“研究论文” 栏目所有文章列表

(按年度、期号倒序)

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部

Please wait a minute...
  • 全选
    |
  • 研究论文
    LUO Yuanbo, ZHOU Yuke, ZHOU Chenghu
    地理学报(英文版). 2024, 34(10): 1883-1903. doi: 10.1007/s11442-024-2275-2

    Changes in surface temperature extremes have become a global concern. Based on the daily lowest temperature (TN) and daily highest temperature (TX) data from 2138 weather stations in China from 1961 to 2020, we calculated 14 extreme temperature indices to analyze the characteristics of extreme temperature events. The widespread changes observed in all extreme temperature indices suggest that China experienced significant warming during this period. Specifically, the cold extreme indices, such as cold nights, cold days, frost days, icing days, and the cold spell duration index, decreased significantly by −6.64, −2.67, −2.96, −0.97, and −1.01 days/decade, respectively. In contrast, we observed significant increases in warm extreme indices. The number of warm nights, warm days, summer days, tropical nights, and warm spell duration index increased by 8.44, 5.18, 2.81, 2.50, and 1.66 d/decade, respectively. In addition, the lowest TN, highest TN, lowest TX, and highest TX over the entire period rose by 0.47, 0.22, 0.26, and 0.16°C/decade, respectively. Furthermore, using Pearson’s correlation and wavelet coherence analyses, this study identified a strong association between extreme temperature indices and atmospheric circulation factors, with varying correlation strengths and resonance periods across different time-frequency domains.

  • 研究论文
    WANG Sheng, WANG Jianwen, ZHU Meilin, YAO Tandong, PU Jianchen, WANG Jinfeng
    地理学报(英文版). 2024, 34(10): 1904-1924. doi: 10.1007/s11442-024-2276-1

    Glaciers are considered to be ‘climate-sensitive indicators’ and ‘solid reservoirs’, and their changes significantly impact regional water security. The mass balance (MB) from 2011 to 2020 of the Qiyi Glacier in the northeast Tibetan Plateau is presented based on field observations. The glacier showed a persistent negative balance over 9 years of in-situ observations, with a mean MB of −0.51 m w.e. yr−1. The distributed energy-mass balance model was used for glacier MB reconstruction from 1980 to 2020. The daily meteorological data used in the model were from HAR v2 reanalysis data, with automatic weather stations located in the middle and upper parts of the glacier used for deviation correction. The average MB over the past 40 years of the Qiyi Glacier was −0.36 m w.e. yr−1 with the mass losses since the beginning of the 21st century, being greater than those in the past. The glacier runoff shows a significant increasing trend, contributing ~81% of the downstream river runoff. The albedo disparity indicates that the net shortwave radiation is much higher in the ablation zone than in the accumulation zone, accelerating ablation-area expansion and glacier mass depletion. The MB of the Qiyi Glacier is more sensitive to temperature and incoming shortwave radiation variation than precipitation. The MB presented a non-linear reaction to the temperature and incoming shortwave radiation. Under future climate warming, the Qiyi Glacier will be increasingly likely to deviate from the equilibrium state, thereby exacerbating regional water balance risks. It is found that the mass losses of eastern glaciers are higher than those of western glaciers, indicating significant spatial heterogeneity that may be attributable to the lower altitude and smaller area distribution of the eastern glaciers.

  • 研究论文
    WEI Zhongyin, TU Jianjun, XIAO Lin, SUN Wenjing
    地理学报(英文版). 2024, 34(10): 1925-1952. doi: 10.1007/s11442-024-2277-0

    Since China’s reform and opening-up in 1978, rapid urbanization has coincided with a surge in carbon emissions. Statistical, geospatial, and time-series analysis methods were utilized to examine the dynamic relationship between urbanization and carbon emissions over the past 43 years; elucidate the mechanisms through which dimensions of urbanization, such as population, land, economy, and green development, impact carbon emissions at various stages; and further explore the heterogeneity among cities of different scales. The analysis reveals that 2001 and 2011 represent significant turning points in China’s carbon emission growth “S” curve. The phase of rapid carbon emissions growth is associated with an increase in the urbanization rate from 40% to 50%, a shift in industrial structure from being dominated by secondary industry to tertiary industry, and a decrease in urban population density from 19,600 to 16,000 people per square kilometer of built-up area. Regions northeast of the “Bayannur-Ningde Line” have experienced rapid increases in carbon emissions, with large and medium-sized cities being the primary contributors nationwide. The TVP-VAR results indicate that higher urbanization rates have short-term carbon and mid- to long-term carbon-reducing effects. Population concentration in large cities facilitates short- to mid-term carbon reduction, whereas intensive urban development, industrial upgrading, and the promotion of clean energy use have sustained carbon-reducing effects. Carbon emissions exhibit path dependence. Increased urbanization rates in mega-cities and super-cities result in carbon-increasing effects, whereas the optimization of industrial structures exerts an inhibitory effect on carbon emissions in medium-sized and large cities. The changes in impulse response values of various variables are influenced by the developmental trajectory of Chinese cities from “small to large and then to agglomerations.” These recommendations indicate the necessity for differentiated emission reduction strategies contingent on the specific regions and types of cities in question.

  • 研究论文
    SHU Tianheng, YU Taofang, LIAO Xia, YANG Shuo
    地理学报(英文版). 2024, 34(10): 1953-1976. doi: 10.1007/s11442-024-2278-z

    Urban sprawl has been a prevailing phenomenon in developing countries like China, potentially resulting in significant carbon dioxide (CO2) emissions from the transport sector. However, the impact of urban sprawl on transport CO2 emissions (TCEs) is still not fully understood and remains somewhat rudimentary. To systematically investigate how urban sprawl influences TCEs, we employ panel regression and panel threshold regression for 274 Chinese cities (2005-2020), and obtain some new findings. Our results affirm that the degree of urban sprawl is positively associated with TCEs, and this holds true in different groups of city size and geographical region, while significant heterogeneity is observed in terms of such impact. Interestingly, we find urban sprawl nonlinearly impacts TCEs—with an equal increase in urban sprawl degree, TCEs are even lower in cities with larger population size and better economic condition, particularly in East China. Furthermore, the low-carbon city pilot policy shows potential in mitigating sprawl’s impact on TCEs. Drawing on our findings, we argue that to achieve the target of TCEs reduction in China by curbing urban sprawl, more priority should be placed on relatively small, less developed, and geographically inferior cities for cost-efficiency reasons when formulating future urban development strategies.

  • 研究论文
    WANG Kewen, MA Haitao
    地理学报(英文版). 2024, 34(10): 1977-2002. doi: 10.1007/s11442-024-2279-y

    The internal technological innovation (IT) and external technological cooperation (ET) of a city are crucial drivers for its green development (GD). Although previous studies have extensively explored the effect of IT on GD, IT, ET and GD have not been integrated into the same framework to explore their relationship. Using panel data of 13 cities in the Beijing-Tianjin-Hebei urban agglomeration, this study revealed the spatio-temporal evolution of GD and analyzed the effects of IT and ET on GD from the perspective of baseline impact, spatial effect and synergy effect. Empirical results demonstrate that the level of urban GD has upgraded and the difference in GD between cities has been narrowed though it decreases from the middle to both ends. IT significantly promotes the growth of GD while ET has an inverted U-shaped effect on GD. Under the influence of spatial spillover, IT has a U-shaped effect on the GD of neighboring cities while the effect of ET on neighboring GD is not significant. Additionally, the interaction between IT and ET has not been effective, leading to an insignificant synergy effect on GD. These findings will provide reference for taking rational advantage of IT and ET to facilitate urban GD.

  • 研究论文
    LI Muchun, LI Boyan, FENG Qi, WANG Yunchen
    地理学报(英文版). 2024, 34(10): 2003-2027. doi: 10.1007/s11442-024-2280-5

    Land-use and land-cover change (LUCC) simulations are powerful tools for evaluating and predicting future landscape dynamics amid rapid human‒nature interactions to support decision-making. However, existing models often overlook spatial heterogeneity and temporal dependencies when modeling LUCC at both the macro and microscales. In this paper, we propose a new model, a self-calibrated convolutional neural network-based cellular automata (SC-CNN-CA) model, which integrates macro- and microspatial characteristics to simulate complex interactions among land-use types. The SC-CNN-CA model incorporates a self-calibration module using Gaussian functions to capture macrotrend such as urban sprawl while accounting for microlevel land-use interactions such as neighborhood effects. The results indicated that (1) the neighborhood effect between agricultural land and urban land tended to “increase followed by a decrease.” (2) Urban sprawl in Wuhan was highly compact, with a relatively high intensity of urban expansion at distances between 11.96 km and 24.44 km. (3) Compared with the other CA models tested, the SC-CNN-CA model demonstrated superior performance, achieving an overall accuracy of 84.12% and a figure of merit of 20.20%. This new model can enhance our understanding of historical LUCC trajectories and improve predictions of spatially explicit information for efficient land resource and urban management.

  • 研究论文
    LIU Kai, WANG Xingping
    地理学报(英文版). 2024, 34(10): 2028-2052. doi: 10.1007/s11442-024-2281-4

    High-level investment facilitation is crucial for China’s overseas free economic zones (COFEZs) to attract and retain investment, mitigate business interruption risks, and foster a virtuous cycle. While research on investment facilitation in COFEZs has mainly focused on summarizing and examining the investment facilitation measures adopted by typical national-level examples of COFEZs, relatively little attention has been paid to investigating the overall level and general problems of investment facilitation across COFEZs. This study expands the scope of case investigations by taking 60 COFEZs as samples. It constructs a comprehensive evaluation indicator system which includes four dimensions: industrial infrastructure, social infrastructure, business support services, and seamless administrative supervision. By employing content analysis and regression analysis, this study identifies the characteristics and influencing factors of investment facilitation level in COFEZs. The results show that the overall level of investment facilitation in COFEZs is currently low. Specifically, COFEZs exhibit higher levels of investment facilitation in processing and manufacturing types and in Europe, while those in trade and logistics types and in Africa are relatively poor. Industrial infrastructure and business support services contribute more significantly to the overall scores of investment facilitation in COFEZs compared to social infrastructure and seamless administrative supervision. The investment facilitation level in COFEZs is essentially the result of a series of behaviors by developers and host governments, and it is affected by a combination of developers’ perceptions of investment facilitation and the social environment in which developers and host governments promote investment facilitation. This study offers a new perspective on understanding COFEZs and contributes to the sustainable development of COFEZs.

  • 研究论文
    HU Xiaosi, WU Li, ZHUANG Yijie, WANG Xinyuan, MA Chunmei, LI Linying, GUAN Houchun, LU Shuguang, LUO Wenjing, XU Ziyi
    地理学报(英文版). 2024, 34(10): 2053-2073. doi: 10.1007/s11442-024-2282-3

    Polder is a type of irrigation field unique to the lower Yangtze River of China. It is a product of long-term and ingenuous human modifications of wetland landscapes. In the pre-Qin Period, 3000 years ago, the poldered area of eastern Wuhu city was once a large lake called the ancient Danyang wetland. The introduction of agricultural civilization and polder technology to the area during the Wu and Yue Kingdoms period gradually transformed it into an agricultural area. With an accelerating rate of land reclamation under a changing late-Holocene regional climate, the ancient Danyang wetland became an aquatic system strongly influenced by intensifying anthropogenic activities. In this study, based on field survey data, historical documents, and remote-sensing and archaeological data, we reconstructed the spatial distribution of the polder landscape over the last 3000 years and identified their structural diversity. We found that polder landscapes began to emerge in the Spring and Autumn Period, land reclamation intensified in the Three Kingdoms and developed rapidly in the Song Dynasty before eventually reaching the peak from the Ming and Qing Dynasties. The relocation of historical sites to low-altitude areas also marked the expansion of poldered fields from the center of the wetland to the southeast and northwest. The development and evolution of the polder landscape are related to regional climate conditions, changing social and economic statuses, and the development of agricultural technology in the Song Dynasty and succeeding periods.

  • 研究论文
    LI Shicheng, LIU Yating, LI Jianrui, ZHANG Xuezhen
    地理学报(英文版). 2024, 34(10): 2074-2088. doi: 10.1007/s11442-024-2283-2

    It is essential to map the cropping patterns when investigating the mechanisms and impacts of climate change. However, the long-term evolution of cropping patterns remains poorly understood. This study collected hundreds of records of cropping intensity and crop combinations from local gazetteers and other relevant articles for the North China Plain (NCP) over the past 300 years. Then, we analyzed the evolutionary characteristics and drivers in terms of climate change and advances in agricultural technology. From the Qing Dynasty to the 1950s, one harvest per year (1H1Y) was the dominant pattern in the northern NCP, and three harvests in two years (3H2Y) was the dominant pattern in Henan and Shandong provinces. The 1H1Y crops were cereals and sorghum. The 3H2Y crop combinations were spring maize, winter wheat, and beans. In the 1960s and 1970s, the cropping intensity in much of the NCP was two harvests per year (2H1Y) or a mix of the 2H1Y and 3H2Y patterns. In the 1980s, the cropping intensity in the NCP was dominated by 2H1Y. Since the 1960s, the 2H1Y crop compositions have been winter wheat−summer maize in Shandong, Henan, and Hebei provinces, while winter wheat−rice dominated north of the Huaihe River. The 3H2Y summer crop changed from beans to maize/cereals over time. Climate warming was not the dominant factor driving the evolution of cropping intensity in the NCP. Advances in agricultural production conditions and reforms in production relations have promoted the rapid development of multiple cropping since the 1950s.

  • 研究论文
    FAN Jie, WANG Zheng, ZHOU Daojing, GUO Rui, CHEN Dong, LIU Baoyin, LIU Hanchu, QIAO Qin, WU Jianxiong
    地理学报(英文版). 2024, 34(9): 1677-1696. doi: 10.1007/s11442-024-2266-3

    Regional CO2 emissions are closely related to their territorial function, which is the major role a region plays in sustainable processes on the earth’s surface. Given that China is implementing a top-down emission allocation quota strategy, studying the impact of a territorial function on emissions addresses the research gap from a spatial integration dimension. By investigating the effects of three basic functional territories (urbanization zones (UZ), food security zones (FSZ), and ecological security zones (ESZ)), horizontal spatial structure and vertical combinations of functional territories on CO2 emission patterns in China, we found that functional territory patterns were highly coupled with the spatial distribution of CO2 emissions, with a ratio of CO2 emissions from UZ-FSZ-ESZ was stable at around 5:2:1 from 2000 to 2017. Spatially, CO2 emissions in FSZ and ESZ were 1.06-2.12 times higher than the average value within 200 km from the UZ. As territorial function combination increased with spatial upscaling, the emission characteristics attributable to functional territories became indistinct. The findings above can provide a basis for the long-term prediction of CO2 emissions from spatial dimension, support scientific guidance for inter-zone cooperation and classified management of carbon emissions with the major function oriented zones as impetus.

  • 研究论文
    YAN Mingtao, ZHAO Jianji, YAN Mingyue
    地理学报(英文版). 2024, 34(9): 1697-1718. doi: 10.1007/s11442-024-2267-2

    Transition from old to new economic drivers (TONED) is of great significance for optimizing economic structures. Using a combination of methods including entropy weight technique for order preference by similarity to ideal solution, geospatial analysis, and optimal parameter geodetector, this study investigates the patterns and mechanisms of China’s TONED in the prefecture-level cities from 2011 to 2020. The findings reveal that (1) the TONED exhibited a spatial distribution characterized by higher levels in the east and lower levels in the west, along with a pyramidal hierarchy of levels. The distribution of hot and cold spots roughly followed the Heihe-Yulin line. (2) The informatization levels, openness to the outside world, and urbanization played a dominant role in the TONED. The types of dual-factor interactions exhibited both dual-factor enhancement and non-linear enhancement effects. (3) The eastern and central regions were more likely to promote the TONED through enhanced informatization levels, whereas the western region relied more on increasing openness. This study finds that the TONED results from the combined effects of three geographical natures, each playing a distinct role. The recommendations provided can serve as a reference for China and other developing countries to implement the TONED in the context of deglobalization.

  • 研究论文
    DONG Yin, JIN Gui, DENG Xiangzheng
    地理学报(英文版). 2024, 34(9): 1719-1738. doi: 10.1007/s11442-024-2268-1

    The evolution of territorial space is intrinsically linked to economic growth, societal welfare, and ecological preservation. In the context of escalating spatial conflicts and stringent resource limitations, resource efficiency has emerged as a fundamental pillar for the scientific optimization of territorial space layout. Drawing upon resource efficiency metrics from cities nationwide, this study constructs scenarios for territorial space development and conservation, assesses developmental capacity under varying preferences, and subsequently delineates strategic blueprints using an integrated “point-axis-area” approach. The findings reveal the following: (1) Resource efficiency in China has witnessed a consistent uptick, yet remains modest overall, with marked regional disparities. (2) Throughout the investigation period, developmental capacity has seen progressive enhancement, with a pronounced capacity in scenarios favoring development, radiating axially from urban conglomerates. (3) The layout of pivotal points and developmental axes has transitioned from a “tri-pillar” to a diamond configuration, with the coastal corridor, Harbin-Beijing-Guangzhou corridor, and the corridor along the Yangtze River standing out. (4) Strategic points progressively converge along key axes, whereas dominant regions exhibit clear differentiation on either side of the Hu Huanyong Line. By integrating elements of the territorial spatial structure, this paper proposes blueprints for “five horizontal and three vertical zones with eight cores and three areas,” “four horizontal and three vertical zones with six cores and three areas,” and “three horizontal and four vertical zones with five cores and three areas,” corresponding to scenarios of prioritizing development, status quo maintenance, and prioritizing conservation, respectively. The outcomes of this research offer a technical foundation and theoretical guidance for the pursuit of high-quality territorial space development and a vision of picturesque landscapes.

  • 研究论文
    LUO Xiuli, JIN Xiaobin, LIU Xiaojie, HONG Buting, ZHOU Yinkang
    地理学报(英文版). 2024, 34(9): 1739-1760. doi: 10.1007/s11442-024-2269-0

    Land consolidation (LC) stands as a globally recognized strategy for rural development. In China, it has evolved towards comprehensive land consolidation (CLC) to support the rural revitalization initiative. However, there are ongoing challenges in understanding CLC’s specific pathway and mechanism, particularly its role in stimulating rural endogenous development. This study aims to investigate the localization process of international experiences, examine the pathway of CLC, and scrutinize its mechanism in rural development from a novel perspective of neo-endogenous development. Field research and semi-structured interviews were conducted in Nanzhanglou village, renowned for its early adoption of CLC practices inspired by German experiences since 1988. Overall, key findings underscore the advantages of CLC in spatial restructuring, industrial development, and human capital enhancement in rural areas. Additionally, international experiences emerge as crucial exogenous forces, primarily by knowledge embedding, which catalyzes rural neo-endogenous development via the “resource-engagement-identity-endogenous” mechanism. Collectively, by introducing a neo-endogenous theoretical framework, this study offers valuable insights into the CLC implementation in China and beyond, and emphasizes the positive impact of knowledge embedding as an exogenous force in promoting rural neo-endogenous development to address existing research gaps. Recommendations for sustainable rural development involve enhancing rural planning practicality, governance capacity, and local leadership, while prioritizing agricultural modernization and increasing investments in education and vocational training to ensure that villagers benefit from industrial development.

  • 研究论文
    HUANG Xingling, LIU Jianguo
    地理学报(英文版). 2024, 34(9): 1761-1796. doi: 10.1007/s11442-024-2270-7

    Green development is a critical component of sustainable tourism, which prioritizes a comprehensive, ecologically-friendly, and people-oriented approach to development. This study presents a case study of the Beijing-Tianjin-Hebei (BTH) urban agglomeration from 2001 to 2021 to analyze the spatio-temporal evolution characteristics and influencing factors of tourism green development efficiency (TGDE). The study defines the concept of tourism green development and constructs an evaluation system, which is used to explore the internal differences and spatial patterns of TGDE within the urban agglomeration. The methodological approach includes the SBM-Undesirable model, kernel density estimation, Markov chain, and spatial gravity model. The findings indicate that the TGDE in the BTH urban agglomeration is generally favorable, displaying a temporal phase of “rising-declining-rising.” However, the study observes lower TGDE in tourism node cities compared to tourism regional center cities and tourism core hub cities. The non-equilibrium degree of each region indicates significant spatio-temporal evolution patterns and internal differences among the three regions, with a spatially decreasing distribution of “core hub-regional center-node city.” The TGDE in the urban agglomeration experienced an evolutionary trend of “first decreasing and then increasing” with apparent endogenous evolution characteristics. The linkage pattern of green development efficiency in the tourism industry between cities is relatively stable. Furthermore, neighboring cities generally exhibit a higher spatial connectivity strength of green development efficiency in the tourism industry compared to non-neighboring cities. Economic development level, industrial structure, and science and education level are identified as key factors that affect TGDE. However, the study finds that the factors influencing TGDE in tourism core hub cities, tourism regional center cities, and tourism node cities differ somewhat. Economic development level, industrial structure, science and education level, openness, and government regulation impact TGDE in tourism core hub cities and tourism regional center cities, while economic development level, industrial structure, and tourism resource endowment are the primary factors affecting TGDE in tourism node cities. The study provides policymakers and tourism practitioners with valuable insights into enhancing the green development of the tourism industry in the BTH urban agglomeration and other similar regions. Corresponding policy recommendations based on the results are proposed to improve the TGDE of the tourism industry in these regions, promote sustainable tourism development, improve the quality of life of local residents, and protect the ecological environment.

  • 研究论文
    JIANG Rui, LIU Jingfeng
    地理学报(英文版). 2024, 34(9): 1797-1821. doi: 10.1007/s11442-024-2271-6

    Sanjiangyuan is an extremely important biodiversity-conservation area with notable worldwide ecological significance. However, due to global climate change and increased human activities, the natural environment in this region has undergone major alterations. In this work, we used the InVEST model to assess the spatial and temporal distribution of habitat quality and habitat degradation in the Sanjiangyuan region from 2000 to 2020. CA-Markov model was used to predict the land use changes under “natural development” (ND) and “ecological protection” (EP) scenarios from 2025 to 2050, and a comparative analysis of land use and habitat-quality changes was made in combination with the results of ecological zoning planning. We found that changes in human use land and bare land directly affect changes in habitat quality in Sanjiangyuan and are a major threat to habitat quality. Using the human-footprint index, Sanjiangyuan was divided into key protected areas, key restoration areas, and moderately developed areas. We compared the changes in habitat quality under two scenarios and discovered that under the EP scenario, the region of high habitat quality expanded, indicating that the EP scenario is beneficial for the sustainable development and conservation of biodiversity in Sanjiangyuan.

  • 研究论文
    GONG Gaofeng, GUO Qinghai, QIU Botian, TANG Lina, MAO Qizheng, HE Zhichao
    地理学报(英文版). 2024, 34(9): 1822-1840. doi: 10.1007/s11442-024-2272-5

    Urban green spaces play a crucial role in enhancing the well-being of urban residents and promoting sustainable urban development. However, optimizing the planning and management of urban green spaces to meet residents’ diverse needs and preferences poses a considerable challenge. This study addresses this challenge by employing a landsenses ecology approach, integrating residents’ perspectives into the planning and design of urban green spaces. Starting from human needs, a conceptual framework for the meliorization model of urban green spaces is constructed, grounded in the principles of landsense creation and incorporating a “design-simulation-management” process. Through this model, the mechanisms driving the meliorization process are explored. This study contributes to improving the meliorization process in landsenses ecology, while expanding the theoretical framework and methodology of landscape ecology. By emphasizing the dynamic interactions between land planning, construction, and residents’ experiences, this study provides valuable insights into the dynamic development of urban green spaces, facilitating the implementation of sustainable urban development strategies and practices.

  • 研究论文
    LIU Jiayuan, LIU Xianfeng, LIANG Juan, FENG Yu
    地理学报(英文版). 2024, 34(9): 1841-1856. doi: 10.1007/s11442-024-2273-4

    Recent climate change has accelerated the global hydrological cycle, substantially affecting drought metrics such as drought duration and drought propagation; however, knowledge of drought patterns in these metrics remains limited. Here, we aimed to address the evolution and influencing factors of major drought metrics under past and future climate scenarios within the Yellow River Basin (YRB) based on Coupled Model Intercomparison Project Phase 6 (CMIP6). Accordingly, we investigated the changes in drought duration for meteorological drought and agricultural drought across the YRB and identified the variability in drought propagation time from meteorological drought to agricultural drought by using a standardized precipitation/soil moisture index and run theory. Meteorological and agricultural drought duration, and propagation time, increased from 1850 to 2014, decreased significantly from 2015 to 2100 with change trends of -0.0027, -0.0197, and -0.002 month/year, respectively. Drought duration had a negative sensitivity to humidification, and agricultural drought was more sensitive than meteorological drought. Propagation time exhibited a greater sensitivity to meteorological humidification than agricultural humidification. The results also suggest that precipitation, evapotranspiration, and soil moisture are the main drivers of drought metric changes, with air temperature and crop cover exhibiting a strong indirect effect on drought metrics in the YRB. Decreased propagation time from meteorological to agricultural drought and decreased duration provide evidence for the accelerated occurrence and increased impact of drought, highlighting the importance of a more comprehensive understanding of drought metric changes under rapid climate change.

  • 研究论文
    HU Jiayu, YAO Xiaojun, ZHANG Cong, ZHANG Yuan, MA Yuxin
    地理学报(英文版). 2024, 34(9): 1857-1880. doi: 10.1007/s11442-024-2274-3

    Glaciers and glacial lakes are very sensitive to climate change, and studying their dynamics is important for revealing changes in global climate. In this study, we extracted the boundaries of glaciers and glacial lakes in the Northern Tianshan Mountains based on Landsat TM/ETM+/OLI and Sentinel 2A/2B MSI remote sensing images and analyzed their dynamics and impacts over the past 30 years. The findings indicate that in 2020, the Northern Tianshan region exhibited a total of 3254 glaciers, with an area of 1670.55 km2 and a volume of 95.69 km3. The corresponding numbers, areas, and volumes of glacial lakes were 281, 13.23 km2 and 210.49×106 m3, respectively. Over the past 30 years, glaciers and glacial lakes have exhibited opposite characteristics. The former decreased by 16, 332.64 km2 (−0.60%·a-1) and 18.36 km3 (−0.58%·a-1), respectively, and the latter increased by 56 and 2.48 km2 (0.82%·a-1) and 38.88×106 m3 (0.79%·a-1), respectively. Moreover, different glacier termination types cause differences in the glacier retreat rates. Lake-terminated glaciers retreated faster than land-terminated glaciers, and the type of glacier termination has a greater effect on the retreat rate than the size of the glacial area.

  • 研究论文
    YANG Jie, CAO Xiaoshu, YAO Jun, KANG Zhewen, CHANG Jianxia, WANG Yimin
    地理学报(英文版). 2024, 34(2): 203-228. doi: 10.1007/s11442-024-2202-6

    Since the Bonn 2011 conference, the “water-energy-food” (WEF) nexus has aroused global concern to promote sustainable development. The WEF nexus is a complex, dynamic, and open system containing interrelated and interdependent elements. However, the nexus studies have mainly focused on natural elements based on massive earth observation data. Human elements (e.g., society, economy, politics, culture) are described insufficiently, because traditional earth observation technologies cannot effectively perceive socioeconomic characteristics, especially human feelings, emotions, and experiences. Thus, it is difficult to simulate the complex WEF nexus. With the development of earth observation sensor technologies and human activity perception methods, geographical big data covering both human activities and natural elements offers a new opportunity for in-depth WEF nexus analysis. This study proposes a five-step framework by leveraging geographical big data mining to dig for the hidden value in the data of various natural and human elements. This framework can enable a thorough and comprehensive analysis of the WEF nexus. Some application examples of the framework, major challenges, and possible solutions are discussed. Geographical big data mining is a promising approach to enhance the analysis of the WEF nexus, strengthen the coordinated management of resources and sectors, and facilitate the progress toward sustainable development.

  • 研究论文
    JIANG Weiguo, ZHANG Ze, LING Ziyan, DENG Yawen
    地理学报(英文版). 2024, 34(2): 229-251. doi: 10.1007/s11442-024-2203-5

    Wetlands are important natural resources for humans and play an irreplaceable ecological function in the terrestrial ecosystem. To curb the continued loss of wetlands globally, international organizations and many countries have taken a series of major conservation and restoration measures. This work reviews these wetland conservation and restoration measures, interprets China’s wetland conservation and restoration management policies, and proposes that future research on wetland resources in China should be conducted from the aspects of international frontiers and national strategic plans, socioeconomics, and smart services. The results show that the 27 International Wetlands Days from 1997 to 2023 provided new goals and tasks for the protection and management of wetlands. The important topics and outcomes of the 14 Conferences of the Contracting Parties to the Convention on Wetlands from 1980 to 2022 provided new directions and new challenges for wetland development. In the future, we should enhance wetland ecological functions, promote sustainable wetland development, and overcome the technical bottleneck of fragile wetland ecosystem restoration. From 1992 to 2022, China embarked on a new phase of wetland protection and restoration. The overall experience of wetland protection and restoration in China has been formed through national strategic deployment, legal policy establishment, and project planning and implementation. The needs to provide for and plan the long-term protection of wetlands at the national level, to innovate restoration and management techniques and application systems, and to effectively address the complex issues of wetland protection and restoration through collaborative division of labor among multiple departments were emphasized. Research on the future trends of wetlands should be directed towards the exploration and practice of the United Nations Sustainable Development Goals and several international conventions in support of sustainable wetland development. Wetland protection, restoration, and management services should be promoted for national strategic needs and local, high-quality social and economic development. In addition, research on cross-integration and academic innovation should be enhanced for disciplinary development, global supervision, comprehensive assessment, and smart decision making.

  • 研究论文
    REN Siyu, JING Haichao, QIAN Xuexue, LIU Yinghui
    地理学报(英文版). 2024, 34(2): 252-288. doi: 10.1007/s11442-024-2204-4

    In this study, the interplay between ecosystem services and human well-being in Seni district, which is a pastoral region of Nagqu city on the Qinghai-Tibet Plateau, is investigated. Employing the improved InVEST model, CASA model, coupling coordination model, and hierarchical clustering method, we analyze the spatiotemporal patterns of ecosystem services, the levels of resident well-being levels, and the interrelationships between these factors over the period from 2000 to 2018. Our findings reveal significant changes in six ecosystem services, with water production decreasing by 7.1% and carbon sequestration and soil conservation services increasing by approximately 6.3% and 14.6%, respectively. Both the habitat quality and landscape recreation services remained stable. Spatially, the towns in the eastern and southern areas exhibited higher water production and soil conservation services, while those in the central area exhibited greater carbon sequestration services. The coupling and coordination relationship between ecosystem services and human well-being improved significantly over the study period, evolving from low-level coupling to coordinated coupling. Hierarchical clustering was used to classify the 12 town-level units into five categories. Low subjective well-being townships had lower livestock breeding services, while high subjective well-being townships had higher supply, regulation, and support ecosystem services. Good transportation conditions were associated with higher subjective well-being in townships with low supply services. We recommend addressing the identified transportation disparities and enhancing key regulatory and livestock breeding services to promote regional sustainability and improve the quality of life for Seni district residents, thus catering to the diverse needs of both herdsmen and citizens.

  • 研究论文
    LI Ying, FANG Yuanping, MENG Qinggang
    地理学报(英文版). 2024, 34(2): 289-308. doi: 10.1007/s11442-024-2205-3

    This study uses green patent data from 264 cities in China between 2006 and 2020 to examine the evolution of spatial patterns in urban green technology innovation (GTI) across the country and identify the underlying driving factors. Moran’s I index, Getis-Ord Gi* index, standard deviation ellipse, and geographical detector were used for the analysis. The findings indicate an increase in the overall level of GTI within Chinese cities. Provincial capitals, cities along the eastern coast, and planned cities emerge as the prominent “highlands” of GTI, whereas the “lowlands” of GTI predominantly lie in the western and northeastern regions, forming the spatial pattern of “hot in the east and center of the country, cold in the northwest and the northeast.” The distribution center of gravity of GTI is toward the southwest of China. The distribution pattern is in the “northeast-southwest” direction, which is characterized by “diffusion,” followed by “agglomeration.” Differences in economic development have the highest determining power on the spatial differentiation of GTI in Chinese cities, whereas differences in environmental regulation and industrial structure have the lowest degree of relative influence. The interaction between any two factors contributes to an amplified explanatory power in understanding the differences in GTI.

  • 研究论文
    ZHANG Xianyong, PENG Baofa, ZHOU Lulu, LU Chunyang, WANG Yali, LIU Rui, XIANG Hui
    地理学报(英文版). 2024, 34(2): 309-328. doi: 10.1007/s11442-024-2206-2

    Traditional music is an important component of cultural heritage. However, studies have scarcely explored the tourism development potential and the obstacle factors of traditional music. This study takes Xiangxi as the research site, constructs an evaluation index system, and utilizes survey and geographical methods. The major research results are as follows: First, the average potential of resource endowment, tourism industry development, and socio-economic conditions are 0.28, 0.36, and 0.24, respectively. The potential of resource endowment is higher in the west and lower in the east, that of tourism industry development is higher in the north and south and lower in the center, and that of socio-economic conditions is higher in the south and lower in the north. Second, the comprehensive potential is 0.29, which is higher in the northwest and southwest regions. Coordination in most administrative units is at a medium level, and most regions have obvious advantages in resource endowment. Third, the primary obstacle factor is socio-economic conditions (39.21%), followed by resource endowment (30.73%) and tourism industry development (30.06%). The administrative units can be classified into four groups: socio-economic condition obstacle, resource endowment and tourism industry development obstacles, resource endowment and socio-economic condition obstacles, and tourism industry development and socio-economic condition obstacles. The highest priority goals for Xiangxi involve economic development and the integration of modern technologies to stimulate passenger flow. For regions with limited traditional music items (eastern area of Xiangxi), tourism development should be restrained and other resources with stronger inherent advantages should be exploited. This study explored the quantification of traditional music tourism potential, representing a novel breakthrough in this field of research. The indicator system and research methods used in this study can provide guidance and methodological references for cultural heritage research. The suggestions proposed in this article contribute to the rational development and effective protection of cultural heritage resources and the healthy development of the tourism industry.

  • 研究论文
    ZHANG Jing, MA Kai, FAN Hui, HE Daming
    地理学报(英文版). 2024, 34(2): 329-354. doi: 10.1007/s11442-024-2207-1

    The transboundary influence of environmental change is a critical issue in the Lancang-Mekong region. As the largest river-connected lake in the lower Mekong, the ecological change and influence of Tonle Sap Lake have received widespread attention and discussion, especially after 2008, when the hydrological regime of the Lancang-Mekong River mainstream underwent distinct changes. However, the linkage and coupling mechanism between the lake riparian environment and mainstream water level change are still unclear. In this study, the interannual spatiotemporal changes in land cover in the Tonle Sap Lake riparian zone (TSLRZ) and their relationship with mainstream water levels were analysed. The results showed that the expansion of farmland was the most notable change in 1988-2020. After 2008, the land cover changes intensified, manifested as accelerated farmland expansion, intensified woodland fragmentation and significant water body shrinkage. Furthermore, the responses of the water body, degraded land, wasteland and grassland areas to the mainstream water levels weakened after 2008. Evidently, the land cover changes in the TSLRZ in the last 30 years were less related to the mainstream water level change than to local reclamation and logging. These results can offer a new scientific basis for the transboundary influence analysis of hydrological change.

  • 研究论文
    WEN Kege, LI Cheng, HE Jianfeng, ZHUANG Dafang
    地理学报(英文版). 2024, 34(2): 355-374. doi: 10.1007/s11442-024-2208-0

    Significant changes to the world’s climate over the past few decades have had an impact on the development of plants. Vegetation in high latitude regions, where the ecosystems are fragile, is susceptible to climate change. It is possible to better understand vegetation’s phenological response to climate change by examining these areas. Traditional studies have mainly investigated how a single meteorological factor affects changes in vegetation phenology through linear correlation analysis, which is insufficient for quantitatively revealing the effects of various climate factor interactions on changes in vegetation phenology. We used the asymmetric Gaussian method to fit the normalized difference vegetation index (NDVI) curve and then used the dynamic threshold method to extract the phenological parameters, including the start of the season (SOS), end of the season (EOS), and length of the season (LOS), of the vegetation in this study area in the Tundra-Tagar transitional zone in eastern and western Siberia from 2000 to 2017. The monthly temperature and precipitation data used in this study were obtained from the climate research unit (CRU) meteorological dataset. The degrees to which the changes in temperature and precipitation in the various months and their interactions affected the changes in the three phenological parameters were determined using the GeoDetector, and the results were explicable. The findings demonstrate that the EOS was more susceptible to climate change than the SOS. The vegetation phenology shift was best explained by the climate in March, April, and September, and the combined effect of the temperature and precipitation had a greater impact on the change in the vegetation phenology compared with the effects of the individual climate conditions. The results quantitatively show the degree of interaction between the variations in temperature and precipitation and their effects on the changes in the different phenological parameters in the various months. Understanding how various climatic variations effect phenology changes in plants at different times may be more intuitive. This research provides as a foundation for research on how global climate change affects ecosystems and the global carbon cycle.

  • 研究论文
    TIAN Hao, LIU Lin, ZHANG Zhengyong, CHEN Hongjin, ZHANG Xueying, WANG Tongxia, KANG Ziwei
    地理学报(英文版). 2024, 34(2): 375-396. doi: 10.1007/s11442-024-2209-z

    The variation of land surface temperature (LST) has a vital impact on the energy balance of the land surface process and the ecosystem stability. Based on MDO11C3, we mainly used regression analysis, GIS spatial analysis, correlation analysis, and center-of -gravity model, to analyze the LST variation and its spatiotemporal differentiation in China from 2001 to 2020. Furthermore, we employed the Geodetector to identify the dominant factors contributing to LST variation in 38 eco-geographic zones of China and investigate the underlying causes of its pattern. The results indicate the following: (1) From 2001 to 2020, the LST climate average in China is 9.6℃, with a general pattern of higher temperatures in the southeast and northwest regions, lower temperatures in the northeast and Qinghai-Tibet Plateau, and higher temperatures in plains compared to lower temperatures in mountainous areas. Generally, LST has a significant negative correlation with elevation, with a correlation coefficient of -0.66. China’s First Ladder has the most pronounced negative correlation, with a correlation coefficient of -0.76 and the lapse rate of LST is 0.57℃/100 m. (2) The change rate of LST in China during the study is 0.21℃/10 a, and the warming area accounts for 78%, demonstrating the overall spatial pattern a “multi-core warming and axial cooling”. (3) LST’s variation exhibits prominent seasonal characteristics in the whole country. The spatial distribution of average value in winter and summer differs significantly from other seasons and shows more noticeable fluctuations. The centroid trajectory of the seasonal warming/cooling area is close to a loop shape and displays corresponding seasonal reverse movement. Cooling areas exhibit more substantial centroid movement, indicating greater regional variation and seasonal variability. (4) China’s LST variation is driven by both natural influences and human activities, of which natural factors contribute more, with sunshine duration and altitude being key factors. The boundary trend between the two dominant type areas is highly consistent with the “Heihe-Tengchong Line”. The eastern region is mostly dominated by human activity in conjunction with terrain factors, while the western region is predominantly influenced by natural factors, which enhance/weaken the change range of LST through mutual coupling with climate, terrain, vegetation, and other factors. This study offers valuable scientific references for addressing climate change, analyzing surface environmental patterns, and protecting the ecological environment.

  • 研究论文
    ZHANG Xueqin, JIN Zheng, SHEN Pengke, ZHENG Du
    地理学报(英文版). 2024, 34(2): 397-414. doi: 10.1007/s11442-024-2210-6

    Lake surface water-heat exchange and its climatic attribution critically influence alpine lakes’ evaporation mechanism and water storage balance with climate change. Here, this paper first explored the hourly, daily, and monthly water-heat flux variations of the lake surface and their correlations with meteorological factors based on the eddy covariance turbulent flux observation over the Yamzhog Yumco, an alpine lake in south Tibet in the non-freezing period (April-December) in 2016 and 2017. We found that the average latent heat flux was much higher than the sensible heat flux on the lake surface from April to December. Meanwhile, the water-heat flux exhibited remarkable seasonal variation, with a prominent role of higher air temperature and humidity in summer jointly controlling the lake-air energy exchange. Moreover, the main controlling meteorological factors for the water-heat flux variation of the lake surface differed with diversified timescales. First, the lake-air temperature difference was the most significant meteorological factor related to sensible heat flux on the half-hourly, daily, and monthly timescales. Second, the latent heat flux was strongly positively correlated with wind speed and the synergies of wind speed and water vapor pressure deficit on the daily and half-hourly timescales. Third, the lake surface heat flux was significantly negatively correlated with net radiation flux on the daily and monthly scales. The negative correlation can be attributed to the seasonal variation of the water surface net radiation, and the phase difference in heat flux intensity caused by the lake-air temperature difference and heat capacity contrast. Our findings will hopefully improve the understanding of energy exchange and evaporation mechanisms for alpine lakes in a warming climate.

  • 研究论文
    SUN Han, WANG Xiangping
    地理学报(英文版). 2024, 34(1): 131-145. doi: 10.1007/s11442-024-2198-y

    The taiga vegetation in Western Siberia has been seriously threatened by climate warming in recent decades. However, how vegetation in different growing states and climate conditions responds to climate changes differently is still unclear. Here we explore the vegetation activity trends in Western Siberia taiga forests using the annual rate of change in leaf area index (LAI) during 1982-2018 so as to answer two questions: (1) how did climate warming affect taiga vegetation activity in the recent last decades? (2) Did the growing state of taiga forest affect its response to climate warming? Our results revealed that climate warming promoted taiga vegetation activity in Western Siberia before 2000. However, continuous warming caused excessive evapotranspiration and led to decreased vegetation activity after 2000. Moreover, the intensity of vegetation growth response to warming was positively related to canopy height and LAI, indicating that both the positive and negative effects of warming were more significant in taiga forests in better growing state. Since these forests generally have higher productivity and play more important roles in ecosystem functioning (e.g., carbon sink and biodiversity conservation), our results highlight their vulnerability to future climate change that need more research attention.

  • 研究论文
    WANG Yi, LU Yuqi, ZHU Yingming
    地理学报(英文版). 2024, 34(1): 3-24. doi: 10.1007/s11442-024-2192-4

    Urban-rural integration is an advanced form resulting from the future evolution of urban-rural relationships. Nevertheless, little research has explored whether urban and rural areas can move from dual segmentation to integrated development from a theoretical or empirical perspective. Based on the research framework of welfare economics, which offers an appealing paradigm to frame the underlying game between cities and villages, this study clarifies the ideal state of urban-rural integration. It then proposes a series of basic assumptions, and constructs a corresponding objective function and its constraints. Moreover, it assesses the possibility of seeing the transmutation from division to integration between urban and rural areas with continuous socio-economic development. The authors argue that the ideal state of urban-rural integration should be a Pareto-driven optimal allocation of urban-rural resources and outputs, and the maximization of social welfare in the entire region. Based on a systematic demonstration using mathematical models, the study proposes that urban and rural areas can enter this ideal integrated development pattern when certain parameter conditions are met. In general, this study demonstrates the theoretical logic and scientific foundations of urban-rural integration, enriches theoretical studies about urban-rural relationships, and provides basic theoretical support for large developing countries to build a coordinated and orderly urban-rural community with a shared future.

  • 研究论文
    CHEN Mingxing, XIAN Yue, HUANG Yaohuan, SUN Zhigang, WU Chengbin
    地理学报(英文版). 2024, 34(1): 25-40. doi: 10.1007/s11442-024-2193-3

    Cities are the key areas for human beings to achieve sustainable development goals in the future. Estuarine cities are a special type of coastal city in urgent need of a clear definition. This paper proposed that estuarine cities are cities developed on the coast where rivers and oceans meet and defined four connotations, including the intersection of rivers and marine water systems, the coordinated development of land and oceans, the location advantages of connecting rivers and seas, and the important fragility of the ecological environment. We used HydroSHEDS, OSM, GPW, and urban socioeconomic statistics and selected 50 estuarine cities with large rivers as representatives to summarize the main geographical basis and socioeconomic characteristics. Cities are primarily found in low-altitude, flat regions with average annual temperatures that mainly vary from 10°C to 25°C, relatively abundant precipitation, and extensive biological resources. There are substantial variations in the socioeconomic features of estuarine cities. We proposed eight development patterns, including open and inclusive city spirit, high-quality livable cities, high-quality development driven by innovation, integration of internal and external communication with ports and cities, construction of an international financial center, ecological environment protection and restoration, active promotion of cultural tourism, and positive international exchanges.