area is the standard deviation. 1-7 are GLM5.0, ISAM, ISBA-CTRIP, JULES-ES, LPJ-LUESS, ORCHIDEEv3, and SDGVM, respectively.
Table S1
Multiyear mean and trend of LAI simulated by 7 DGVMs in the Yangtze River Delta (m2 m-2 for average and m2 m-2 yr-1 for trend)
Study area | Cropland | Natural vegetation | ||||
---|---|---|---|---|---|---|
Average | Trend | Average | Trend | Average | Trend | |
CLM5.0 | 2.76 | 7.92×10-3* | 2.02 | 4.4×10-3 | 3.65 | 12.19×10-3* |
ISAM | 1.62 | -2.6×10-3 | 1.09 | -2.7×10-3 | 2.3 | -1.37×10-3 |
ISBA-CTRIP | 2.46 | 13.45×10-3 | 2.39 | 14.47×10-3 | 2.5 | 11.15×10-3 |
JULES-ES | 2.89 | 3.2×10-3* | 2.42 | 3.76×10-3* | 3.48 | 2.6×10-3* |
LPJ-GUESS | 2.63 | 16.53×10-3* | 2.41 | 21.39×10-3* | 2.96 | 11.22×10-3* |
ORCHIDEEv3 | 3.49 | 36.34×10-3* | 3.63 | 43.04×10-3* | 3.45 | 29.52×10-3* |
SDGVM | 3.1 | -3.12×10-3 | 2.36 | -2.85×10-3 | 4.1 | -2.88×10-3 |
[1] |
Ainsworth E A, Rogers A, 2007. The response of photosynthesis and stomatal conductance to rising CO2: Mechanisms and environmental interactions. Plant Cell and Environment, 30(3): 258-270.
doi: 10.1111/j.1365-3040.2007.01641.x |
[2] |
Badgley G, Anderegg L D L, Berry J A et al., 2019. Terrestrial gross primary production: Using NIRV to scale from site to globe. Global Change Biology, 25(11): 3731-3740.
doi: 10.1111/gcb.v25.11 |
[3] |
Badgley G, Field C B, Berry J A, 2017. Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances, 3(3): e1602244.
doi: 10.1126/sciadv.1602244 |
[4] |
Bell B, Hersbach H, Simmons A et al., 2021. The ERA5 global reanalysis: Preliminary extension to 1950. Quarterly Journal of the Royal Meteorological Society, 147(741): 4186-4227.
doi: 10.1002/qj.v147.741 |
[5] |
Chen C, Park T, Wang X et al., 2019a. China and India lead in greening of the world through land-use management. Nature Sustainability, 2(2): 122-129.
doi: 10.1038/s41893-019-0220-7 |
[6] |
Chen J M, Ju W, Ciais P et al., 2019b. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nature Communications, 10(1): 4259.
doi: 10.1038/s41467-019-12257-8 |
[7] | Chen J M, Liu J, Cihlar J et al., 1999. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecological Modelling, 124(2/3): 99-119. |
[8] | Chen J M, Mo G, Pisek J et al., 2012. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Global Biogeochemical Cycles, 26(1): GB1019. |
[9] | Chen T, Dolman H, Sun Z et al., 2022a. Land management explains the contrasting greening pattern across China-Russia border based on paired land use experiment approach. Journal of Geophysical Research: Biogeosciences, 127(6): e2021JG006659. |
[10] |
Chen T, Guo R, Yan Q et al., 2022b. Land management contributes significantly to observed vegetation browning in Syria during 2001-2018. Biogeosciences, 19(5): 1515-1525.
doi: 10.5194/bg-19-1515-2022 |
[11] | Chen X, Chen T, Shu Y et al., 2021. A framework to assess the potential uncertainties of three FPAR products. Journal of Geophysical Research: Biogeosciences, 126(10): e2021JG006320. |
[12] | Chu H, Luo X, Ouyang Z et al., 2021. Representativeness of eddy-covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 301: 108350. |
[13] | Delire C, Seferian R, Decharme B et al., 2020. The global land carbon cycle simulated with ISBA-CTRIP: Improvements over the last decade. Journal of Advances in Modeling Earth Systems, 12(9): e2019MS001886. |
[14] | Ding Z, Peng J, Qiu S et al., 2020. Nearly half of global vegetated area experienced inconsistent vegetation growth in terms of greenness, cover, and productivity. Earths Future, 8(10): e2020EF001618. |
[15] |
Farquhar G D, von Caemmerer S, Berry J A, 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1): 78-90.
doi: 10.1007/BF00386231 pmid: 24306196 |
[16] |
Feng X, Liu G, Chen J M et al., 2007. Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. Journal of Environmental Management, 85(3): 563-573.
pmid: 17234327 |
[17] |
Fleischer K, Rammig A, De Kauwe M G et al., 2019. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience, 12(9): 736.
doi: 10.1038/s41561-019-0404-9 |
[18] |
Friedlingstein P, O’Sullivan M, Jones M W et al., 2020. Global Carbon Budget 2020. Earth System Science Data, 12(4): 3269-3340.
doi: 10.5194/essd-12-3269-2020 |
[19] |
He L, Chen J M, Croft H et al., 2017. Nitrogen availability dampens the positive impacts of CO2 fertilization on terrestrial ecosystem carbon and water cycles. Geophysical Research Letters, 44(22): 11590-11600.
doi: 10.1002/grl.v44.22 |
[20] |
Houghton R A, 2020. Terrestrial fluxes of carbon in GCP carbon budgets. Global Change Biology, 26(5): 3006-3014.
doi: 10.1111/gcb.15050 pmid: 32100912 |
[21] |
Jung M, Schwalm C, Migliavacca M et al., 2020. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences, 17(5): 1343-1365.
doi: 10.5194/bg-17-1343-2020 |
[22] |
Keenan T F, Williams C A, 2018. The terrestrial carbon sink. Annual Review of Environment and Resources, 43: 219-243.
doi: 10.1146/energy.2018.43.issue-1 |
[23] |
Lawrence D M, Fisher R A, Koven C D et al., 2019. The community land model Version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11(12): 4245-4287.
doi: 10.1029/2018MS001583 |
[24] | Leuning R, Kelliher F M, De Pury D G G et al., 1995. Leaf nitrogen, photosynthesis, conductance and transpiration: Scaling from leaves to canopies. Plant, Cell & Environment, 18(10): 1183-1200. |
[25] |
Li X, Xiao J, 2019. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sensing, 11(5): 517.
doi: 10.3390/rs11050517 |
[26] |
Ma H, Liang S, 2022. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sensing of Environment, 273: 112985.
doi: 10.1016/j.rse.2022.112985 |
[27] |
Medlyn B E, Zaehle S, De Kauwe M G et al., 2015. Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5(6): 528-534.
doi: 10.1038/nclimate2621 |
[28] |
Meiyappan P, Jain A K, House J I, 2015. Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change. Global Biogeochemical Cycles, 29(9): 1524-1548.
doi: 10.1002/gbc.v29.9 |
[29] |
Mengistu A G, Tsidu G M, Koren G et al., 2021. Sun-induced fluorescence and near-infrared reflectance of vegetation track the seasonal dynamics of gross primary production over Africa. Biogeosciences, 18(9): 2843-2857.
doi: 10.5194/bg-18-2843-2021 |
[30] | Murray-Tortarolo G, Poulter B, Vargas R et al., 2022. A process-model perspective on recent changes in the carbon cycle of North America. Journal of Geophysical Research: Biogeosciences, 127(9) e2022JG006904. |
[31] |
Pei Y, Dong J, Zhang Y et al., 2022. Evolution of light use efficiency models: Improvement, uncertainties, and implications. Agricultural and Forest Meteorology, 317: 108905.
doi: 10.1016/j.agrformet.2022.108905 |
[32] |
Piao S, Wang X, Wang K et al., 2020. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Global Change Biology, 26(1): 300-318.
doi: 10.1111/gcb.14884 pmid: 31670435 |
[33] |
Restrepo-Coupe N, Levine N M, Christoffersen B O et al., 2017. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. Global Change Biology, 23(1): 191-208.
doi: 10.1111/gcb.13442 pmid: 27436068 |
[34] | Seiler C, Melton J R, Arora V K et al., 2022. Are terrestrial biosphere models fit for simulating the global land carbon sink? Journal of Advances in Modeling Earth Systems, 14(5): e2021MS002946. |
[35] |
Sellar A A, Jones C G, Mulcahy J P et al., 2019. UKESM1: Description and evaluation of the UK earth system model. Journal of Advances in Modeling Earth Systems, 11(12): 4513-4558.
doi: 10.1029/2019MS001739 |
[36] |
Smith B, Warlind D, Arneth A et al., 2014. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences, 11(7): 2027-2054.
doi: 10.5194/bg-11-2027-2014 |
[37] | Sprintsin M, Chen J M, Desai A et al., 2012. Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America. Journal of Geophysical Research: Biogeosciences, 117(G1): G01023. |
[38] |
Sun Z, Wang X, Zhang X et al., 2019. Evaluating and comparing remote sensing terrestrial GPP models for their response to climate variability and CO2 trends. Science of the Total Environment, 668: 696-713.
doi: 10.1016/j.scitotenv.2019.03.025 |
[39] |
von Caemmerer S, Farquhar G D, 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153(4): 376-387.
doi: 10.1007/BF00384257 pmid: 24276943 |
[40] |
Vuichard N, Messina P, Luyssaert S et al., 2019. Accounting for carbon and nitrogen interactions in the global terrestrial ecosystem model ORCHIDEE (trunk version, rev 4999): Multi-scale evaluation of gross primary production. Geoscientific Model Development, 12(11): 4751-4779.
doi: 10.5194/gmd-12-4751-2019 |
[41] |
Walker A P, De Kauwe M G, Bastos A et al., 2021. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist, 229(5): 2413-2445.
doi: 10.1111/nph.v229.5 |
[42] |
Walker A P, Quaife T, van Bodegom P M et al., 2017. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (V-cmax) on global gross primary production. New Phytologist, 215(4): 1370-1386.
doi: 10.1111/nph.2017.215.issue-4 |
[43] |
Wang S, Zhang Y, Ju W et al., 2020. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 370(6522): 1295.
doi: 10.1126/science.abb7772 |
[44] |
Wang Z, Liu S, Wang Y-P et al., 2021. Tighten the bolts and nuts on GPP estimations from sites to the globe: An assessment of remote sensing based LUE models and supporting data fields. Remote Sensing, 13(2): 168.
doi: 10.3390/rs13020168 |
[45] |
Yu Z, Ciais P, Piao S et al., 2022. Forest expansion dominates China’s land carbon sink since 1980. Nature Communications, 13(1): 5374.
doi: 10.1038/s41467-022-32961-2 |
[46] | Yuan W, Cai W, Xia J et al., 2014. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the La Thuile database. Agricultural and Forest Meteorology, 192: 108-120. |
[47] |
Yuan W, Zheng Y, Piao S et al., 2019. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 5(8): eaax1396.
doi: 10.1126/sciadv.aax1396 |
[48] |
Yue X, Unger N, 2015. The Yale Interactive terrestrial Biosphere model version 1.0: Description, evaluation and implementation into NASA GISS ModelE2. Geoscientific Model Development, 8(8): 2399-2417.
doi: 10.5194/gmd-8-2399-2015 |
[49] |
Zhang Y, Joiner J, Alemohammad S H et al., 2018. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences, 15(19): 5779-5800.
doi: 10.5194/bg-15-5779-2018 |
[50] |
Zhao M, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994): 940-943.
doi: 10.1126/science.1192666 pmid: 20724633 |
[51] |
Zheng Y, Shen R, Wang Y et al., 2020. Improved estimate of global gross primary production for reproducing its long-term variation, 1982-2017. Earth System Science Data, 12(4): 2725-2746.
doi: 10.5194/essd-12-2725-2020 |
[52] |
Zheng Y, Zhang L, Xiao J et al., 2018. Sources of uncertainty in gross primary productivity simulated by light use efficiency models: Model structure, parameters, input data, and spatial resolution. Agricultural and Forest Meteorology, 263: 242-257.
doi: 10.1016/j.agrformet.2018.08.003 |
[53] |
Zhou S, Chen T, Zeng N et al., 2022. The impact of cropland abandonment of post-Soviet countries on the terrestrial carbon cycle based on optimizing the cropland distribution map. Biology, 11(5): 620.
doi: 10.3390/biology11050620 |
[54] |
Zhu Z, Piao S, Myneni R B et al., 2016. Greening of the Earth and its drivers. Nature Climate Change, 6(8): 791-795.
doi: 10.1038/NCLIMATE3004 |
[1] | MEI Li, TONG Siqin, YIN Shan, BAO Yuhai, HUANG Xiaojun, ALATENG Tuya, WANG Yongfang, GUO Enliang, YUAN Zhihui, NASHUN Dalai, GAO Suriguga, LIU Xinyi, YE Zhigang. Spatiotemporal variations of water use efficiency and its driving factors in Inner Mongolia from 2001 to 2020 [J]. Journal of Geographical Sciences, 2023, 33(1): 169-194. |
[2] | ZHOU Kan, YIN Yue, CHEN Yufan. Drivers of water pollutant discharge in urban agglomerations and their scale effects: Empirical analysis of 305 counties in the Yangtze River Delta [J]. Journal of Geographical Sciences, 2023, 33(1): 195-214. |
[3] | YANG Qingke, WANG Lei, LI Yongle, FAN Yeting, LIU Chao. Urban land development intensity: New evidence behind economic transition in the Yangtze River Delta, China [J]. Journal of Geographical Sciences, 2022, 32(12): 2453-2474. |
[4] | Mei HUANG, Man HAO, Shaoqiang WANG, Li DAN, Fengxue GU, Zhaosheng WANG, He GONG. Links between Western Pacific Subtropical High and vegetation growth in China [J]. Journal of Geographical Sciences, 2018, 28(1): 3-14. |
[5] | Longfei HAN, Chaogui LEI, Liu YANG, Xiaojun DENG, Chunsheng HU, Guanglai XU. Degrading river network due to urbanization in Yangtze River Delta [J]. Journal of Geographical Sciences, 2016, 26(6): 694-706. |
[6] | Zhenbo WANG, Chuanglin FANG, Xiaorui ZHANG. Spatial expansion and potential of construction land use in the Yangtze River Delta [J]. Journal of Geographical Sciences, 2015, 25(7): 851-864. |
[7] | Miaoxi ZHAO, Kang WU, Xingjian LIU, Derudder BEN. A novel method for approximating intercity networks: An empirical comparison for validating the city networks in two Chinese city-regions [J]. Journal of Geographical Sciences, 2015, 25(3): 337-354. |
[8] | ZHENG Jingyun, ZHONG Shuying, GE Quansheng, HAO Zhixin, ZHANG Xuezhen, MA Xiang. Changes of spring phenodates for the past 150 years over the Yangtze River Delta [J]. Journal of Geographical Sciences, 2013, 23(1): 31-44. |
[9] | WANG Zhenbo, FANG Chuanglin, CHENG Shaowen, WANG Jing. Evolution of coordination degree of eco-economic system and early-warning in the Yangtze River Delta [J]. Journal of Geographical Sciences, 2013, 23(1): 147-162. |
[10] | ZHANG Xiangping, YE Yu, FANG Xiuqi. Reconstruction of typhoons in the Yangtze River Delta during 1644-1949AD based on historical chorographies [J]. Journal of Geographical Sciences, 2012, 22(5): 810-824. |
[11] | WANG Jing, FANG Chuanglin, WANG Zhenbo. Advantages and dynamics of urban agglomeration development on Yangtze River Delta [J]. Journal of Geographical Sciences, 2012, 22(3): 521-534 . |
[12] | LIU Siliang, LIU Ronggao, LIU Yang. Spatial and temporal variation of global LAI during 1981–2006 [J]. Journal of Geographical Sciences, 2010, 20(3): 323-332. |
[13] | DU Yin, XIE Zhiqing, ZENG Yan, SHI Yafeng, WU Jingang. Impact of urban expansion on regional tempera-ture change in the Yangtze River Delta [J]. Journal of Geographical Sciences, 2007, 17(4): 387-398. |
[14] | ZHANG Li, LU Yuqi. Regional accessibility of land traffic network in the Yangtze River Delta [J]. Journal of Geographical Sciences, 2007, 17(3): 351-364. |
[15] | JIANG Jianjun, CHEN Suozhong, CAO Shunxian, WU Hongan, ZHANG Li, ZHANG Hailong. Leaf area index retrieval based on canopy reflectance and vegetation index in eastern China [J]. Journal of Geographical Sciences, 2005, 15(2): 247-254. |
|