Most Download

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All
  • Most Downloaded in Recent Month
  • Most Downloaded in Recent Year

Please wait a minute...
  • Select all
    |
  • Research Articles
    REN Yawen, YANG Yu, WANG Yun, LIU Yi
    Journal of Geographical Sciences. 2023, 33(6): 1141-1160. https://doi.org/10.1007/s11442-023-2123-9

    The semiconductor industry typifies the international division of labor and exhibits significant structural differences in global trade in key product segments. The evolution of cross-border trade flows and dependency relationships, as well as trade organization patterns of manufactured products, equipment and materials for manufacturing, are investigated by constructing a global semiconductor trade relationship matrix and using the Gini coefficient and trade dependency index. It was found that: (1) the global semiconductor trade is highly spatially unbalanced, with materials and equipment trade in particular highly concentrated in a few countries on both the supply and demand sides; (2) China has replaced the US as the largest global semiconductor trade player and has shaped the regionalized system of manufactured goods and materials trade with East and Southeast Asian economies, but its equipment trade is highly dependent on Europe and the US; (3) the semiconductor production model has promoted the regionalization of the east and southeast Asia region in the trade of manufactured products and materials, and developed economies such as the US, the EU, Japan, and South Korea have maintained their monopolistic advantage in the trade of semiconductor equipment by building exclusive innovation networks and establishing trade barriers. The monopolistic nature of the semiconductor equipment trade and the regionalization of manufactured goods and materials have formed the characteristics of the global semiconductor trade and are likely to be further strengthened in future trade.

  • Research Articles
    LIU Junjie, ZHANG Baiping, YAO Yonghui, ZHANG Xinghang, WANG Jing, YU Fuqin, LI Jiayu
    Journal of Geographical Sciences. 2023, 33(5): 907-923. https://doi.org/10.1007/s11442-023-2112-z

    Geographically, the Qinling-Daba Mountains serve as the main body of the north-south transitional zone of China. However, the transitional patterns of their plant species still need to be clarified. This study analyzed latitudinal variations of plant species richness, relative importance values (RIV), and plant species abundance based on plant community field survey data for 163 sample sites along three north-south transect lines in the eastern, middle, and western parts of the study areas. The difference in RIV between subtropical and temperate species (SND-RIV) was selected to reveal the latitudinal interlacing pattern of northern and southern plant species. Along the eastern (Sanmenxia-Yichang), middle (Xi’an-Dazhou), and western (Tianshui-Guangyuan) transects, the richness and RIV of subtropical plant species increased while those of temperate plant species decreased from north to south. In the eastern transect, temperate plant species richness and RIV were the highest at Shennongjia and Funiu Mountain, respectively, because of their high elevations. In the middle transect, subtropical plant species richness and RIV were the highest in the Daba Mountains. In the western transect, richness and RIV were higher for subtropical than temperate plant species from the south of Longnan. The crisscrossing areas of northern and southern plant species were ~180 km, ~100 km, and ~60 km wide for the eastern, middle, and western transects, respectively, showing a narrowing trend from east to west. For the eastern and western transects, decreases in subtropical plant species distribution from south to north could be attributed to a decrease in mean annual precipitation in the same direction. However, for the middle transect, mean annual temperature had a slightly greater influence on plant species’ latitudinal distribution than the moisture index. This study provides a more solid scientific basis for future investigations of this key geographical boundary in China.

  • Research Articles
    LIU Zhitao, WANG Shaojian, FANG Chuanglin
    Journal of Geographical Sciences. 2023, 33(6): 1226-1244. https://doi.org/10.1007/s11442-023-2127-5

    Ecosystem services are the media and channels through which ecological elements, structures, functions, and products benefit human society. Regulating the utilization intensity and protection methods of society on the ecosystem according to the ecosystem service value (ESV) and its influencing mechanism is of great significance for achieving the sustainable development goals. This paper takes the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) as the research object and describes the spatiotemporal evolution characteristics of ESV in the GBA from 2000 to 2015. Panel quantile regression is also implemented to increase the understanding of the influencing mechanism of ESV. The main results are as follows: (1) From 2000 to 2015, the total ESV declined with a decreasing rate. The areas of decline were mainly distributed in the central part of the GBA and areas along the Pearl River Estuary. (2) Elasticity index, indicating response of ESV to land use change, reached its peak (1.08). The spatial distribution of elasticity index showed that land use changes brought about more intense ESV variations at the junction of cities. (3) In areas with different ESV levels, the influencing factors have different effects. Land use integrity can only promote ecosystem service capabilities in low-ESV areas. The positive effect of temperature on ecosystem service capacity increases with the increase of ESV, which reflects the self-reinforcement of the ecosystem. Moreover, the negative effect of economic density on ecosystem service capacity decreases with the increase of ESV, which reflects the self-protection of the ecosystem. The combination of such self-reinforcement and self-protection will lead to an ESV gap between the high- and low-ESV areas, and induce the “natural Matthew effect.”

  • LIU Sheng, GE Jian, YE Xinyue, WU Chao, BAI Ming
    Journal of Geographical Sciences. 2023, 33(7): 1482-1504. https://doi.org/10.1007/s11442-023-2139-1

    The number of urban vitality assessment studies is rising continuously, owing to the emergence of geographic data. The current literature focuses primarily on evaluation, rather than implementation, of urban vitality. Hence, a scoping review and research agenda are needed for urban vitality research to be more practical. This study aims to fill the research gap by exploring the content and methods of vitality assessment that can make urban vitality research more compatible with policy, planning, and design practice. We chose the neighborhood scale, which is the most practical initiative unit for vitality enhancement. We discovered that the gaps between the current research and practice primarily lie in the diversity of research subjects, the authenticity and comprehensiveness of vitality measurement, and the multi-domain of impact factor analysis. On this basis, we classified the following expandable aspects: (1) multi-type, multi-dimensional, multi-temporal, and implementation-adaptive vitality evaluation; (2) methods reflecting high-quality social interactions and the perceptions of vulnerable groups; (3) how design and urban management impacts vitality; and (4) the synergistic effects of multiple indicators on vitality. Overall, the research content and methodology presented in this paper can help neighborhood-scale vitality assessment to provide more meaningful insights for policy makers and practitioners.

  • Research Articles
    LI Chuanhua, LIU Yunfan, ZHU Tongbin, ZHOU Min, DOU Tianbao, LIU Lihui, WU Xiaodong
    Journal of Geographical Sciences. 2023, 33(5): 961-979. https://doi.org/10.1007/s11442-023-2115-9

    Most terrestrial models synchronously calculate net primary productivity (NPP) using the input climate variable, without the consideration of time-lag effects, which may increase the uncertainty of NPP simulation. Based on Normalized Difference Vegetation Index (NDVI) and climate data, we used the time lag cross-correlation method to investigate the time-lag effects of temperature, precipitation, and solar radiation in different seasons on NDVI values. Then, we selected the Carnegie-Ames-Stanford approach (CASA) model to estimate the NPP of China from 2002 to 2017. The results showed that the response of vegetation growth to climate factors had an obvious lag effect, with the longest time lag in solar radiation and the shortest time lag in temperature. The time lag of vegetation to the climate variable showed great tempo-spatial heterogeneities among vegetation types, climate types, and vegetation growth periods. Based on the validation using eddy covariance data, the results showed that the simulation accuracy of the CASA model considering the time-lag effects was effectively improved. By considering the time-lag effects, the average total amount of NPP modeled by CASA during 2001-2017 in China was 3.977 PgC a-1, which is 11.37% higher than that of the original model. This study highlights the importance of considering the time lag for the simulation of vegetation growth, and provides a useful tool for the improvement of the vegetation productivity model.

  • Special Issue: Human-environment interactions and Ecosystems
    LI Yu, GAO Mingjun, ZHANG Zhansen, ZHANG Yuxin, PENG Simin
    Journal of Geographical Sciences. 2023, 33(8): 1569-1586. https://doi.org/10.1007/s11442-023-2143-5

    Spatial-temporal scales effects are general among human-nature interactions. However, the laws and mechanisms of the interaction between humans and the environment at different spatial-temporal scales remain to be identified. The Hexi Corridor in Northwest China is located in the eastern section of the Silk Road and is one of the world’s first long-distance cultural exchange centers. Here we present a comprehensive dataset of the Hexi Corridor, including changes in environments, population, wars, famines, settlements, and ancient oases from the Neolithic to the historic period. Results show that humans adapt to climate change on the millennium scale by choosing corresponding production methods. Environmental change, civilization evolution, and dynasty replacement interrelate on the decadal and centennial scales. Social crises are closely linked to extreme weather events on the interannual scale. On the basis of these results, we find similar time scale effects in the world’s major ancient civilizations. We do so by analyzing their processes of civilization evolution.

  • Research Articles
    CHEN Xiaoqiang, YUAN Lihua, SONG Changqing
    Journal of Geographical Sciences. 2023, 33(6): 1185-1204. https://doi.org/10.1007/s11442-023-2125-7

    The Regional Comprehensive Economic Partnership (RCEP) was formally signed by the Association of Southeast Asian Nations (ASEAN) countries, along with China, Japan, South Korea, Australia, and New Zealand. This was a significant step towards regional integration in the Asia-Pacific region. Analysing the trade structure among member states is crucial in understanding the path to regional integration and policy implications of regional cooperation within the RCEP framework. Based on subdivided commodity data, this study reviews the evolution of merchandise trade in the RCEP region in the past two decades. It investigates the current trade structure of the RCEP, emphasising the relative importance of intra-regional versus extra-regional interdependence and the trade asymmetry of the regional members. The results of the study are as follows: First, the overall extent of regional trade integration in the RCEP region increased modestly from 2001 to 2018, indicating that the RCEP region was export-oriented and there was significant room for further expansion of regional trade. Second, most of the commodities traded in the RCEP region demonstrated much higher extra-regional interdependence than intra-regional in 2018, particularly labor-, capital-, and technology-intensive products such as television and radio apparatus. Third, the trade networks of the top five traded commodities were distinguished by large economic asymmetries, with China, Japan, and South Korea being the dominant regional powers. These findings have significant implications for understanding how to promote regional integration and cooperation. Besides expanding intra-regional trade, outward-oriented factors influenced by the regional powers—including consolidating the global advantages of manufacturing, stabilizing supply chains by including large resource countries, and attracting extra-regional investments—were also the main rationales for the conclusion of the RCEP.

  • Research Articles
    LIU Wenhua, WANG Yizhuo, HUANG Jinku, ZHU Wenbin
    Journal of Geographical Sciences. 2023, 33(10): 1967-1988. https://doi.org/10.1007/s11442-023-2161-3

    Situated in the hinterland of Eurasia, Central Asia is characterized by an arid climate and sparse rainfall. The uneven spatial distribution of water and land resources across the region has pressured economic and social development. An accurate understanding of Central Asia's water resources carrying capacity (WRCC) is vital for enhancing the sustainability of water resources utilization and guiding regional economic and social activities. This study aims to facilitate the sustainability of water resources utilization by evaluating the region's WRCC from the viewpoints of economic and technological conditions and social welfare. A concise yet effective model with relatively fewer parameters was established by adopting water resources data from the Food and Agriculture Organization (FAO) and socioeconomic data from the World Bank. The results indicated that the WRCC of all five Central Asian countries showed an increasing trend with improved water use efficiency from 1995 to 2020. Kazakhstan's WRCC was significantly higher than the other four countries, reaching 54.03 million people in 2020. The water resources carrying index (WRCI) of the five Central Asian countries varied considerably, with the actual population sizes of Turkmenistan and Uzbekistan highly overloaded. Although there has been a decrease in Central Asian countries’ WRCI between 1995 and 2020, water resources utilization problems in the region remain prominent. Based on the water resources carrying capacity evaluation system, to increase available water resources and improve production water use efficiency are key to address these issues. In light of this, this study offers practical and feasible solutions at the policy level: (1) The implementation of signed multilateral agreements on transboundary water resources allocation must proceed through joint governmental efforts. (2) Investments in advancing science and technology need to be increased to improve water use efficiency in irrigation systems. (3) The output of water-intensive crops should be reduced. (4) The industrial structure could be further optimized so that non-agricultural uses are the primary drivers of gross domestic product (GDP) growth.

  • Special Issue: Human-environment interactions and Ecosystems
    WANG Yahui, YANG Aoxi, YANG Qingyuan, KONG Xiangbin, FAN Hui
    Journal of Geographical Sciences. 2023, 33(8): 1614-1630. https://doi.org/10.1007/s11442-023-2145-3

    In the context of social and economic transformation in rural China, ecosystem disservices have emerged frequently. This study reveals the spatiotemporal patterns, hazards and driving factors of wild boar damage from 2000 to 2021 by using the meta-analysis and collecting 733 typical human and wild boar conflicts. In this period, the number, spatial scope and hazard degree of wild boar damage incidents showed an increasing trend, and the number of provincial-level regions, prefecture-level cities and districts (counties) involved increased from 18, 41 and 67 to 25, 147 and 399, respectively. Wild boar damage incidents were concentrated in Chongqing municipality and central and western Hubei province before 2005, and then expanded to the Sichuan Basin, Loess Plateau, middle-lower reaches of Yangtze River and mountainous areas such as Changbai Mountains after 2015. The main manifestations were destroying crops, infringing poultry and causing casualties, especially the destruction of crops and farmland abandonment, accompanied by a rapid increase in casualties, accounting for 23.66% of the damage incidents. Meanwhile, the spreading trend and harmfulness of wild boar damage is a typical phenomenon of ecosystem disservices. The aggravation of this phenomenon is the result of ecological restoration, hunting ban policy, unclear boundary between agricultural land and ecological land, strong viability of wild boar and lack of natural enemies. This has posed an obvious threat to the use of abandoned farmland, the improvement of farmers’ livelihood and the maintenance of regional ecological security. It is urgent to formulate a policy of controlling the number of wild boars and establish a compensation mechanism for the loss by wild boars.

  • Research Articles
    SONG Weixuan, CAO Hui, TU Tangqi, SONG Zhengna, CHEN Peiyang, LIU Chunhui
    Journal of Geographical Sciences. 2023, 33(5): 1095-1112. https://doi.org/10.1007/s11442-023-2121-y

    As a type of urban gentrification oriented by high-quality educational resources, jiaoyufication is a socio-spatial process that refers to the middle-class group that attaches importance to education realizes the agglomeration in famous school districts by purchasing high-price school district houses. Based on the theoretical analysis of jiaoyufication conducted by Chinese and foreign scholars, this paper takes Nanjing as a case city, applies multi-source data like POIs (points of interest), real estate market data, mobile-phone user portraits and questionnaires, and develops a composite measurement of jiaoyufication to identify jiaoyufied school district, jiaoyufied group & its spatial characteristics, and discusses the causal mechanisms and effects of jiaoyufication. With the GIS-entropy-TOPSIS model, this paper evaluates the jiaoyufication level of public primary school districts in the main urban area of Nanjing. The result show that 218 primary school districts are categorized into four types, i.e., high jiaoyufied school district, mid-high jiaoyufied school district, medium jiaoyufied school district, and low jiaoyufied school district. The high jiaoyufied school districts are closely associated with the institutional system. In the high jiaoyufied school districts, many middle-class families have abundant social, economic, and cultural capital. They purchase and move to houses with lower living quality in school districts to pursue high-quality education for their children. The strict school district system, soaring school district housing prices, and intense educational competition continuously solidify the jiaoyufication levels of famous school districts and lock the opportunities for high-quality education in specific school-district spaces and classes or groups. The phenomenon of this socio-spatial reconstruction process, which results from the unequal distribution of high-quality educational resources, tends to aggravate the rich-poor gap and social segregation in cities. It is suggested that equalization of compulsory education services should be effectively carried forward as soon as possible.

  • Research Articles
    ZENG Sidong, LIU Xin, XIA Jun, DU Hong, CHEN Minghao, HUANG Renyong
    Journal of Geographical Sciences. 2023, 33(5): 999-1022. https://doi.org/10.1007/s11442-023-2117-7

    Understanding the hydrological effects of the Three Gorges Dam operation in the entire reservoir area is significant to achieving optimal dam regulation. In this paper, a large-scale coupled hydrological-hydrodynamic-dam operation model is developed to comprehensively evaluate the hydrological effects of the river-type Three Gorges Reservoir. The results show that the coupled model is effective for hydrological, hydrodynamic regime and hydropower simulations in the reservoir area. Dam operation could have a notable positive effect on flood control and could reduce the maximum daily flood peak by up to 26.2%. It also contributes a large amount of hydropower, approximately 94.27 TWh/year, and a water supply increase for the downstream area of up to 22% during the dry season. In the flood season, the water level at Cuntan would increase under the condition that the water level of the dam is higher than approximately 158 m due to dam operation. In the dry season, attention should be paid to the low flow velocity near the dam in the reservoir area.

  • Research Articles
    ZHANG Tao, ZUO Shuangying, YU Bo, ZHENG Kexun, CHEN Shiwan, HUANG Lin
    Journal of Geographical Sciences. 2023, 33(10): 2052-2076. https://doi.org/10.1007/s11442-023-2165-z

    Karst depressions are common negative topographic landforms formed by the intense dissolution of soluble rocks and are widely developed in Guizhou province. In this work, an inventory of karst depressions in Guizhou was established, and a total of approximately 256,400 karst depressions were extracted and found to be spatially clustered based on multidistance spatial cluster analysis with Ripley's K function. The kernel density (KD) can transform the position data of the depressions into a smooth trend surface, and five different depression concentration areas were established based on the KD values. The results indicated that the karst depressions are clustered and developed in the south and west of Guizhou, while some areas in the southeast, east and north have poorly developed or no clustering. Additionally, the random forest (RF) model was used to rank the importance of factors affecting the distribution of karst depressions, and the results showed that the influence of lithology on the spatial distribution of karst depressions is absolutely dominant, followed by that of fault tectonics and hydrological conditions. The research results will contribute to the resource investigation of karst depressions and provide theoretical support for resource evaluation and sustainable utilization.

  • Research Articles
    PAN Tao, KUANG Wenhui, SHAO Hua, ZHANG Chi, WANG Xiaoyu, WANG Xinqing
    Journal of Geographical Sciences. 2023, 33(7): 1419-1441. https://doi.org/10.1007/s11442-023-2136-4

    Rapid urbanization has occurred in arid/semiarid China, threatening the sustainability of fragile dryland ecosystems; however, our knowledge of natural environmental constraints on multiscale urban lands in this region is still lacking. To solve this issue, this study retrieved 15-m multiscale urban lands. Results indicated that urban area increased by 68% during 2000-2018, and one-third of the increase was contributed by only three large cities. The coverage of impervious surface area (ISA) and vegetated area (VA) increased by 16.6% and 1.38%, respectively. Such land-cover change may be helpful in suppressing wind erosion and sand storms. We also found that the newly urban lands had relatively lower ISA and higher VA than the old urban lands, indicating an improved human settlement environment. Strong environmental constraints on urban expansion were identified, with cities in oasis urban environments (OUEs) that had water supply expanding 150% faster than cities in desert urban environments (DUEs). Urban development was also constrained by terrain, with 73% of the ISA expansion occurring in relatively flat areas. Overall, the aggregated pattern of urbanization and the increase in ISA and VA in the newly urbanized lands have improved water-use efficiency and ecological services and benefited desert ecosystem protection in arid/semiarid China.

  • Special Issue: Human-environment interactions and Ecosystems
    WEN Xinyuan, LIU Dianfeng, QIU Mingli, WANG Yinjie, NIU Jiqiang, LIU Yaolin
    Journal of Geographical Sciences. 2023, 33(8): 1725-1746. https://doi.org/10.1007/s11442-023-2150-6

    Yield forecasting can give early warning of food risks and provide solid support for food security planning. Climate change and land use change have direct influence on regional yield and planting area of maize, but few studies have examined their synergistic impact on maize production. In this study, we propose an analysis framework based on the integration of system dynamic (SD), future land use simulation (FLUS) and a statistical crop model to predict future maize yield variation in response to climate change and land use change in a phaeozem region of central Jilin province, China. The results show that the cultivated land is likely to reduce by 862.84 km2 from 2030 to 2050. Nevertheless, the total maize yield is expected to increase under all four RCP scenarios due to the promotion of per hectare maize yield. Among the scenarios, RCP4.5 is the most beneficial to maize production, with a doubled total yield in 2050. Notably, the yield gap between different counties will be further widened, which necessitates the differentiated policies of agricultural production and farmland protection, e.g., strengthening cultivated land protection and crop management in low-yield areas, and taking adaptation and mitigation measures to coordinate climate change and production.

  • CHEN Wanxu, PAN Sipei, YE Xinyue
    Journal of Geographical Sciences. 2023, 33(7): 1527-1552. https://doi.org/10.1007/s11442-023-2141-7

    Under the framework of ecological civilisation, the formulation of territorial spatial planning (TSP) and improvement of spatial governance systems are of great practical significance. Since the founding of the People’s Republic of China, land-use planning (LUP) has experienced profound changes, and tremendous research efforts have been made in that field. However, systematic studies on LUP history are scarce. To bridge the existing gap, this study traced back to the emergence of LUP, described its practice stages, and analysed the evolution of its classification system and methods. Further, the three rounds of general LUP practice and the current TSP over the past 40 years of the reform and opening-up have been discussed. The evolution of LUP was found to be closely related to economic development and could be broadly divided into four stages. The development of land-use classification in China has been slow and can be divided into five stages according to the evolution of the land classification system and important historical events. The development of LUP methods can be divided into two stages, before and after 1978. Since the economic reform, China has successively conducted three rounds of general LUP under different institutional and policy backgrounds. Future development should aim to innovate the theories and methods of TSP with Chinese characteristics and promote the study of village planning and the construction of TSP systems to achieve rural revitalisation and ecological civilisation.

  • Special Issue: Human-environment interactions and Ecosystems
    SHAO Quanqin, LIU Shuchao, NING Jia, LIU Guobo, YANG Fan, ZHANG Xiongyi, NIU Linan, HUANG Haibo, FAN Jiangwen, LIU Jiyuan
    Journal of Geographical Sciences. 2023, 33(8): 1587-1613. https://doi.org/10.1007/s11442-023-2144-4

    We propose a theoretical framework for assessing the ecological benefits provided by key national ecological projects in China over the past 20 years. A dataset consisting of six primary indicators and nine secondary indicators of ecosystem structure, ecosystem quality, and ecosystem services for 2000-2019 was generated using ground survey and remote sensing data. Ecological benefits were quantitatively evaluated following the implementation of these projects in China. Areas with medium, relatively high, and high degrees of ecological restoration accounted for 24.1%, 11.9%, and 1.7% of the national land, respectively. Degrees of ecological restoration were higher in areas with greater numbers of ecological projects. Areas with relatively and absolutely high degrees of ecological restoration were mainly concentrated in the Loess Plateau, the farming-pastoral zone of northern China, the Northeast China Plain, and an area spanning the borders of Sichuan, Yunnan, Guizhou, Chongqing, and Hunan. The relative contributions of climatic factors and ecological projects to changes in vegetation net primary productivity were 85.4% and 14.6%, respectively, and the relative contributions of climatic factors and ecological projects to changes in water erosion modulus were 69.5% and 30.5%, respectively. The restoration potential of national vegetation coverage was 20%, and the restoration potential percentage of forest and grassland vegetation coverage was 6.4% and 23%, respectively. Climatic conditions can inhibit ecological restoration. Areas with relatively high and high degrees of ecological restoration were mainly distributed in areas with an average annual temperature greater than 0°C and annual precipitation greater than 300 mm. Therefore, the limitations associated with climate conditions require consideration during the implementation of national ecological projects. The implementation of combined measures should be emphasized, and the benefits of ecological investment funds should be maximized.

  • Research Articles
    ZHANG Feng, WANG Jiao, MA Li, Dilibaier TUERSUN
    Journal of Geographical Sciences. 2023, 33(5): 945-960. https://doi.org/10.1007/s11442-023-2114-x

    The impacts of climate change on the relationship between fluvial processes and dune landform evolution have been studied. However, the chronology data used to examine this relationship are deficient. The Keriya River has a glacial origin in the Kunlun Mountains on the south margin of the Tarim Basin. The river flows into the Taklimakan Desert, the second largest shifting-dune desert in the world. The dry channels and shifting dunes in this area provide an ideal opportunity to investigate fluvial and aeolian landform evolution processes and their relationship with climate change. We investigated this area during 2008-2011 and obtained 18 fluvial sediment samples from 16 sections for optically stimulated luminescence (OSL) dating. The results show that the ages ranged from 3.4-44.1 ka. Most of the samples (13) were Holocene in age, around 11 ka, 8-9 ka, 5-6.5 ka, 4.6 ka, and 3.4-3.7 ka and were distributed along ancient river channels around sites of Yuansha and Karadun. Two samples close to the Hotan River (38-47 ka) fall within the Marine Isotope Stage 3 (MIS3). Three samples (from one section) were located near ancient channels flowing towards the Yuansha Site and had ages of around 14.5 ka, i.e., during the Last Glacial Maximum (LGM). The analyses of the sediment samples and OSL ages suggest that the Keriya River flooded in the Holocene, the LGM, and MIS3. Fluvial sediments provided the source material for the dunes, and fluvial processes affected the landform evolution in the lower Keriya River. Our results suggest that most of the dunes covered in fluvial sediments in the lower reaches and the area west of the Keriya River developed since the Holocene. This differs from the results of previous studies, which suggested that they developed since the Han (202BC-220AD) and Tang (618-907AD) dynasties. The OSL ages of the fluvial sediments are consistent with the reported deglaciation (after glacial advance) ages in the alpine mountains surrounding the Tarim Basin. This suggests that climate fluctuations may have affected the occurrence of floods and the formation of dunes in the Taklimakan Desert.

  • Research Articles
    LENG Jing, GAO Mingliang, GONG Huili, CHEN Beibei, ZHOU Chaofan, SHI Min, CHEN Zheng, LI Xiang
    Journal of Geographical Sciences. 2023, 33(10): 2131-2156. https://doi.org/10.1007/s11442-023-2169-8

    Land subsidence is a geohazard phenomenon caused by the lowering of land elevation due to the compression of the sinking land soil body, thus creating an excessive constraint on the safe construction and sustainable development of cities. The use of accurate and efficient means for land subsidence prediction is of remarkable importance for preventing land subsidence and ensuring urban safety. Although the current time-series prediction method can accomplish relatively high accuracy, the predicted settlement points are independent of each other, and the existence of spatial dependence in the data itself is lost. In order to unlock this problem, a spatial convolutional long short-term memory neural network (ConvLSTM) based on the spatio-temporal prediction method for land subsidence is constructed. To this end, a cloud platform is employed to obtain a long time series deformation dataset from May 2017 to November 2021 in the understudied area. A convolutional structure to extract spatial features is utilized in the proposed model, and an LSTM structure is linked to the model for time-series prediction to achieve unified modeling of temporal and spatial correlation, thereby rationally predicting the land subsidence progress trend and distribution. The experimental results reveal that the prediction results of the ConvLSTM model are more accurate than those of the LSTM in about 62% of the understudied area, and the overall mean absolute error (MAE) is reduced by about 7%. The achieved results exhibit better prediction in the subsidence center region, and the spatial distribution characteristics of the subsidence data are effectively captured. The present prediction results are more consistent with the distribution of real subsidence and could provide more accurate and reasonable scientific references for subsidence prevention and control in the Beijing-Tianjin-Hebei region.

  • Research Articles
    MA Dujuan, WU Xiaodan, WANG Jingping, MU Cuicui
    Journal of Geographical Sciences. 2023, 33(5): 924-944. https://doi.org/10.1007/s11442-023-2113-y

    The trend estimate of vegetation change is essential to understand the change rule of the ecosystem. Previous studies were mainly focused on quantifying trends or analyzing their spatial distribution characteristics. Nevertheless, the uncertainties of trend estimates caused by spatiotemporal scale effects have rarely been studied. In response to this challenge, this study aims to investigate spatiotemporal scale effects on trend estimates using Moderate-Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Gross Primary Productivity (GPP) products from 2001 to 2019 in the Qinghai-Tibet Plateau (QTP). Moreover, the possible influencing factors on spatiotemporal scale effect, including spatial heterogeneity, topography, and vegetation types, were explored. The results indicate that the spatial scale effect depends more on the dataset with a coarser spatial resolution, and temporal scale effects depend on the time span of datasets. Unexpectedly, the trend estimates on the 8-day and yearly scale are much closer than that on the monthly scale. In addition, in areas with low spatial heterogeneity, low topography variability, and sparse vegetation, the spatiotemporal scale effect can be ignored, and vice versa. The results in this study help deepen the consciousness and understanding of spatiotemporal scale effects on trend detection.

  • Research Articles
    DONG Shijie, XIN Liangjie, LI Shengfa, XIE Hualin, ZHAO Yuluan, WANG Xue, LI Xiubin, SONG Hengfei, LU Yahan
    Journal of Geographical Sciences. 2023, 33(7): 1361-1376. https://doi.org/10.1007/s11442-023-2133-7

    Driven by urbanization and industrialization, arable land in hilly and mountainous regions of China is gradually becoming marginalized, with the extent of arable land abandonment rapidly expanding from poor-quality sloping arable land to high-quality terraces. The abandonment of large-scale terraces will lead to a series of socio-economic and ecological effects. A national sample survey was used to investigate the extent and spatial distribution of terrace abandonment in China, and a total of 560 valid village questionnaires from 329 counties were collected in the mountainous areas of China. The main findings are as follows: (1) The phenomenon of terrace abandonment was widespread throughout the country, with 54% of the total surveyed villages exhibiting terrace abandonment, and the area of abandoned terraces accounting for 9.79% of the total. (2) The degree of terrace abandonment is high in the south and low in the north. The most serious region with abandonment was the hilly and mountainous areas in the south, especially in the middle and lower Yangtze River region. (3) The main driving factors of terrace abandonment were rural labor migration, agricultural mechanization level, irrigation conditions, and transportation conditions for cultivation. Targeted measures should be taken based on the specific conditions of each area to alleviate terrace abandonment. Measures such as improving terrace mechanization are universally applicable. Specifically, low-quality terraces can be withdrawn orderly, and for high-quality terraces, multiple measures are needed to consolidate agricultural production, such as adjusting the planting structure, strengthening agricultural infrastructure construction, and encouraging the transfer of land-use rights as well as large-scale operation.

  • Research Articles
    MA Jiahao, WANG Xiaofeng, ZHOU Jitao, JIA Zixu, FENG Xiaoming, WANG Xiaoxue, ZHANG Xinrong, TU You, YAO Wenjie, SUN Zechong, HUANG Xiao
    Journal of Geographical Sciences. 2023, 33(9): 1897-1920. https://doi.org/10.1007/s11442-023-2158-y

    The degradation of ecosystem structure and function on the Qinghai-Tibet Plateau is the result of a combination of natural and anthropogenic factors, with landscape change driven by global change and human activities being one of the major ecological challenges facing the region. This study analyzed the spatiotemporal characteristics of ecosystem services (ESs) and landscape patterns in eastern Qinghai province (EQHP) from 2000 to 2018 using multisource datasets and landscape indices. Three ecosystem service bundles (ESBs) were identified using the self-organizing map (SOM), and changes in ecosystem structure and function were analyzed through bundle-landscaped spatial combinations. The study also explored the interactions between ESs and natural and human factors using redundancy analysis (RDA). We revealed an increase in total ecosystem service in the EQHP from 1.59 in 2000 to 1.69 in 2018, with a significant change in landscape patterns driven by the conversion of unused land to grassland in the southwest. Forestland, grassland, and unused land were identified as important to the supply of ESs. In comparison to human activities, natural environmental factors were found to have a stronger impact on changes in ESs, with vegetation, meteorology, soil texture, and landscape composition being the main driving factors. However, the role of driving factors within different ESBs varied significantly. Exploring the response of ecosystem services to changes in landscape patterns can provide valuable insights for achieving sustainable ecological management and contribute to ecological restoration efforts.

  • Research Articles
    ZHUANG Lichao, KE Changqing, CAI Yu, NOURANI Vahid
    Journal of Geographical Sciences. 2023, 33(9): 1939-1964. https://doi.org/10.1007/s11442-023-2160-4

    Glaciers in the Tianshan Mountains are an essential water resource in Central Asia, and it is necessary to identify their variations at large spatial scales with high resolution. We combined optical and SAR images, based on several machine learning algorithms and ERA-5 land data provided by Google Earth Engine, to map and explore the glacier distribution and changes in the Tianshan in 2001, 2011, and 2021. Random forest was the best performing classifier, and the overall glacier area retreat rate showed acceleration from 0.87%/a to 1.49%/a, while among the sub-regions, Dzhungarsky Alatau, Central and Northern/Western Tianshan, and Eastern Tianshan showed a slower, stable, and sharp increase rates after 2011, respectively. Glacier retreat was more severe in the mountain periphery, low plains and valleys, with more area lost near the glacier equilibrium line. The sustained increase in summer temperatures was the primary driver of accelerated glacier retreat. Our work demonstrates the advantage and reliability of fusing multisource images to map glacier distributions with high spatial and temporal resolutions using Google Earth Engine. Its high recognition accuracy helped to conduct more accurate and time-continuous glacier change studies for the study area.

  • Research Articles
    WANG Yi, MIAO Zhuanying, LU Yuqi, ZHU Yingming
    Journal of Geographical Sciences. 2023, 33(9): 1767-1790. https://doi.org/10.1007/s11442-023-2152-4

    Under the background that economy and urbanization of China are gradually entering the stage of high-quality development, clarifying the influence of economic development on urban livability is of significant academic and practical value. In this paper, regarded as one “factor”, livability was introduced into the research framework of production function, and a theoretical model of the impact of economic development on urban livability was established. Based on the panel data of 40 cities in China from 2005 to 2019, the System GMM, panel threshold model and other methods were further adopted to carry out an empirical analysis. The results show that: (1) The livability level of large and medium-sized cities in China from 2005 to 2019 has been rising generally, but they present obvious characteristics of dimensional and spatial differentiation. (2) In general, economic development has an inhibiting effect on the improvement of urban livability, but this logical effect shows obvious heterogeneity in different time periods and diverse city scales. This inhibitory effect is more significant for the cities before entering the new normal phase of economy, and large-scale municipalities and economically-developed provincial capitals (namely Class-A cities). (3) There are significant threshold effects in the impact of economic development on urban livability, where the threshold variables are income level and economic development. With the increase of city dwellers’ income, this effect presents an inverted N-shaped nonlinear feature. When the development of economy makes the average wage of employees between 60,000 and 80,000 yuan, economic development can significantly improve urban livability. Also, there is a significant single threshold inhibitory effect when economic development is taken as a threshold variable. However, its negative impact shows a law of diminishing marginal efficiency. In addition, a similar threshold effect is found in smaller-scale Class-B cities. The findings of this research can provide some insights for urban planners and policymakers in both China and vast developing countries to understand better the relationship between economic development and urban livability. Finally, according to the research findings, we proposed the corresponding policy enlightenment from both “macro guidance” and “micro action”.

  • Special Issue: Human-environment interactions and Ecosystems
    WANG Peng, XU Mingxiang
    Journal of Geographical Sciences. 2023, 33(8): 1681-1701. https://doi.org/10.1007/s11442-023-2148-0

    Climate change and human activities have profoundly altered ecosystem services in the Yellow River Basin (YRB) since the Grain for Green project was implemented, but have not been accurately revealed on a year-by-year scale. This study combined the InVEST model to reveal the year-by-year changes in the water-related ecosystem services (WRESs) in YRB during 1990-2020, including water yield, soil conservation and water purification services. The trade-off/synergy of WRESs and impacts of land management measures on WRESs were assessed fully. The results showed that from 1990 to 2020, cropland and barren land were considerably converted to forest and grassland in YRB. WRESs were continuously improved as a result of increase of water yield and reductions of soil export and nitrogen export, at rates of +1.11 mm·yr-1, -0.23 t·km-2·yr-1 and -1.01 kg·km-2·yr-1, respectively. We found that in YRB water purification service showed trade-off relationships with soil conservation and water yield services in recent decades, and water yield and soil conservation maintained a synergitic effect. Additionally, the revegetation measures showed a potential of enhancing soil conservation and water purification, but reducing water yield. This study provided a thorough understanding of WRESs dynamics and a valuable reference for the ecological restoration practices.

  • Research Articles
    CUI Xiao, DENG Xiyue, WANG Yongsheng
    Journal of Geographical Sciences. 2023, 33(10): 1989-2010. https://doi.org/10.1007/s11442-023-2162-2

    Rural decline is a global issue accompanied by the regional imbalanced development and dysfunction in rural areas. Coordinated interaction among production, living, and ecological functions is essential for the sustainability of rural regional systems. Based on the framework of “element-structure-function”, an indicator system was constructed to explore the evolution characteristics and driving factors of rural regional functions in the farming-pastoral ecotone of northern China (FPENC) using the models of entropy-based TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), revised vertical and horizontal comparison, and GeoDetector. The results indicated a gradual synergy of rural production, living, and ecological functions during the period 2000-2020. Improvements were observed in production and living functions, and higher ecological function was found in Hebei, Inner Mongolia, Liaoning, and Shaanxi. However, conflicts between ecological function and production and living functions were evident in Shanxi, Gansu, and Ningxia. The spatial structure played a dominant role in determining rural production, living, and ecological functions, with ratios of 38%, 56%, and 84%, respectively. Land and industry emerged as the main driving factors influencing the evolution of rural regional functions. Notably, combined interactions of rural permanent population and primary industry output (0.73), grassland area and tertiary industry output (0.58), and forest area and tertiary industry output (0.72) were responsible for the changes observed in rural production, living, and ecological functions, respectively. The findings suggest that achieving coordinated development of rural regional functions can be accomplished by establishing differentiated rural sustainable development strategies that consider the coupling of population, land, and industry in FPENC.

  • Research Articles
    QI Xiaoqian, CHENG Xike, LIU June, ZHOU Zhengchao, WANG Ning, SHEN Nan, MA Chunyan, WANG Zhanli
    Journal of Geographical Sciences. 2023, 33(10): 2113-2130. https://doi.org/10.1007/s11442-023-2168-9

    Effective soil particle size composition can more realistically reflect the particle size sorting process of erosion. To reveal the individual contributions of rainfall intensity and slope to splash erosion, and to distinguish the enrichment ratio of each size and the critical size in splash, loessial soil collected on the Loess Plateau in May 2019 was tested under different rainfall intensities (60, 84, 108, 132, 156 mm h-1) and slopes (0°, 5°, 10°, 15°, 20°). The results demonstrated that 99% of splash mass was concentrated in 0-0.4 m. Rainfall intensity was the major factor for splash according to the raindrop generation mode by rainfall simulator nozzles. The contributions of rainfall intensity to splash erosion were 82.72% and 93.24%, respectively in upslope and downslope direction. The mass percentages of effective clay and effective silt were positively correlated with rainfall intensity, while the mass percentages of effective very fine sand and effective fine sand were negatively correlated with rainfall intensity. Opposite to effective very fine sand, the mass percentages of effective clay significantly decreased with increasing distance. Rainfall intensity had significant effects on enrichment ratios, positively for effective clay and effective silt and negatively for effective very fine sand and effective fine sand. The critical effective particle size in splash for loessial soil was 50 μm.

  • Research Articles
    LIN Juan, LIN Mingshui, YOU Xiaojun, WU Shiyan
    Journal of Geographical Sciences. 2023, 33(7): 1442-1460. https://doi.org/10.1007/s11442-023-2137-3

    The agglomeration of the rural e-commerce industry represented by Taobao villages has reshaped the existing urban and rural spatial organization and proposed a new urbanization model. This study identified the spatiotemporal characteristics of Taobao villages in Quanzhou city and built panel regression models to examine the impact of these villages on urbanization level, which is measured via nighttime light (NTL). The results show that (1) while the number of Taobao villages in Quanzhou city has increased rapidly, it has also experienced sporadic growth and monocentric agglomeration, finally forming a polycentric agglomeration pattern; (2) Taobao villages display a significant near-city tendency, and the urbanization level of towns with Taobao villages is higher than that of towns without Taobao villages; (3) the panel regression model highlights that Taobao villages have a significant positive impact on urbanization level. Taobao villages near the city exhibit a greater effect; meanwhile, those that are far away from the city cannot improve their urbanization level unless they reach a considerable degree of agglomeration. Rural e-commerce will become an important direction for the transformation of urban fringe areas, which provides a certain reference for the development of new urbanization in China.

  • Research Articles
    LIU Ruiqing, CHENG Heqin, TENG Lizhi, FAN Heshan
    Journal of Geographical Sciences. 2023, 33(5): 980-998. https://doi.org/10.1007/s11442-023-2116-8

    The construction of channel regulation projects, reservoirs, and other human activities have led to significant changes in channel geometry and hydrodynamic conditions in mountainous macrotidal estuaries. However, their impact on the long-term evolution of the turbidity maximum zone (TMZ) in these estuaries is still unclear. Therefore, the Minjiang Estuary (ME) was selected as the study area and using the Gabor filter and surface suspended sediment concentration (SSSC) data retrieved from GF PMS/WFV and Landsat-TM/ETM+/ OLI images in the flood season from 1986 to 2020, the flow direction of Chuanshi Waterway, the spatiotemporal evolution characteristics of TMZ in the ME, and the influence of human activities on these were analyzed. The results indicate that during flood tides in the past 35 years, the TMZ was mainly distributed in sections from the Changmen to the Chuanshi and Meihua waterways. The construction of the Shuikou Reservoir caused the SSSC to decrease by 65 mg/L at the Chuanshi Tidal Gauge Station in the ME. The TMZ in the ME waterway channel notably migrated toward the sea due to the waterway regulation project, with the landward and seaward boundaries moving by 2.5 km and 3 km seaward, respectively. The main distribution area moved from Jinpaimen to the section from Chuanshi Waterway to the mouth of the ME. These variation characteristics were basically consistent with the annual average TMZ in the flood season. Through the interactions between nature and human interventions, the flow regime of the ME tended to converge in the flood season. Therefore, human activities have significantly impacted the long-term evolution of the TMZ in the ME.

  • Research Articles
    FENG Weilun, LIU Yansui, LI Yurui, CHEN Zongfeng
    Journal of Geographical Sciences. 2023, 33(6): 1271-1286. https://doi.org/10.1007/s11442-023-2129-3

    Cropping systems worldwide have been affected by the current trend in global warming and the optimization of cropping systems is an important area of research in the transition of agricultural land. The Loess Plateau is a typical ecologically fragile region with the most serious soil erosion in China. We carried out a field experiment in Yan’an city on the Loess Plateau to explore the effect of sowing date on crop growth and yield. We then analyzed the feasibility of a double-cropping system by considering climatic adaptability, ecological suitability and economic viability. Our results showed that different sowing dates resulted in significant differences in crop growth and that appropriate early sowing can result in higher crop yields for early maturing varieties. We showed that double-cropping systems of sweet maize (Zea mays)-forage rape and feed maize-forage rape are feasible on the Loess Plateau. We discuss the implications for the efficient use of farmland, which is important in guiding agricultural supply-side reform and the development of modern agricultural management.

  • Research Articles
    LUO Yuanbo, ZHOU Yuke, ZHOU Chenghu
    Journal of Geographical Sciences. 2024, 34(10): 1883-1903. https://doi.org/10.1007/s11442-024-2275-2

    Changes in surface temperature extremes have become a global concern. Based on the daily lowest temperature (TN) and daily highest temperature (TX) data from 2138 weather stations in China from 1961 to 2020, we calculated 14 extreme temperature indices to analyze the characteristics of extreme temperature events. The widespread changes observed in all extreme temperature indices suggest that China experienced significant warming during this period. Specifically, the cold extreme indices, such as cold nights, cold days, frost days, icing days, and the cold spell duration index, decreased significantly by −6.64, −2.67, −2.96, −0.97, and −1.01 days/decade, respectively. In contrast, we observed significant increases in warm extreme indices. The number of warm nights, warm days, summer days, tropical nights, and warm spell duration index increased by 8.44, 5.18, 2.81, 2.50, and 1.66 d/decade, respectively. In addition, the lowest TN, highest TN, lowest TX, and highest TX over the entire period rose by 0.47, 0.22, 0.26, and 0.16°C/decade, respectively. Furthermore, using Pearson’s correlation and wavelet coherence analyses, this study identified a strong association between extreme temperature indices and atmospheric circulation factors, with varying correlation strengths and resonance periods across different time-frequency domains.