Most Download

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All
  • Most Downloaded in Recent Month
  • Most Downloaded in Recent Year

Please wait a minute...
  • Select all
    |
  • Research Articles
    ZHANG Li, LEI Jun, WANG Changjian, WANG Fei, GENG Zhifei, ZHOU Xiaoli
    Journal of Geographical Sciences. 2022, 32(10): 1886-1910. https://doi.org/10.1007/s11442-022-2028-z

    This essay combines the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) nighttime light data and the Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data into a “synthetic DMSP” dataset, from 1992 to 2020, to retrieve the spatio-temporal variations in energy-related carbon emissions in Xinjiang, China. Then, this paper analyzes several influencing factors for spatial differentiation of carbon emissions in Xinjiang with the application of geographical detector technique. Results reveal that (1) total carbon emissions continued to grow, while the growth rate slowed down in the past five years. (2) Large regional differences exist in total carbon emissions across various regions. Total carbon emissions of these regions in descending order are the northern slope of the Tianshan (Mountains) > the southern slope of the Tianshan > the three prefectures in southern Xinjiang > the northern part of Xinjiang. (3) Economic growth, population size, and energy consumption intensity are the most important factors of spatial differentiation of carbon emissions. The interaction between economic growth and population size as well as between economic growth and energy consumption intensity also enhances the explanatory power of carbon emissions’ spatial differentiation. This paper aims to help formulate differentiated carbon reduction targets and strategies for cities in different economic development stages and those with different carbon intensities so as to achieve the carbon peak goals in different steps.

  • Research Articles
    FAN Jiawei, JIANG Hanchao, XU Hongyan, ZHANG Wei
    Journal of Geographical Sciences. 2022, 32(11): 2328-2348. https://doi.org/10.1007/s11442-022-2050-1

    General history of disasters in China suggests that China has frequently experienced two major natural disasters in its long history, one is from catastrophic earthquake events, and the other is from extreme climatic events, due to its unique active tectonic environment and climatic complexity. Although these two major natural disasters have caused great damage to human society, it remains unclear whether and how they affect Chinese dynasty alternation on decadal (emperor) timescales. Based on detailed comparisons between abrupt climatic changes, catastrophic seismic activities, and the history of Chinese dynasty alternation from 1000-2000 AD, we conclude that on decadal timescales, extreme drought (and/or flood) events could indeed significantly reduce agricultural production, cause severe food shortages and famine, and result in increases in population exile, rising food prices and inflation, and insufficient supplies for military defense, which could exceed social resilience and eventually lead to financial risks and social upheavals of the dynasties. In addition, catastrophic seismic events in the densely populated, agricultural areas of China, including the 1303 surface wave magnitude (Ms) 8.0 Hongtong earthquake, the 1556 Ms 8.25 Huaxian earthquake and the 1920 Ms 8.5 Haiyuan earthquake, caused more than 200,000 casualties and millions of victims to live in exile which was almost equivalent to the order of magnitude of those extreme climatic events-induced refugees. The secondary geological hazards related to the earthquakes (e.g., extensive landslides and soil erosion), which could last for decades, caused more casualties and reduced food production. Furthermore, great plague spread caused by the casualties could significantly increase psychological panic among the survivors, resulting in social instability. Therefore, catastrophic seismic events could also accelerate the collapse of the dynasties (e.g., the Ming dynasty) without immediate mitigation measures. This study indicates that catastrophic seismic activities, as well as extreme climatic events, could have great effects on the social structures and thus on the Chinese dynasty alternation on decadal timescales, which highlights the far-reaching implications of geological hazard research.

  • Special Issue: Land for High-quality Development
    ZHU Wenchao, JIANG Zhimeng, CEN Luyu, WU Hao
    Journal of Geographical Sciences. 2023, 33(2): 266-288. https://doi.org/10.1007/s11442-023-2082-1

    High-intensity land use and resource overloaded-induced regional land use spatial pattern (LUSP) are essential and challenging for high-quality development. The empirical studies have shown that a scientific land uses spatial layout, and the supporting system should be based on a historical perspective and require better considering the double influence between the current characteristics and future dynamics. This study proposes a comprehensive framework that integrates the resource environment carrying capacity (RECC) and land use change (LUC) to investigate strategies for optimizing the spatial pattern of land use for high-quality development. China’s Zhengzhou city was the subject of a case study whose datasets include remote sensing, spatial monitoring, statistics, and open sources. Three significant results emerged from the analysis: (1) The RECC has significant spatial differentiation but does not follow a specific spatial law, and regions with relatively perfect ecosystems may not necessarily have better RECC. (2) From 2020 to 2030, the construction land and farmland will fluctuate wildly, with the former increasing by 346.21 km2 and the latter decreasing by 295.98 km2. (3) The study area is divided into five zones, including resource conservation, ecological carrying, living core, suitable construction, and grain supply zones, and each one has its LUSP optimization orientation. This uneven distribution of RECC reflects functional defects in the development and utilization of LUSP. In addition, the increase in construction land and the sharp decline of farmland pose potential threats to the sustainable development of the study area. Hence, these two elements cannot be ignored in the future high-quality development process. The findings indicate that the LUSP optimization based on dual dimensions of RECC and LUC is more realistic than a single-dimension solution, exhibiting the LUSP optimization’s effectiveness and applicability.

  • Special Issue: Land for High-quality Development
    GAO Peichao, XIE Yiru, SONG Changqing, CHENG Changxiu, YE Sijing
    Journal of Geographical Sciences. 2023, 33(2): 222-244. https://doi.org/10.1007/s11442-023-2080-3

    Henan, China, is likely the most populous agricultural province worldwide. It is China’s major grain-producing area, with a continuously increasing population (96 million), which is greater than 93% of countries worldwide. However, this province has been experiencing unprecedented urbanization recently due to national policies and measures, such as a plan to build the capital city of Henan into a national center, resulting in severe conflicts in land use that endanger food security regionally and globally. To facilitate decision-making on this problem, we explored the detailed urban-rural development of Henan by modeling these land-use conflicts. Conventional modeling of a region’s urban-rural development is to navigate trade-offs (a) solely between different land-use types (b) by assuming that each type provides a single service (e.g., croplands produce all the food), and (c) under a polynomial regression-based projection of population. In contrast, we considered both land-use type and intensity, resulting in a detailed land system for Henan. By introducing the concept of land system services (e.g., food production), we established a many-to-many relationship between land system classes and services. These allowed us to carry out the most comprehensive modeling of Henan’s urban-rural development under eighteen combined scenarios of population growth and land-use policies on food production. The modeling results of these scenarios provide a solid basis for making decisions regarding Henan’s urban-rural development. We also revealed the influence mechanism of population growth, land-use policies, and their combinations, highlighting the benefits of securing food production by agricultural intensification rather than merely expanding the area of cropland.

  • Research Articles
    FANG Chuanglin
    Journal of Geographical Sciences. 2022, 32(8): 1411-1426. https://doi.org/10.1007/s11442-022-2003-8

    Cities and the countryside have long been an inseparable organic whole. China’s new model of high-quality urbanization requires integrated urban and rural development and rural vitalization. Problems inherent to urban areas are caused by problems inherent to rural areas, and vice versa. Such problems are closely linked, and the compound each other to create “urban-rural problems.” As such, rural vitalization is necessary to prevent problems associated with growing cities, and the new model of urbanization is required to prevent problems in rural areas. Based on a review of domestic and foreign research on integrated urban and rural development, this study analyzes the root causes of persistent urban and rural problems and their counterposing patterns on a theoretical level; analyzes the main factors and driving mechanisms as well as the underlying pattern and sustainability of integrated urban and rural development; constructs a measurement test for integrated urban and rural development; and proposes a triangular model of integrated urban and rural development. It confirms that China’s integrated urban and rural development is in the late period of urbanization, which features a high degree of integration and more urban areas and fewer rural areas. Subsequently, it will enter the final period of urbanization and a stage of deep integration, with more urban and fewer rural areas. In the future, it will be necessary to implement a strategy of deeply integrated urban and rural development and use new urbanization and rural vitalization to solve urban-rural problems and improve the quality of urban and rural development. New theories and methods of integrated urban and rural development will need to be created and an evaluation system to judge quantitatively the depth of integrated urban and rural development will need to be established, in order to create desirable urban and rural areas. Future efforts should aim to develop greater synchronization, deeper integration, and mutual success between the new model of urbanization and rural vitalization, so as to improve the high-quality development of, and modernize, both urban and rural areas.

  • Research Articles
    YANG Yu, XIA Siyou, QIAN Xiaoying
    Journal of Geographical Sciences. 2023, 33(4): 683-704. https://doi.org/10.1007/s11442-023-2101-2

    Geopolitics of energy transition has increasingly become the frontier and hot research area of world energy geography and global political science. Different historical periods are characterised by obvious differences in energy connotations, attributes, and geopolitical characteristics. In the new energy era, energy geopolitics becomes more diversified, complex, and comprehensive. In this paper, we compare the geopolitical characteristics of energy in the fossil fuel and renewable energy periods, and provide an overview of current study trends in new energy geopolitics. Recent research shows that the global energy transition will intensify the reconstruction of geopolitical patterns, change the relationship between geopolitical security and conflict dominated by traditional energy security, alter the role of different countries in global energy geopolitical games, reshape national energy relationships formed in the traditional oil and gas era. In addition, geopolitics will be affected by new energy technologies, availability of key rare materials, and energy cybersecurity measures. Despite considerable attention to this research topic, the likely geopolitical impact of energy transition remains uncertain, and there is still room for the development and improvement of the theoretical framework, technical methods, and research perspective. Looking forward to the future, the research into geopolitics of energy transition urgently needs to strengthen its theoretical basis and rely on the scientific and quantitative methods. The practical conclusions of the research into geopolitics of energy transition should strengthen major national energy security decisions, explore the geographical effect of energy transition, and determine the impact of energy transition on energy security. Research into geopolitics of energy transition should be carried out taking into account international academic frontiers such as climate change, “carbon peak” and “carbon neutral” goals, and global energy governance, to enrich the research perspective of world energy geography.

  • Special Issue: Land for High-quality Development
    WANG Chao, WANG Xuan, WANG Yifan, ZHAN Jinyan, CHU Xi, TENG Yanmin, LIU Wei, WANG Huihui
    Journal of Geographical Sciences. 2023, 33(2): 392-412. https://doi.org/10.1007/s11442-023-2088-8

    Rapid economic and social change promotes to improve human wellbeing (HW), but poses threats to ecosystems and the environment. Studying the coupling relationship between HW and ecosystem services (ES) is crucial for informing high-quality development. Firstly, we built a comprehensive index system for HW assessment, and evaluated HW for 17 prefecture-level cities in Shandong province, China, from 2000 to 2018. Then, we quantified ES based on land use data. Finally, we assessed the coupling coordination degree and analyzed the relationships between HW and each type of ES value. The results were as follows: (1) HW values increased overall in Shandong, with the highest value in Jinan (0.8034) and the lowest value in Heze (0.4965) in 2018. (2) The total ES values for the 17 cities increased slightly. The ranking of 17 cities according to the ES value per unit area was different from the ranking according to the total ES value. (3) All 17 cities in Shandong were in the coordinated development phase after 2015, with increasing coupling coordination degrees. There were clear positive relationships between HW and ES. General and specific policy recommendations were proposed, providing scientific evidence and a reference for Shandong’s urban management and policy formulation.

  • Research Articles
    WU Shaohong, CHAO Qingchen, GAO Jiangbo, LIU Lulu, FENG Aiqing, DENG Haoyu, ZUO Liyuan, LIU Wanlu
    Journal of Geographical Sciences. 2023, 33(3): 429-448. https://doi.org/10.1007/s11442-023-2090-1

    Climate change will bring huge risks to human society and the economy. Regional climate change risk assessment is an important basic analysis for addressing climate change, which can be expressed as a regional system of comprehensive climate change risk. This study establishes regional systems of climate change risks under the proposed global warming targets. Results of this work are spatial patterns of climate change risks in China, indicated by the degree of climate change and the status of the risk receptors. Therefore, the risks show significant spatial differences. The high-risk regions are mainly distributed in East, South, and central China, while the medium-high risk regions are found in North and southwestern China. Under the 2°C warming target, more than 1/4 of China’s area would be at high and medium-high risk, which is more severe than under the 1.5°C warming target, and would extend to the western and northern regions. This work provides regional risk characteristics of climate change under different global warming targets as a foundation for dealing with climate change.

  • Research article
    LIANG Xinyuan, JIN Xiaobin, HAN Bo, SUN Rui, XU Weiyi, LI Hanbing, HE Jie, LI Jin
    Journal of Geographical Sciences. 2022, 32(6): 1001-1019. https://doi.org/10.1007/s11442-022-1982-9

    As the world’s largest developing country, the ability of China’s agricultural resource utilization to effectively support the current and future food security goals has been affected by a variety of factors (e.g., transformed supply channels, tightening international situation and frequent emergencies) in recent years and has attracted extensive attention from the academic community subject to multiple factors. This study uses literature review, statistical analysis, and spatial analysis methods to systematically explore China’s food security situation in the context of farmland resource constraints. It is found that the demand-side pressures such as demographic changes, social class differentiation, and dietary structure adjustments derived from economic growth and rapid urbanization have placed extremely high expectations on food supply. However, the quantitative restrictions, utilization ways, and health risks of farmland resources on the supply side constitute a huge hidden concern that affects the stability of food production. Although China’s farmland protection system is undergoing a transition from focusing on quantity management to sustainable use, the matching and coordinating demand pressure and supply capacity for food security is unbalanced. Therefore, facing uncertain future development scenarios, policymakers should focus on building a resilient space for China’s farmland protection to withstand the interference of major emergencies. The existing farmland protection space policy can be integrated by establishing a national farmland strategic reserve system (based on resilient space), and further development of targeted use control measures for zoning, grading, and classification will help realize sustainable China’s farmland resources use.

  • Research Articles
    YOU Zhen, SHI Hui, FENG Zhiming, XIAO Chiwei
    Journal of Geographical Sciences. 2022, 32(11): 2189-2204. https://doi.org/10.1007/s11442-022-2043-0

    Recent years have witnessed rapid and widespread economic growth in regions involved in China’s Belt and Road Initiative (BRI), mainly due to the construction of six economic corridors. This paper aims to quantify the levels of six economic corridors according to the socioeconomic development levels in the BRI regions. Here, a gridded socioeconomic development index was first created, and a dividing line was drawn to reveal the distribution characteristics of socioeconomic development in the BRI regions. A classification method was then applied to identify local development levels. Finally, we created an economic corridor development index (ECDI) to evaluate the progress of six economic corridors. The results reveal spatial heterogeneity within the socioeconomic groups of BRI regions, which can be roughly divided into offshore (or Part A, 50.54%) and inland (or Part B, 49.46%) areas. Although both parts comprise roughly the same area, over 95% of the population is located in offshore regions. The China-Mongolia-Russia Economic Corridor has the highest development index due to a stable political environment and long-running cooperation. The China-Pakistan Economic Corridor suffers from the lowest ECDI but with strong development potential. Our methods can provide critical reference and practice for the future evaluation of the level of regional development. The results of this study can offer policymakers some insight into reducing socioeconomic inequality in the BRI regions.

  • Research Articles
    REN Yawen, YANG Yu, WANG Yun, LIU Yi
    Journal of Geographical Sciences. 2023, 33(6): 1141-1160. https://doi.org/10.1007/s11442-023-2123-9

    The semiconductor industry typifies the international division of labor and exhibits significant structural differences in global trade in key product segments. The evolution of cross-border trade flows and dependency relationships, as well as trade organization patterns of manufactured products, equipment and materials for manufacturing, are investigated by constructing a global semiconductor trade relationship matrix and using the Gini coefficient and trade dependency index. It was found that: (1) the global semiconductor trade is highly spatially unbalanced, with materials and equipment trade in particular highly concentrated in a few countries on both the supply and demand sides; (2) China has replaced the US as the largest global semiconductor trade player and has shaped the regionalized system of manufactured goods and materials trade with East and Southeast Asian economies, but its equipment trade is highly dependent on Europe and the US; (3) the semiconductor production model has promoted the regionalization of the east and southeast Asia region in the trade of manufactured products and materials, and developed economies such as the US, the EU, Japan, and South Korea have maintained their monopolistic advantage in the trade of semiconductor equipment by building exclusive innovation networks and establishing trade barriers. The monopolistic nature of the semiconductor equipment trade and the regionalization of manufactured goods and materials have formed the characteristics of the global semiconductor trade and are likely to be further strengthened in future trade.

  • Special Issue: Land for High-quality Development
    ZHANG Fan, XU Ning, WANG Chao, GUO Mingjing, Pankaj KUMAR
    Journal of Geographical Sciences. 2023, 33(2): 340-356. https://doi.org/10.1007/s11442-023-2085-y

    Rapid economic development and human activities have severely affected ecosystem function. Analysis of the spatial distribution of areas of rapid urbanization is the basis for optimizing urban-ecological spatial design. This paper evaluated the spatial distribution of urbanization in the Beijing-Tianjin-Hebei (BTH) region, and then quantified the ecosystem services (ES) budget in the region based on an ES supply and demand matrix. The results showed that (1) urbanization patterns in the BTH region were relatively stable from 2000 to 2015, with clear patterns of low levels of urbanization in the northwest and high levels in the southeast; (2) areas with positive ES budget values were found throughout the region, except in built-up areas, with high ES supply areas concentrated in the northwest, and high ES demand areas in the southeast; (3) at both the county and prefecture-city levels, urbanization had negative, positive, and negative correlations with ES supply, demand, and budget, respectively; (4) the coupling coordination degree (CCD) increased, with high CCD values in the southeast. Based on these results, policy recommendations include strengthening rational land-use planning and ecosystem management, promoting the coordinated development of the economy and ecological function, and coordinating the provision of production-life- ecological functions.

  • Research article
    NIU Linan, SHAO Quanqin, NING Jia, HUANG Haibo
    Journal of Geographical Sciences. 2022, 32(6): 1059-1075. https://doi.org/10.1007/s11442-022-1985-6

    Since the implementation of the Development of Western Regions in 2000, a series of major ecological construction projects have been implemented, leading to a series of changes in the ecological conditions and ecological services of western China. This study calculated the amount of ecosystem services in total in the western region from 2000 to 2019, and analyzed ecological changes and the characteristics of spatio-temporal variations in ecological services. A relevant analysis method was applied to explore the tradeoff and synergy of service. It was found that the area of settlements and wetland ecosystems in the western region increased significantly from 2000 to 2015, whereas grassland showed a downward trend year by year. The vegetation fraction showed a decreasing belt-like distribution from south to north. It showed a fluctuating increase during 2000 to 2019, with inter-annual and large spatial differences. The water conservation service (WCS) had a slight downward trend from 2000 to 2019, and the main decreasing areas were distributed in southeastern Tibet, the western part of the Three Rivers Source region, and the karst rocky desertification area. The soil conservation service (SCS) showed an increasing but fluctuating trend, with the greatest increases observed in the Loess Plateau region, western Sichuan and Yunnan, northwest Tibet, and southeast Tibet. The windbreak and sand fixation service (SFS) showed a downward trend, and the sharp decline was mainly in the central and western parts of Inner Mongolia, Tibet and parts of northern Xinjiang. Ecosystem supply and WCS, and SCS were mainly synergistic, which were found in areas north of the Qinling Mountains-Huaihe River (QM-HR) line, especially in Ningxia and Inner Mongolia. Ecosystem supply was mainly tradeoffs with SFS, and it was found in the agriculture-pastoral transition zone. The synergistic degree of ecosystem services in areas subjected to ecological engineering policy was greater than that in non-engineering areas. Quantitative assessment of ecosystem service changes and their tradeoffs is helpful for scientific ecological management and maximizing ecological benefits.

  • Research Articles
    LIU Junjie, ZHANG Baiping, YAO Yonghui, ZHANG Xinghang, WANG Jing, YU Fuqin, LI Jiayu
    Journal of Geographical Sciences. 2023, 33(5): 907-923. https://doi.org/10.1007/s11442-023-2112-z

    Geographically, the Qinling-Daba Mountains serve as the main body of the north-south transitional zone of China. However, the transitional patterns of their plant species still need to be clarified. This study analyzed latitudinal variations of plant species richness, relative importance values (RIV), and plant species abundance based on plant community field survey data for 163 sample sites along three north-south transect lines in the eastern, middle, and western parts of the study areas. The difference in RIV between subtropical and temperate species (SND-RIV) was selected to reveal the latitudinal interlacing pattern of northern and southern plant species. Along the eastern (Sanmenxia-Yichang), middle (Xi’an-Dazhou), and western (Tianshui-Guangyuan) transects, the richness and RIV of subtropical plant species increased while those of temperate plant species decreased from north to south. In the eastern transect, temperate plant species richness and RIV were the highest at Shennongjia and Funiu Mountain, respectively, because of their high elevations. In the middle transect, subtropical plant species richness and RIV were the highest in the Daba Mountains. In the western transect, richness and RIV were higher for subtropical than temperate plant species from the south of Longnan. The crisscrossing areas of northern and southern plant species were ~180 km, ~100 km, and ~60 km wide for the eastern, middle, and western transects, respectively, showing a narrowing trend from east to west. For the eastern and western transects, decreases in subtropical plant species distribution from south to north could be attributed to a decrease in mean annual precipitation in the same direction. However, for the middle transect, mean annual temperature had a slightly greater influence on plant species’ latitudinal distribution than the moisture index. This study provides a more solid scientific basis for future investigations of this key geographical boundary in China.

  • Research Articles
    LIU Zhitao, WANG Shaojian, FANG Chuanglin
    Journal of Geographical Sciences. 2023, 33(6): 1226-1244. https://doi.org/10.1007/s11442-023-2127-5

    Ecosystem services are the media and channels through which ecological elements, structures, functions, and products benefit human society. Regulating the utilization intensity and protection methods of society on the ecosystem according to the ecosystem service value (ESV) and its influencing mechanism is of great significance for achieving the sustainable development goals. This paper takes the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) as the research object and describes the spatiotemporal evolution characteristics of ESV in the GBA from 2000 to 2015. Panel quantile regression is also implemented to increase the understanding of the influencing mechanism of ESV. The main results are as follows: (1) From 2000 to 2015, the total ESV declined with a decreasing rate. The areas of decline were mainly distributed in the central part of the GBA and areas along the Pearl River Estuary. (2) Elasticity index, indicating response of ESV to land use change, reached its peak (1.08). The spatial distribution of elasticity index showed that land use changes brought about more intense ESV variations at the junction of cities. (3) In areas with different ESV levels, the influencing factors have different effects. Land use integrity can only promote ecosystem service capabilities in low-ESV areas. The positive effect of temperature on ecosystem service capacity increases with the increase of ESV, which reflects the self-reinforcement of the ecosystem. Moreover, the negative effect of economic density on ecosystem service capacity decreases with the increase of ESV, which reflects the self-protection of the ecosystem. The combination of such self-reinforcement and self-protection will lead to an ESV gap between the high- and low-ESV areas, and induce the “natural Matthew effect.”

  • Regular Articles
    MU Xufang, FANG Chuanglin, YANG Zhiqi
    Journal of Geographical Sciences. 2022, 32(9): 1766-1790. https://doi.org/10.1007/s11442-022-2022-5

    The continuous growth of urban agglomerations in China has increased their complexity as well as vulnerability. In this context, urban resilience is critical for the healthy and sustainable development of urban agglomerations. Focusing on the Beijing-Tianjin-Hebei (BTH) urban agglomeration, this study constructs an urban resilience evaluation system based on four subsystems: economy, society, infrastructure, and ecology. It uses the entropy method to measure the urban resilience of the BTH urban agglomeration from 2000 to 2018. Theil index, standard deviation ellipse, and gray prediction model GM (1,1) methods are used to examine the spatio-temporal evolution and dynamic simulation of urban resilience in this urban agglomeration. Our results show that the comprehensive evaluation index for urban resilience in the BTH urban agglomeration followed a steady upward trend from 2000 to 2018, with an average annual growth rate of 6.72%. There are significant differences in each subsystem’s contribution to urban resilience; overall, economic resilience is the main factor affecting urban resilience, with an average annual growth rate of 8.06%. Spatial differences in urban resilience in the BTH urban agglomeration have decreased from 2000 to 2018, showing the typical characteristic of being greater in the central core area and lower in the surrounding non-core areas. The level of urban resilience in the BTH urban agglomeration is forecast to continue increasing over the next ten years. However, there are still considerable differences between the cities. Policy factors will play a positive role in promoting the resilience level. Based on the evaluation results, corresponding policy recommendations are put forward to provide scientific data support and a theoretical basis for the resilience construction of the BTH urban agglomeration.

  • Special Issue: Land for High-quality Development
    KE Xinli, ZHANG Ying, ZHOU Ting
    Journal of Geographical Sciences. 2023, 33(2): 357-372. https://doi.org/10.1007/s11442-023-2086-x

    Identifying the dynamics of the eco-efficiency of cultivated land use (ECLU) is important to balance food security and environmental protection. The Yangtze River Economic Belt (YREB) is a vital region of national strategic development in China. However, the spatio-temporal characteristics and typical patterns of the ECLU in the YREB remain unclear. This study aims to reveal the spatio-temporal characteristics of the ECLU by using the super-efficiency slack-based measure (SBM) and a spatial autocorrelation model. The typical patterns of the ECLU were classified based on a decision tree algorithm. The results indicate that the overall ECLU increased from 0.78 to 0.87 from 2000 to 2019, dropping sharply in 2003 before rising again. Different reaches had similar trends. The local indicators of spatial association (LISA) cluster reflect that the spatial distributions of high-high and low-low agglomeration varied dramatically among these years. The ECLU was divided into three typical patterns considering the restriction of agrochemicals and water resources (RAW), cultivated land and agrochemicals (RCA), as well as technology (RT). Most cities belonged to the low ECLU category in RT pattern. Fully understanding the spatio-temporal characteristics and classification of the ECLU will provide a reference for decision-makers to improve the ECLU in different regions.

  • Research Articles
    XU Haijue, LI Yan, HUANG Zhe, BAI Yuchuan, ZHANG Jinliang
    Journal of Geographical Sciences. 2022, 32(11): 2311-2327. https://doi.org/10.1007/s11442-022-2049-7

    The energy dissipation of boundary resistance is presented in this paper based on the flow resistance. Additionally, the river morphology responses to the resistance energy dissipation are explored using the Gaocun-Taochengpu reach in the lower Yellow River as a prototype. Theoretical analysis, measured data analysis and a one-dimensional hydrodynamic model are synthetically used to calculate the energy dissipation rate and riverbed morphological change. The results show that the energy dissipation rate along the channel will increase in both the mean value and the fluctuation intensity with increasing discharge. However, the energy dissipation rate will first decrease and then increase as the flow section or width-depth ratio increases. In addition, the energy dissipation rate has a significant positive correlation with the riverbed stability index. The results imply that the water and sediment transport efficiency of the river channel can be improved by optimizing the cross-sectional configuration to fulfil the minimum energy dissipation rate of the boundary resistance under stable riverbed conditions.

  • Special Issue: Land for High-quality Development
    YANG Bin, YANG Jun, TAN Li, XIAO Jianying
    Journal of Geographical Sciences. 2023, 33(2): 289-310. https://doi.org/10.1007/s11442-023-2083-0

    Land spaces function in capacities of urban development, agricultural production, and ecological conservation, among many others. Research of land space utilization efficiency (LSUE) and coupling coordination relationships among its subsystems are significant for sustainable land space development. In this study, taking the Urban Agglomeration in the Middle Reaches of the Yangtze River (UAMRYR) as the study area, we establish a measurement index system to evaluate the LSUE (2000-2018) and analyze its coupling coordination degree by utilizing an improved coupling coordination model. The main results include the following. (1) The average efficiency levels of urban space and agricultural space in the UAMRYR increased 2000-2018, while the average efficiency of ecological space declined. (2) The spatial pattern of the LSUE values varied greatly, with the distributions of high-efficiency and low-efficiency levels significantly different. (3) The coupling degree of LSUE includes three types, i.e., high-level coupling, break-in, and antagonism. Each coupling degree type was characterized by change over time. (4) The proportion of areas with high coupling coordination and moderate coupling coordination increased from 2000 to 2018, while the proportion of areas with basic coupling coordination, moderate imbalance, and serious imbalance declined during this period. Given that the spatial differentiation of the LSUE and its coupling coordination, it is necessary to implement a differential land space development strategy in the UAMRYR. This study is helpful to promote the efficient utilization and coordinated development of land space utilization systems.

  • CAI Weixiang, XU Li, LI Mingxu, SUN Osbert Jianxin, HE Nianpeng
    Journal of Geographical Sciences. 2023, 33(1): 3-17. https://doi.org/10.1007/s11442-023-2071-4

    Forest ecosystem, as a predominant component of terrestrial ecosystems in view of carbon sinks, has a high potential for carbon sequestration. Accurately estimating the carbon sequestration rate in forest ecosystems at provincial level, is a prerequisite and basis for scientifically formulating the technical approaches of carbon neutrality and the associated regulatory policies in China. However, few researches on future carbon sequestration rates (CSRs) for Chinese forest ecosystems for provincial-level regions (hereafter province) have been reported, especially for forest soils. In this study, we quantitatively assessed the carbon sequestration rates of existing forest ecosystems of all the provinces from 2010 to 2060 using the Forest Carbon Sequestration model (FCS), in combination with large quantities of field-measured data in China under three future climate scenarios (RCP2.6, RCP4.5, and RCP8.5). Results showed that CSRs across provinces varied from 0.01 TgC a-1 to 36.74 TgC a-1, with a mean of 10.09 ± 0.43 TgC a-1. Inter-provincial differences have been observed in forest CSRs. Regarding the spatial variations in CSRs on a unit area basis within provinces, the eastern region provinces have a larger capacity for sequestration than the western region, while the western region has greater CSR per unit GDP and per capita. Moreover, there are significant negative correlations between the CSRs per capita in each province and the corresponding GDP per capita, under the assumption that GDP per capita is constant in the future across provinces. In summary, there is a significant regional imbalance in CSR among provinces. Special technological and policy interventions are required to realize carbon sink potential sustainably. An overlap in China’s poorer areas and areas with stronger carbon sinks has indicated that existing policies to support traditional carbon trading are insufficient. Regulatory measures such as “regional carbon compensation” must be adopted urgently in line with the Chinese characteristics, so that people in western or underdeveloped regions can consciously strengthen forest protection and enhance forest carbon sinks through coordinated regional development while ensuring that China’s forests play a greater role in carbon neutrality strategies.

  • Special Issue: Land for High-quality Development
    HU Can, SONG Min, ZHANG Anlu
    Journal of Geographical Sciences. 2023, 33(2): 245-265. https://doi.org/10.1007/s11442-023-2081-2

    The dramatic land use changes that occur in rapidly urbanized areas are important inducement to changes in the eco-environmental quality. Investigating urban land use changes and their eco-environmental quality responses can provide theoretical support and a decision-making basis for sustainable and high-quality development in rapidly urbanizing areas. Taking Wuhan, China, as the study area, this paper extracts land use information using Landsat satellite remote sensing images and a support vector machine classification. Based on this, a remote sensing-based ecological index evaluation model including humidity, greenness, dryness and heat is constructed to explore the changes in land use and their eco-environmental quality responses from 2000 to 2018. The results show that (1) the structure, extent and spatial layout of land use in Wuhan from 2000 to 2018 have undergone tremendous changes under rapid urbanization, and the change of construction land is the greatest among all land use types; (2) the overall quality of eco-environment in Wuhan continues to improve as the scale of the improved eco-environment areas is greater than that of the deteriorated areas. The direction and magnitude of the impact of each indicator on the eco-environmental quality are different; (3) the improvement or deterioration of eco-environmental quality is closely related to the changes of different land use types within the study area. The eco-environmental quality shows significant spatial heterogeneity, especially between the main urban areas and the suburban areas. This paper argues that reasonably adjusting the land use structure can serve to maintain or even improve the quality of the regional eco-environment. Finally, this study puts forward suggestions for the coordinated development of land use and the eco-environment in rapidly urbanizing areas.

  • LIU Sheng, GE Jian, YE Xinyue, WU Chao, BAI Ming
    Journal of Geographical Sciences. 2023, 33(7): 1482-1504. https://doi.org/10.1007/s11442-023-2139-1

    The number of urban vitality assessment studies is rising continuously, owing to the emergence of geographic data. The current literature focuses primarily on evaluation, rather than implementation, of urban vitality. Hence, a scoping review and research agenda are needed for urban vitality research to be more practical. This study aims to fill the research gap by exploring the content and methods of vitality assessment that can make urban vitality research more compatible with policy, planning, and design practice. We chose the neighborhood scale, which is the most practical initiative unit for vitality enhancement. We discovered that the gaps between the current research and practice primarily lie in the diversity of research subjects, the authenticity and comprehensiveness of vitality measurement, and the multi-domain of impact factor analysis. On this basis, we classified the following expandable aspects: (1) multi-type, multi-dimensional, multi-temporal, and implementation-adaptive vitality evaluation; (2) methods reflecting high-quality social interactions and the perceptions of vulnerable groups; (3) how design and urban management impacts vitality; and (4) the synergistic effects of multiple indicators on vitality. Overall, the research content and methodology presented in this paper can help neighborhood-scale vitality assessment to provide more meaningful insights for policy makers and practitioners.

  • Special Issue: Land for High-quality Development
    JIN Gui, PENG Jian, ZHANG Lixiao, ZHANG Zhengyu
    Journal of Geographical Sciences. 2023, 33(2): 217-221. https://doi.org/10.1007/s11442-023-2079-9
  • Regular Articles
    LIAO Weihua, JIANG Weiguo, HUANG Ziqian
    Journal of Geographical Sciences. 2022, 32(9): 1813-1830. https://doi.org/10.1007/s11442-022-2024-3

    Accurate and rapid evaluation of the regional eco-environment is critical to policy formulation. The remote sensing ecological index (RSEI) model of the Guangxi Beibu Gulf Economic Zone (GBGEZ) during 2001-2020 was established and evaluated using four indices: dryness, wetness, greenness, and heat. This paper proposes an information granulation method for remote sensing based on the RSEI index value that uses granular computing. We found that: (1) From 2001 to 2020, the eco-environmental quality (EEQ) of GBGEZ tended to improve, and the spatial difference tended to expand. The regional spatial distribution of the eco-environment is primarily in the second-level and third-level areas, and the EEQ in the east and west is better than that in the middle. The contribution of greenness, wetness, and dryness to the improvement of EEQ in the study region increased year by year. (2) From 2001 to 2020, the order of the contribution of the EEQ index in the GBGEZ was dryness, wetness, greenness, and heat. (3) The social and economic activities in the study region had a certain inhibitory effect on the improvement of the EEQ.

  • Research Articles
    LUO Dengnan, HU Zhongmin, DAI Licong, HOU Guolong, DI Kai, LIANG Minqi, CAO Ruochen, ZENG Xiang
    Journal of Geographical Sciences. 2023, 33(3): 449-463. https://doi.org/10.1007/s11442-023-2091-0

    Climate change is expected to introduce more water demand in the face of diminishing water supplies, intensifying the degree of aridity observed in terrestrial ecosystems in the 21st century. This study investigated spatiotemporal variability within global aridity index (AI) values from 1970-2018. The results revealed an overall drying trend (0.0016 yr-1, p<0.01), with humid and semi-humid regions experiencing more significant drying than other regions, including those classified as arid or semi-arid. In addition, the Qinghai-Tibet Plateau has gotten wetter, largely due to the increases in precipitation (PPT) observed in that region. Global drying is driven primarily by decreasing and increasing PPT and potential evapotranspiration (PET), respectively. Decreases in PPT alone or increases in PET also drive global aridification, though to a lesser extent. PPT and increasing potential evapotranspiration (PET), with increasing PET alone or decreasing PPT alone. Slightly less than half of the world’s land area has exhibited a wetting trend, largely owing to increases in regional PPT. In some parts of the world, the combined effects of increased PPT and decreased PET drives wetting, with decreases in PET alone explaining wetting in others. These results indicate that, without consideration of other factors (e.g., CO2 fertilization), aridity may continue to intensify, especially in humid regions.

  • Research Articles
    LI Lingjie, WANG Yintang, WANG Leizhi, HU Qingfang, ZHU Zhenduo, LI Liping, LI Chengxi
    Journal of Geographical Sciences. 2022, 32(11): 2271-2290. https://doi.org/10.1007/s11442-022-2047-9

    Multi-source weighted-ensemble precipitation (MSWEP) is one of the most popular merged global precipitation products with long-term spanning and high spatial resolution. While various studies have acknowledged its ability to accurately estimate precipitation in terms of temporal dynamics, its performance regarding spatial pattern and extreme rainfall is overlooked. To fill this knowledge gap, the daily precipitation of two versions of MSWEP (MSWEP V2.1 & V2.2) are compared with that of three representative satellite- and reanalysis-based products, namely the Tropical Rainfall Measuring Mission (TRMM 3B42 V7), the climate prediction center morphing technique satellite-gauge merged product (CMORPH BLD), and the fifth-generation reanalysis product of the European Centre for Medium Range Weather Forecasts (ERA5). The comparison is made according to the dense daily rainfall observations from 539 rain gauges over the Huaihe River Basin in China during 2006-2015. The results show that MSWEP V2.1, MSWEP V2.2 and CMORPH BLD have better performance on temporal accuracy of precipitation estimation, followed by ERA5 and TRMM 3B42 V7. MSWEPs yield the most even spatial distribution across the basin since it takes full advantage of the multi datasets. As the weighted-ensemble method is independently carried out on each grid in MSWEPs, the spatial distribution of local precipitation is changed by different source data, which results in that MSWEPs perform worse than CMORPH BLD in terms of the representation of precipitation spatial pattern. In addition, the capability of MSWEPs to describe the spatial structure in the rainy season is lower than that in the dry season. Strong precipitation (≥100 mm/d) events are better represented in TRMM 3B42 V7 products than in MSWEPs. Finally, based on the comparison results, we suggest to improve the merging algorithm of MSWEP by considering the precipitation spatial self-correlation and adjusting the merging weights based on the performance of the source datasets under different precipitation intensities.

  • Special Issue: Land for High-quality Development
    LIU Xiaoqiong, WANG Xu, CHEN Kunlun, LI Dan
    Journal of Geographical Sciences. 2023, 33(2): 373-391. https://doi.org/10.1007/s11442-023-2087-9

    Building the Yangtze River Economic Belt (YREB) is one of China’s three national development policies in the new era. The ecological environment of the Yangtze River Economic Belt must be protected not only for regional economic development but also for regional ecological security and ecological progress in this region. This paper takes the ecological space of the Yangtze River Economic Belt as the research object, based on land use data in 2010 and 2015, and uses the FLUS model to simulate and predict the ecological space of the research area in 2035. The variation of the research area’s ecological space area and its four sub-zones has remarkable stability under diverse situations. Both the production space priority scenarios (S1) and living space priority scenarios (S2) saw a fall in ecological space area, with the former experiencing the highest reduction (a total reduction of 25,212 km2). Under the ecological space priority scenarios (S3) and comprehensive space optimization scenario (S4), the ecological space area increased, and the ecological space area expanded even more under the former scenario (a total growth of 23,648 km2). In Yunnan-Guizhou, the ecological space is relatively stable, with minimal signs of change. In Sichuan-Chongqing, the Sichuan Basin, Zoige Grassland, and Longmen Mountains were significant regions of area changes in ecological space. In the middle reaches of the Yangtze River, the ecological space changes mainly occur in the Wuyi Mountains, Mufu Mountains, and Dabie Mountains, as well as the surrounding waters of Dongting Lake. The Yangtze River Delta’s changes were mainly observed in the eastern Dabie Mountains and Jianghuai Hills.

  • Regular Articles
    KUANG Wenhui, ZHANG Shuwen, DU Guoming, YAN Changzhen, WU Shixin, LI Rendong, LU Dengsheng, PAN Tao, NING Jing, GUO Changqing, DONG Jinwei, BAO Yuhai, CHI Wenfeng, DOU Yinyin, HOU Yali, YIN Zherui, CHANG Liping, YANG Jiuchun, XIE Jiali, QIU Juan, ZHANG Hansong, ZHANG Yubo, YANG Shiqi, SA Rigai, LIU Jiyuan
    Journal of Geographical Sciences. 2022, 32(9): 1705-1723. https://doi.org/10.1007/s11442-022-2019-0

    High-resolution mapping and monitoring of national land use/cover changes contribute significantly to the knowledge of the interaction between human activities and environmental changes. China’s Land Use/cover Dataset (CLUD) for 2020 and its dynamic changes in 2015-2020 were developed to extend the CLUD to over 30 years (i.e., the 1980s to 2020 at 5-year intervals) by integrating remote sensing big data and knowledge-based human-computer interaction interpretation methods. This integrating method for CLUD 2020 improved the efficiency of national land use/cover mapping and the accuracy of land use pattern change detection compared to earlier CLUD products, with an overall accuracy of 95%. The intensity of land use change decreased across China in 2015-2020 compared to 2010-2015, although both characteristics of its spatial changes were similar. The cropland area continued to shrink at national scale in 2015-2020, with two regional hotspots including the widespread conversions from dry land into paddy land in Northeast China and the coexistence of widespread land cultivation and cropland abandonment in Xinjiang of Northwest China. Built-up land area continued to expand in China, showing consistency between 2015-2020 and 2010-2015, in which hotspots transited from the surroundings of coastal megacities to the city surroundings of the central and western zones. For natural land, although the woodland and grassland decreased in 2015-2020, its magnitude expanded compared to 2010-2015. In comparison, the water body area in Qinghai-Tibet Plateau increased significantly under the continuous impact of climate change. These characteristics of land use change were closely related to the development strategy of the top-level design of the 13th Five-Year Plan (2016-2020) (e.g., ecological civilization construction and high-quality development).

  • Research Articles
    SHAO Yajing, LIU Yansui, LI Yuheng, YUAN Xuefeng
    Journal of Geographical Sciences. 2023, 33(4): 863-884. https://doi.org/10.1007/s11442-023-2110-1

    The Yellow River Basin (YRB) occupies an important position in China’s socioeconomic development and ecological conservation efforts. Understanding the spatiotemporal characteristics of the relationships among multiple ecosystem services (ESs) and their drivers is crucial for regional sustainable development and human-earth system coordination. This study simulated food production (FP), water yield (WY), net primary production (NPP), soil conservation (SC), and habitat quality (HQ) in the YRB from 2000 to 2020, and evaluated the spatial evolution and the relationship of ESs at the raster scale. Redundancy analysis was used to identify the impact of natural, socioeconomic, and landscape patterns on the relationship between ESs. The results demonstrated that the average HQ per unit area decreased by 18.10%, while SC, NPP, WY, and FP increased by 42.68%, 47.63%, 30.82%, and 67.10%, respectively, from 2000 to 2020. The relationship between ESs in the YRB was dominated by weak trade-offs and weak synergies at a temporal scale, with the trade-offs strengthened in the Upper Yellow River Basin (UYRB) and the Middle Yellow River Basin (MYRB), and synergies strengthened in the Lower Yellow River Basin (LYRB). At the spatial scale, the relationships between HQ and WY, HQ and SC, HQ and NPP, FP and SC, and FP and HQ were all dominated by trade-offs, while other ES pairs were mostly based on synergistic relationships. In the YRB, the relationships among ESs were mainly influenced by human disturbance, precipitation, and land-use and exploitation intensity. Specifically, the trade-offs among ESs in the UYRB were primarily affected by precipitation, and those in the MYRB and LYRB by human disturbance. The heterogeneity of the landscape could also effectively promote synergies among ESs. This study could provide insights into trade-offs and synergies among ESs and their driving forces and lay a foundation for ecological restoration and sustainable development of ESs in the YRB.

  • Research Articles
    ZHAO Haixia, GU Binjie, LINDLEY Sarah, ZHU Tianyuan, FAN Jinding
    Journal of Geographical Sciences. 2023, 33(3): 508-528. https://doi.org/10.1007/s11442-023-2094-x

    Vegetation change is of significant concern because it plays a crucial role in the global carbon cycle and climate. Many studies have examined recent changes in vegetation growth and the associated drivers. These drivers include both natural and human activities, but few studies have identified the regulation factors. By employing normalized difference vegetation index (NDVI) data, we analyzed the spatiotemporal pattern of vegetation change in China and then explored the driving factors. It was found that the overall greening of China has improved significantly, especially in the Loess Plateau and southwest China. The Yangtze River Delta and Bohai Rim, however, have not seen as much growth. Natural conditions are conducive to vegetation growth. Although socioeconomic development will be more beneficial for vegetation restoration, the current level and speed of development have a negative effect on vegetation. The regulation factors are considered separately since they affect both directly and indirectly. Regulation factors have accelerated vegetation growth. By understanding the factors affecting the current vegetation growth, we can provide a guide for future vegetation recovery in China and other similar countries.