“Climate and Environmental Change” 栏目所有文章列表

(按年度、期号倒序)

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部

Please wait a minute...
  • 全选
    |
  • Climate and Environmental Change
    LIU Changming, ZHANG Dan, LIU Xiaomang, ZHAO Changsen
    Journal of Geographical Sciences. 2012, 22(1): 3-14. doi: 10.1007/s11442-012-0907-4

    Potential evapotranspiration (E0), as an estimate of the evaporative demand of the atmosphere, has been widely studied in the fields of irrigation management, crop water demand and predictions in ungauged basins (PUBs). Analysis of the sensitivity of E0 to meteorological factors is a basic research on the impact of climate change on water resources, and also is important to the optimal allocation of agricultural water resources. This paper dealt with sensitivity of E0 over China, which was divided into ten drainage systems, including Songhua River basin, Liaohe River basin, Haihe River basin, Yellow River basin, Yangtze River basin, Pearl River basin, Huaihe River drainage system, Southeast river drainage system, Northwest river drainage system and Southwest river drainage system. In addition, the calculation method of global radiation in Penman-Monteith formula was improved by optimization, and the sensitivities of Penman-Monteith potential evapotranspiration to the daily maximum temperature (STmax), daily minimum temperature (STmin), wind speed (SU2), global radiation (SRs) and vapor pressure (SVP) were calculated and analyzed based on the long-term meteorological data from 653 meteorological stations in China during the period 1960-2007. Results show that: (1) the correlation coefficient between E0 and pan evaporation increased from 0.61 to 0.75. E0 had the decline trends in eight of ten drainage systems in China, which indicates that “pan evaporation paradox” commonly exists in China from 1960 to 2007. (2) Spatially, Tmax was the most sensitive factor in Haihe River basin, Yellow River basin, Huaihe River drainage system, Yangtze River basin, Pearl River basin and Southeast river drainage system, and VP was the most sensitive factor in Songhua River Basin, Liaohe River basin, Northwest river drainage system while Rs was the most sensitive factor in Southwest river drainage system. For the nation-wide average, the most sensitive factor was VP, followed by Tmax, Rs, U2 and Tmin. In addition, the changes in sensitivity coefficients had a certain correlation with elevation. (3) Temporally, the maximum values of STmax and SRs occurred in July, while the maximum values of STmin, SVP and SU2 occurred in January. Moreover, trend analysis indicates that STmax had decline trends, while STmin, SU2, SRs and SVP had increasing

  • Climate and Environmental Change
    ZHANG Mingjun, WANG Shengjie, LI Zhongqin, WANG Feiteng
    Journal of Geographical Sciences. 2012, 22(1): 15-28. doi: 10.1007/s11442-012-0908-3

    Based on the glacier area variation records in the typical regions of China monitored by remote sensing, as well as the meteorological data of air temperature and precipitation from 139 stations and the 0℃ isotherm height from 28 stations, the glacier area shrinkage in China and its climatic background in the past half century was discussed. The initial glacier area calculated in this study was 23,982 km2 in the 1960s/1970s, but the present area was only 21,893 km2 in the 2000s. The area-weighted shrinking rate of glacier was 10.1%, and the interpolated annual percentage of area changes (APAC) of glacier was 0.3% a-1 since 1960. The high APAC was found at the Ili River Basin and the Junggar Interior Basin around the Tianshan Mountains, the Ob River Basin around the Altay Mountains, the Hexi Interior Basin around the Qilian Mountains, etc. The retreat of glacier was affected by the climatic background, and the influence on glacier of the slight-increased precipitation was counteracted by the significant warming in summer.

  • Climate and Environmental Change
    LI Zhengguo, TANG Huajun, YANG Peng, WU Wenbin, CHEN Zhongxin, ZHOU Qingbo, ZHANG Li, ZOU Jinqiu
    Journal of Geographical Sciences. 2012, 22(1): 29-45. doi: 10.1007/s11442-012-0909-2

    We investigated the responses of cropland phenophases to changes of agricultural thermal conditions in Northeast China using the SPOT-VGT Normalized Difference Vegetation Index (NDVI) ten-day-composed time-series data, observed crop phenophases and the climate data collected from 1990 to 2010. First, the phenological parameters, such as the dates of onset-of-growth, peak-of-growth and end-of-growth as well as the length of the growing season, were extracted from the smoothed NVDI time-series dataset and showed an obvious correlation with the observed crop phenophases, including the stages of seedling, heading, maturity and the length of the growth period. Secondly, the spatio-temporal trends of the major thermal conditions (the first date of ≥10℃, the first frost date, the length of the temperature-allowing growth period and the accumulated temperature (AT) of ≥10℃) in Northeast China were illustrated and analyzed over the past 20 years. Thirdly, we focused on the responses of cropland phenophases to the thermal conditions changes. The results showed that the onset-of-growth date had an obvious positive correlation with the first date of ≥10℃ (P < 0.01), especially in the northern part of the Songnen Plain, the eastern part of the Sanjiang Plain and the middle and eastern parts of Jilin Province. For the extracted length of growing season and the observed growth period, notable correlations were found in almost same regions (P < 0.05). However, there was no obvious correlation between the end-of-growth date and the first frost date in the study area. Opposite correlations were observed between the length of the growing season and the AT of ≥10℃. In the northern part of the Songnen Plain, the eastern part of the Sanjiang Plain and the middle part of Jilin and Liaoning Provinces, the positive correlation coefficients were higher than the critical value of 0.05, whereas the negative correlation coefficients reached a level of 0.55 (P < 0.05) in the middle and southern parts of Heilongjiang Province and some parts of the Sanjiang Plain. This finding indicated that the crop growth periods were shortened because of the elevated temperature; in contrast, the extended growth period usually meant a crop transformation from early- or middle-maturing varieties into middle or late ones.

  • Climate and Environmental Change
    FENG Yan, KANG Bin, YANG Liping
    Journal of Geographical Sciences. 2012, 22(1): 46-56. doi: 10.1007/s11442-012-0910-9

    Index systems on river health assessment are difficult for using in practice, due to the more complex and professional indicators adopted. In the paper, some key indicators which can be applied for river health assessment in general were selected, based on the analysis of 45 assessment index systems with 902 variables within around 150 published papers and documents in 1972-2010. According to the fields covered by the variables, they were divided into four groups: habitat condition, water environment, biotic status and water utilization. The adopted number and the accepted degrees in the above systems of each indicator were calculated after the variables were combined into the indicators, some of the widely accepted indicators which can reflect different aspects of river condition were selected as key indicators in candidate. Under the correlation analysis amongst the key indicators in candidate, 8 indicators were finally suggested as the key indicators for assessing river health, which were: coverage rate of riparian vegetation, reserved rate of wetland, river continuity, the changing rate of water flow, the ratio of reaching water quality standard, fish index of biotic integrity, the ratio of water utilization and land use.

  • Climate and Environmental Change
    ZHOU Demin, LUAN Zhaoqing, GUO Xiaoyu, LOU Yanjing
    Journal of Geographical Sciences. 2012, 22(1): 57-70. doi: 10.1007/s11442-012-0911-8

    Quantifying correlation between the spatial patterns of natural wetland plants and environmental gradient gives better understanding of wetland habitats, which is the fundamental for the strategy making on the protection and restoration of natural wetlands. In this study, the spatial patterns of wetland plants and the environmental gradient of wetland habitats were assessed in the Honghe National Nature Reserve (HNNR) in Northeast China, a wetland of international importance on the Ramsar list. Biophysical parameters' values of wetland plants were obtained by field sampling methods, and wetland mapping at the community scale was completed using remote sensing techniques. Digital delineation of the surface water system, hydrological zoning and wetness index were produced by spatial analysis methods in Geographic Information System. An ecological ordination method and two clustering methods were used to quantify the relationship between the spatial distribution patterns of wetland plants and the corresponding environmental gradients. Such quantitative analyses also present the specific diversity of different types of wetland plants based on the environmental attributes of their habitats. With the support from modern geo-information techniques, the experimental results indicate how four ecotypes of wetland plants spatially transit from forest swamp, shrub wetland and meadow into marsh wetland with increasing wetness index and water table. And they also show how wetland spatial distribution patterns are controlled by an environmental gradient of wetness. Another key finding of this research work is that our results present the exact fundamental differences between marsh and non-marsh plants of 11 wetland plant communities within the core study area. Hence, this case study gives a good sample for better understanding of the complex correlation between the spatial patterns of wetland plants and their environmental attributes using advanced digital analysis methods. It is also useful to show how to integrate geoinformatic techniques with statistical analysis methods based on the field data base.

  • Climate and Environmental Change
    ZHU Guofeng, HE Yuanqing, PU Tao, WANG Xufeng, JIA Wenxiong, LI Zongxing, XIN Huijuan
    Journal of Geographical Sciences. 2012, 22(1): 71-85. doi: 10.1007/s11442-012-0912-7

    Based on the meteorological data of 20 stations in the Hengduan Mountains region during 1961-2009, the annual and seasonal variation of potential evapotranspiration was analyzed in combination with the Penman-Monteith model. With the method of Spline interpolation under ArcGIS, the spatial distribution of potential evapotranspiration was presented to research the regional difference, and the correlation analysis was used to discuss the dominant factor affecting the potential evapotranspiration. The results indicated that the annual potential evapotranspiration showed a decreasing tendency since the 1960s, especially from the 1980s to 1990s, while it showed an increasing tendency since 2000. Regional potential evapotranspiration showed a rate of -0.17 mm a-1. Potential evapotranspiration in north, middle and south of the Hengduan Mountains exhibited decreasing trends over the studied period, and its regional trend was on the decline from southwest to northeast.

  • Climate and Environmental Change
    ZHU Xudong, HE Honglin, LIU Min, YU Guirui, SUN Xiaomin, GAO Yanhua
    Journal of Geographical Sciences. 2010, 20(6): 803-817. doi: 10.1007/s11442-010-0812-7

    Based on long-term measurement data of weather/ecological stations over China, this paper calculated and produced annually- and seasonally-averaged Photosynthetically Active Radiation (PAR) spatial data from 1961 to 2007, using climatological calculations and spatialization techniques. The spatio-temporal variation characteristics of annually- and seasonally-averaged PAR spatial data over China in recent 50 years were analyzed with Mann-Kendall trend analysis method and GIS spatial analysis techniques. The results show that: (1) As a whole, the spatial distribution of PAR is complex and inhomogeneous across China, with lower PAR in the eastern and southern parts of China and higher PAR in the western part. Mean annual PAR over China ranges from 17.7 mol m-2 d-1 to 39.5 mol m-2 d-1. (2) Annually- and seasonally-averaged PAR of each pixel over China are averaged as a whole and the mean values decline visibly with fluctuant processes, and the changing rate of annually-averaged PAR is –0.138 mol m-2 d-1/10a. The changing amplitudes among four seasons are different, with maximum dropping in summer, and the descending speed of PAR is faster before the 1990s, after which the speed slows down. (3) The analysis by each pixel shows that PAR declines significantly (α=0.05) in most parts of China. Summer and winter play more important roles in the interannual variability of PAR. North China is always a decreasing zone in four seasons, while the northwest of Qinghai-Tibet Plateau turns to be an increasing zone in four seasons. (4) The spatial distributions of the interannual variability of PAR vary among different periods. The interannual variabilities of PAR in a certain region are different not only among four seasons, but also among different periods.

  • Climate and Environmental Change
    DUAN Hailai, QIAN Huaisui, LI Mingxia, DU Yaodong
    Journal of Geographical Sciences. 2010, 20(6): 818-832. doi: 10.1007/s11442-010-0813-6

    Based on the citrus temperature, precipitation, sunlight and climate risk degree, the article divides subtropics of China into three types: the low risk region, the moderate risk region and the high risk region. The citrus temperature risk increases with increasing latitude (except for the western mountainous area of subtropics of China). The citrus precipitation risk in the central part of subtropics of China is higher than that in the northern and western parts. The distributions of citrus sunlight risk are not consistent to those of the citrus precipitation risk. The citrus climate risk is mainly influenced by temperature. There is latitudinal zonal law for the distribution of the climate risk, that is, the climate risk increases with increasing latitude. At the same time the climate risk in mountainous area is high and that in eastern plain area is low. There are differences in the temporal and spatial changes of the citrus climate. In recent 46 years, the citrus climate risk presents a gradual increasing trend in subtropics of China, especially it has been increasing fast since the 1980s. Because of the global warming, the low risk region in the eastern and southern parts has a gradual decreasing trend, however, the high risk region in the northern and western parts has an increasing trend and the high risk region has been extending eastward and southward. The article analyses the distribution of the citrus climate risk degree of reduction rates of >10%, >20% and >30% in subtropics of China, and studies their changes in different time periods. Results show that the risk is increasing from southeast to northwest.

  • Climate and Environmental Change
    ZHANG Guangxing, SUN Shufang, MA Yufen, ZHAO Ling
    Journal of Geographical Sciences. 2010, 20(6): 833-847. doi: 10.1007/s11442-010-0814-5

    According to climate features and river runoff conditions, Xinjiang could be divided into three research areas: The Altay-Tacheng region, the Tianshan Mountain region and the northern slope of the Kunlun Mountains. Utilizing daily observations from 12 sounding stations and the annual runoff dataset from 34 hydrographical stations in Xinjiang for the period 1960–2002, the variance of the summertime 0℃ level height and the changing trends of river runoff are analyzed both qualitatively and quantitatively, through trend contrast of curves processed by a 5-point smoothing procedure and linear correlation. The variance of the summertime 0℃ level height in Xinjiang correlates well with that of the annual river runoff, especially since the early 1990s, but it differs from region to region, with both the average height of the 0℃ level and runoff quantity significantly increasing over time in the Altay- Tacheng and Tianshan Mountain regions but decreasing on the northern slope of the Kunlun Mountains. The correlation holds for the whole of Xinjiang as well as the three individual regions, with a 0.01 significance level. This indicates that in recent years, climate change in Xinjiang has affected not only the surface layer but also the upper levels of the atmosphere, and this raising and lowering of the summertime 0℃ level has a direct impact on the warming and wetting process in Xinjiang and the amount of river runoff. Warming due to climate change increases the height of the 0℃ level, but also speeds up, ice-snow melting in mountain regions, which in turn increases river runoff, leading to a season of plentiful water instead of the more normal low flow period.

  • Climate and Environmental Change
    LAN Yongchao, ZHAO Guohui, ZHANG Yaonan, WEN Jun, HU Xinglin, LIU Jinqi, GU Minglin, CHANG Junjie, MA Jianhua
    Journal of Geographical Sciences. 2010, 20(6): 848-860. doi: 10.1007/s11442-010-0815-4

    Response of the runoff in the headwater region of the Yellow River to climate change and its sensibility are analyzed based on the measured data at the four hydrological stations and ten weather stations during the period 1959-2008. The result indicates that change of temperature in the region has an obvious corresponding relationship with global warming and the changes of annual average temperature in each subregion in the region have been presenting a fluctuant and rising state in the past 50 years. However the change of precipitation is more intricate than the change of temperature in the region because of the influences of the different geographical positions and environments in various areas, and the change of annual precipitation in the main runoff-producing area has been presenting a fluctuant and decreasing state in the past 50 years. And there is a remarkable nonlinear correlativity between runoff and precipitation and temperature in the region. The runoff in the region has been decreasing continuously since 1990 because the precipitation in the main runoff- producing area obviously decreases and the annual average temperature continuously rises. As a whole, the runoff in each subregion of the headwater region of the Yellow River is quite sensitive to precipitation change, while the runoff in the subregion above Jimai is more sensitive to temperature change than that in the others in the region, correspondingly.

  • Climate and Environmental Change
    LIU Yujie, YUAN Guofu
    Journal of Geographical Sciences. 2010, 20(6): 861-875. doi: 10.1007/s11442-010-0816-3

    Global climate change has significant impacts on agricultural production. Future climate change will bring important influences to the food security. The CERES-Wheat model was used to simulate the winter wheat growing process and production in Panzhuang Irrigation District (PID) during 2011–2040 under B2 climate scenario based on the Special Report on Emissions Scenarios (SRES) assumptions with the result of RCMs (Regional Climate Models) projections by PRECIS (Providing Regional Climates for Impacts Studies) system introduced to China from the Hadley Centre for Climate Prediction and Research. The CERES-Wheat model was calibrated and validated with independent field-measured growth data in 2002–2003 and 2007–2008 growing season under current climatic conditions at Yucheng Comprehensive Experimental Station (YCES), Chinese Academy of Sciences (CAS). The results show that a significant impact of climate change on crop growth and yield was noted in the PID study area. Average temperature at Yucheng Station rose by 0.86℃ for 1961–2008 in general. Under the B2 climate scenario, average temperature rose by 0.55℃ for 2011–2040 compared with the baseline period (1998–2008), which drastically shortened the growth period of winter-wheat. However, as the temperature keep increasing after 2030, the top-weight and yield of the winter wheat will turn to decrease. The simulated evapotranspiration shows an increasing trend, although it is not very significant, during 2011–2040. Water use efficiency will increase during 2011–2031, but decrease during 2031–2040. The results indicate that climate change enhances agricultural production in the short-term, whereas continuous increase in temperature limits crop production in the long-term.

  • Climate and Environmental Change
    WU Shaohong, ZHENG Du, YIN Yunhe, LIN Erda, XU Yinlong
    Journal of Geographical Sciences. 2010, 20(5): 643-651.

    Despite the well-documented effects of global climate change on terrestrial species’ ranges, eco-geographical regions as the regional scale of ecosystems have been poorly studied especially in China with diverse climate and ecosystems. Here we analyse the shift of temperature zones in eco-geographical study over China using projected future climate scenario. Projected climate data with high resolution during 1961–2080 were simulated using regional climate model of PRECIS. The number of days with mean daily temperature above 10℃ and the mean temperature of January are usually regarded as the principal criteria to indicate temperature zones, which are sensitive to climate change. Shifts due to future climate change were calculated by comparing the latitude of grid cells for the future borderline of one temperature zone with that for baseline period (1961–1990). Results indicated that the ranges of Tropical, Subtropical, Warm Temperate and Plateau Temperate Zones would be enlarged and the ranges of Cold Temperate, Temperate and Plateau Sub-cold Zones would be reduced. Cold Temperate Zone would probably disappear at late this century. North borderlines of temperature zones would shift northward under projected future climate change, especially in East China. Farthest shifts of the north boundaries of Plateau Temperate, Subtropical and Warm Temperate Zones would be 3.1°, 5.3° and 6.6° latitude respectively. Moreover, northward shift would be more notably in northern China as future temperature increased.

  • Climate and Environmental Change
    SUN Huilan, CHEN Yaning, LI Weihong, LI Feng, CHEN Yapeng, HAO Xingming, YANG Yuhui
    Journal of Geographical Sciences. 2010, 20(5): 652-666. doi: 10.1007/s11442-010-0802-9
    CSCD(8)

    In this paper, the monthly precipitation and temperature data collected at 7 stations in the Ili River Basin from 1961 to 2007 were analyzed by means of simple regression analysis, running mean, db6 wavelet function and Mann-Kendall test. This study revealed the characteristics of climate change and abrupt change points of precipitation and temperature during different time scales in the Ili River Basin within the past 50 years. The results showed that the precipitation increased from the mid-1980s until 2000 and has continued to increase at a smaller magnitude since 2000. Over the studied period, the precipitation increased significantly during the summer and winter months. The temperature increased greatly in the late 1980s, and has continued to show an increasing trend from the year 2000 to present. The temperature increases were most significant during the summer, autumn and winter months. In terms of different geographies, the temperature increase was significant during the winter in the plains and hilly regions; the increase was also significant during autumn in the intermontane basins. The climate change trends in the Ili River Basin were consistent with the changing trends of the North Atlantic Oscillation and the plateau monsoon.

  • Climate and Environmental Change
    NIE Yong, ZHANG Yili, LIU Linshan, ZHANG Jiping
    Journal of Geographical Sciences. 2010, 20(5): 667-686. doi: 10.1007/s11442-010-0803-8
    CSCD(16)

    Glaciers are one of the most important land covers in alpine regions and especially sensitive to global climate change. Remote sensing has proved to be the best method of investigating the extent of glacial variations in remote mountainous areas. Using Landsat thematic mapping (TM) and multi-spectral-scanner (MSS) images from Mt. Qomolangma (Everest) National Nature Preserve (QNNP), central high Himalayas for 1976, 1988 and 2006, we derived glacial extent for these three periods. A combination of object-oriented image interpretation methods, expert knowledge rules and field surveys were employed. Results showed that (1) the glacial area in 2006 was 2710.17 ± 0.011 km2 (about 7.41% of the whole study area), and located mainly to the south and between 4700 m to 6800 m above sea level; (2) from 1976 to 2006, glaciers reduced by 501.91 ± 0.035 km2 and glacial lakes expanded by 36.88 ± 0.035 km2; the rate of glacier retreat was higher in sub-basins on the southern slopes (16.79%) of the Himalayas than on the northern slopes (14.40%); most glaciers retreated, and mainly occurred at an elevation of 4700–6400 m, and the estimated upper limit of the retreat zone is between 6600 m and 6700 m; (3) increase in temperature and decrease in precipitation over the study period are the key factors driving retreat.

  • Climate and Environmental Change
    WU Li, WANG Xinyuan, ZHOU Kunshu, MO Duowen, ZHU Cheng, GAO Chao, ZHANG Guangsheng, LI Lan, LIU Li, HAN Weiguang
    Journal of Geographical Sciences. 2010, 20(5): 687-700. doi: 10.1007/s11442-010-0804-7
    Baidu(97) CSCD(9)

    Based on the temporal-spatial distribution features of ancient settlement sites from the middle and late Neolithic Age to the Han dynasty in the Chaohu Lake Basin of Anhui Province, East China, using the methods of GIS combined with the reconstructed paleoenvironment by the records of lake sediment since Holocene, the transmutation of ancient settlements with response to environmental changes in this area has been discussed. Studies show that the main feature of transmutation of ancient settlements from the middle and late Neolithic Age to the Han Dynasty was that the distribution of settlements in this area changed from high altitudes to low ones and kept approaching the Chaohu Lake with the passage of time. These could be the response to the climate change from warm-moist to a relatively warm-dry condition during the middle Holocene, leading to the lake level fluctuations. The large area of exposed land provided enough space for human activities. These indicate that the above changes in geomorphologic evolution and hydrology influenced by climate conditions affected the transmutation of ancient settlements greatly. The distribution pattern of settlement sites was that the number of sites in the west was more than in the east. This pattern may be related to the geomorphologic conditions such as frequent channel shifting of the Yangtze River as well as flood disasters during the Holocene optimum. Therefore, climate change was the inducement of the transmutation of ancient settlements in the Chaohu Lake Basin, which exerted great influence on the distribution, expansion and development of the ancient settlements.

  • Climate and Environmental Change
    LI Yuecong, XU Qinghai, ZHANG Liyan, WANG Xueli, CAO Xianyong,YANG Xiaolan
    Journal of Geographical Sciences. 2009, 19(6): 643-659. doi: 10.1007/s11442-009-0643-6

    53 pollen traps and surface samples were collected in order to detect the characteristics of pollen assemblages and their relationships with vegetation and climate in 16 forest communities located in 10 mountains in northern China. The results show that 72% of the pollen taxa (80 taxa) are the same between the traps and the surface samples. The dominant taxa in the plant communities are consistent with the main pollen taxa in the pollen assemblages at the same sites. In Pinus plant communities, both Pinus pollen influx and concentration are higher, indicating the high pollen productivity and good pollen preservation ability of Pinus. In Picea and Abies plant communities, Picea and Abies have lower pollen influxes but higher concentrations, suggesting their low pollen productivities but better pollen preservation abilities. In Betula and Quercus plant communities, Betula and Quercus have higher pollen influxes but lower concentrations, revealing their high pollen productivities but poor pollen preservation abilities. The study of relationships between pollen and vegetation with discriminant analysis shows that pollen assemblages from both trap and surface samples can reflect the characteristics of different communities and distinguish different ecological areas, but surface samples can reflect the dominant components of communities much better than the traps. The study on correlations between pollen assemblages and climate with DCCA reveals that significant correlations exist between pollen assemblages and mean temperature of the coldest month (r = 0.84 for trap samples, r = 0.72 for surface samples), and then annual mean precipitation (r = 0.73 for trap samples, r = 0.71 for surface samples).

  • Climate and Environmental Change
    PAN Tao, WU Shaohong, DAI Erfu, LIU Yujie, DOU Yue
    Journal of Geographical Sciences. 2009, 19(6): 660-670. doi: 10.1007/s11442-009-0660-5

    35 surface soil samples and 28 profile soil samples were collected in Longitudinal Range-Gorge Region, Southwest China. The distribution of pollen and spores and their relationship with the environment are analyzed. The results show that there are significant differences in pollen and spores taxa, amounts, dominant taxa and florae between the eastern and western flanks of the Ailao Mountain. There are more pollen and spores taxa, a greater amount and complexity on the western flank of the mountain than those on the eastern flank, while the dominant taxa are more centralized and prominent on the eastern flank of the Ailao Mountain. As for the plant florae distribution, there are significant differences in the number of taxa and composition between the eastern and the western flanks. The analysis of profile pollen and spores assemblage shows that its trends of variation are basically in accordance with the surface pollen and spores, which are also indicators of the environmental differences between the two flanks of the mountain. These significant spatial differences of pollen and spores are very close to the regional topography and climate difference. The mountain running perpendicular to the moisture-laden air flow serves as a barrier and the monsoon circulations the east and the west of the mountain result in different energy-moisture characteristics. We conclude that the main patterns of the pollen and spores can be attributed to the environmental differences.

  • Climate and Environmental Change
    LI Lan, ZHU Cheng, LIN Liugen, ZHAO Quanhong, SHI Gongyue,ZHENG Chaogui, FAN Chao
    Journal of Geographical Sciences. 2009, 19(6): 671-680. doi: 10.1007/s11442-009-0671-2

    Based on archaeological excavations, 217 samples were collected from the Luotuodun Site. Of them 63 samples from the section plane of the site layer were used for identification analysis of foraminifera, plant debris and seed fossils, and four samples were used for 14C dating and relevant analysis. Through many kinds of experiments, we have drawn some conclusions. Firstly, benthic foraminifera, such as Ammonia compressiuscula and Ammonia cff. sobrina, are found in the 10th layer, indicating that between 7500 and 5400 BC, i.e. before the emergence of the Majiabang Culture, Luotuodun Site and its nearby regions had ever experienced a marine transgression event. Secondly, we have found 450 plant fossils in this site, such as Polygonum sp., Scripus sp., Najas sp., Physalis sp., which indicated lacustrine or swamp environment.

  • Climate and Environmental Change
    ZHA Xiaochun, HUANG Chunchang, PANG Jiangli
    Journal of Geographical Sciences. 2009, 19(6): 681-690. doi: 10.1007/s11442-009-0681-0

    Palaeoflood hydrological study is a frontal subject of global change study. Using sedimentology, geomorphology and OSL dating methods, the typical palaeoflood slackwater deposits were studied in the Qishuihe River valley. The results showed that five flooding episodes with 21 palaeoflood events occurred during 4300–4250 a B.P., 4250–4190 a B.P., 4190–4100 a B.P., 4100–4000 a B.P. and 3100–3010 a B.P., respectively, during the Holocene period. The palaeoflood peak discharges were calculated with hydrological models. With a combination of the gauged flood, historical flood and palaeoflood hydrological data, the archives of flood events were extended to over 10,000 years in the Qishuihe River valley, and the flood frequency–peak discharge relationship curve was established accurately. These research results played important roles in mitigating flood hazard, hydraulic engineering and also the development of water resources in the semiarid Weihe River basin.

  • Climate and Environmental Change
    SHAO Quanqin, HUANG Lin, LIU Jiyuan, YANG Haijun, CHEN Zhuoqi
    Journal of Geographical Sciences. 2009, 19(6): 691-706. doi: 10.1007/s11442-009-0691-y

    The authors developed a model to estimate annual tree growth based on tree-ring data (Abbr. TGTRing model) derived from the trunk at 0.5, 1.3 and 2.5 m height. This model was applied to estimate the annual biomass and carbon accumulation of a plantation in Qianyanzhou Red-Soil Hill Comprehensive Development Experimental Station of CAS in Taihe County, Jiangxi Province (Abbr. Qianyanzhou). The results showed that the inflexion points of the biomass and carbon accumulation curves occur at 17 and 18 years of age, respectively, in masson pine, whilst both inflexion points occurred at 15 years in slash pine and Chinese fir. The biomass and carbon accumulation in Chinese fir proved to be greater in the last 20 years than in the other species, with 171.697 t/hm2 and 92.29 tc/hm2, respectively. masson pine, with a biomass of 133.84 t/hm2 and a carbon accumulation of 73.92 tc/hm2 was the lowest whilst slash pine was intermediate with a biomass of 147.639 t/hm2 (unturpentined) and 135.743 t/hm2 (turpentined), and a carbon accumulation of 80.18 tc/hm2 (unturpentined) and 73.72 tc/hm2 (turpentined). In 2006, the total biomass and carbon storage of the tree stratum of masson pine in Qianyanzhou was 3324.43 t and 14,156.64 tc, respectively, whilst the values for Chinese fir were 1326.97 t and 713.27 tc. For slash pine the total biomass was 14,156.64 t (unturpentined) and 13,015.97 t (turpentined), and the total carbon storage was 7 688.21 tc (unturpentined) and 7068.78 tc (turpentined). Following the shaving of slash pine for resin, the total biomass was reduced by 1140.67 t and the total carbon storage fell by 619.43 tc.

  • Climate and Environmental Change
    WANG Zhiqiang, LIU Baoyuan, ZHANG Yan
    Journal of Geographical Sciences. 2009, 19(6): 707-718. doi: 10.1007/s11442-009-0707-7

    Water stored in deep loess soil is one of the most important resources regulating vegetation growth in the semi-arid area of the Loess Plateau, but planted shrub and forest often disrupt the natural water cycle and in turn influence plant growth. The purpose of this study was to examine the effects of main vegetation types on soil moisture and its inter- annual change. Soil moisture in 0–10 m depth of six vegetation types, i.e., crop, grass, planted shrub of caragana, planted forests of arborvitae, pine and the mixture of pine and arborvitae were measured in 2001, 2005 and 2006. Soil moisture in about 0–3 m of cropland and about 0–2 m of other vegetation types varied inter-annually dependent on annual precipitation, but was stable inter-annually below these depths. In 0–2 m, soil moisture of cropland was significantly greater than those of all other vegetation types, and there were no significant differences among other vegetation types. In 2–10 m, there was no significant moisture difference between cropland and grassland, but the soil moistures under both of them were significantly higher than those of planted shrub and forests. The planted shrub and forests had depleted soil moisture below 2 m to or near permanent wilting point, and there were no significant moisture differences among forest types. The soil moisture of caragana shrub was significantly lower than those of forests, but the absolute difference was very small. The results of this study implicated that the planted shrub and forests had depleted deep soil moisture to the lowest limits to which they could extract and they lived mainly on present year precipitation for transpiration.

  • Climate and Environmental Change
    FANG Chuanglin, LIU Xiaoli
    Journal of Geographical Sciences. 2009, 19(6): 719-732. doi: 10.1007/s11442-009-0719-3

    A better understanding of the regional disparity and imbalance characteristics of China’s urbanization development is the important premise for constituting correct policy and strategy and promoting the healthy and sustainable development of urbanization in the 21st century. The regional differences of China’s urbanization level have close relations with natural conditions of landform and climate etc., the urbanization level reduces with the elevation of topography and decrease of precipitation. According to the statistical data set of urbanization in 1950–2006, the temporal change course of inter-provincial disparity of Chinese urbanization level since the founding of New China in 1949 was studied, and then the inter- regional and intra-regional disparities of urbanization development were analyzed by the Theil index and its nested decomposition method, to grasp the dynamic change of spatial disparities of China’s urbanization level on the whole. Using the imbalance index model, the imbalance status of urban population distribution relative to total population, grain output, total agricultural output value, gross output value of industry, tertiary industrial output value as well as gross regional product was discussed, to hold the balance characteristics of urbanization development relative to the regional development conditions from the macroscopic scales.

  • Climate and Environmental Change
    DUAN Xuejun, YU Xiaogan, Josef Nipper
    Journal of Geographical Sciences. 2009, 19(6): 733-749. doi: 10.1007/s11442-009-0733-5

    In the era of economic globalization, the concept of Economic Polarized Area comes into being as an effective vehicle to agglomerate the economic elements and sustain the economic lifeline of the region. Based on the region’s specific development mode and construction form the concept is working in such a way that it will contribute to guide the economic development of the country and will play an important role in competing with other regions or countries in the world. Due to the high speed development of the last 30 years, the Yangtze Delta Region starts to show the features of Economic Polarized Area. But, compared with other world-class Economic Polarized Areas, the economic strength and the ability of the Yangtze Delta Region to drive the country’s economic development is still very low and the competitive power is still very limited. Expanding the boundaries of the Economic Polarized Area of the Yangtze Delta may extend the economic hinterland of the core area of the Yangtze Delta Region, will lighten the pressures from the limited resource and promote the rationalization of the industrial structure in the Yangtze Delta Region’s core area. With regard to the reasonable boundaries of the Yangtze Delta Region, there are different opinions and controversial arguments in political and academic circles. Starting from the idea of increasing the competitive power and improving the economic strength of the Yangtze Delta Region, the paper firstly is discussing the requirements to become a world-class Economic Polarized Area. In a second step an analysis of functional complementation and economic collaboration between the cities of an “extended” Yangtze Delta Region has been carried out by in particular considering the feasibility of integrating these “newly included” cities. The final result of the study is, that the Region should be expanded from the number of 16 cities to 37 cities, and the appended cities should be divided up into two categories: Wenzhou, Jinhua, Yancheng, Huaian, Maanshan, Wuhu, Tongling, Chaohu, Hefei, Chuzhou, Xuancheng should be taken as Preferred Extending Area, and Suqian, Xuzhou, Lianyungang, Lishui, Quzhou, Chizhou, Anqing, Bengbu, Huangshan, Suzhou (Anhui Province) should be taken as Retained Qualification Area.

  • Climate and Environmental Change
    DAI Junhu, GE Quansheng, XIAO Shufang, WANG Mengmai,WU Wenxiang, CUI Haiting
    Journal of Geographical Sciences. 2009, 19(6): 750-764. doi: 10.1007/s11442-009-0750-4

    More than 240 items of historical records containing climatic information were retrieved from official historical books, local chronicles, annals and regional meteorological disaster yearbooks. By using moisture index and flood/drought (F/D) index obtained from the above information, the historical climate change, namely wet-dry conditions in borderland of Shaanxi Province, Gansu Province and Ningxia Hui Autonomous Region (BSGN, mainly included Ningxialu, Hezhoulu, Gongchanglu, Fengyuanlu and Yan’anlu in the Yuan Dynasty) was studied. The results showed that the climate of the region was generally dry and the ratio between drought and flood disasters was 85/38 during the period of 1208–1369. According to the frequencies of drought-flood disasters, the whole period could be divided into three phases. (1) 1208–1240: drought dominated the phase with occasional flood disasters. (2) 1240–1320: long-time drought disasters and extreme drought events happened frequently. (3) 1320–1369: drought disasters were less severe when flood and drought disasters happened alternately. Besides, the reconstructed wet-dry change curve revealed obvious transition and periodicity in the Mongol–Yuan Period. The transitions occurred in 1230 and 1325. The wet-dry change revealed 10- and 23-year quasi-periods which were consistent with solar cycles, indicating that solar activity had affected the wet-dry conditions of the study region in the Mongol–Yuan Period. The reconstructed results were consistent with two other study results reconstructed from natural evidences, and were similar to another study results from historical documents. All the above results showed that the climate in BSGN was characterized by long-time dry condition with frequent severe drought disasters during 1258 to 1308. Thus, these aspects of climatic changes might have profound impacts on local vegetation and socio-economic system.

  • Climate and Environmental Change
    FAN Jie, LI Pingxing
    Journal of Geographical Sciences. 2009, 19(5): 515-531. doi: 10.1007/s11442-009-0515-0

    Major function oriented zoning (MFOZ hereafter) is the guideline for optimizing the spatial pattern of regional development in China, which entails both theoretical and methodological innovation in the academic field of economic geography. This study analyzes the basic features of territorial function and puts forward a spatial equilibrium model for regional development for the first time. It argues that there exists a trend of regional convergence in the average value which indicates the comprehensive development status of any region. Based on this finding, the study illustrates that the formation of functional zone should be conducive to the narrowing of regional gap and that free flow of resources between regions is the prerequisite to spatial equilibrium. It also investigates the impact of territorial functional evolution on the process of spatial equilibrium and suggests that the maximization of benefits derived from zoning proposal is interrelative with the method of regional division and the degree of understanding towards the temporal changes of territorial function. Furthermore, this study goes on to examine the scientific foundation of several issues concerning the reconciliation between contradictory functions of development and protection, the selection of indicators and the spatial and temporal features of MFOZ. It is then probes into the rationality of achieving dual goals of efficiency and equality simultaneously through three-dimensional flow and spatial equilibrium. The paper ends with discussions on the position, implementation and coordination of MFOZ from the perspective of institutional arrangements of spatial governance including law, planning and government policy.

  • Climate and Environmental Change
    YIN Peihong, FANG Xiuqi, YUN Yaru
    Journal of Geographical Sciences. 2009, 19(5): 532-544. doi: 10.1007/s11442-009-0532-z

    In view of food affordability and the threshold for food security, this paper has established an integrated index for assessing the vulnerability of food security in China, which is composed mainly of the balance between food supply and demand, the reserve for food security and the economic capacity for offset food demand. Six types of food security regions are identified based on the data from county-level statistics. At regional scale, China’s food security is not optimistic. Under normal conditions without the emergence of extreme disasters and decline of grain-sown areas, China’s most vulnerable areas (Type VI) account for 30.3% of the total number of counties (cities), which are unable to meet the ends by food productivity or market based measures at subsistence levels. In China, there are only 14.5% of the counties (cities) that could guarantee well-off food security through grain production (Type I) or economic measures to meet the demand by themselves (Type III). According to the different vulnerable levels of food security and its dominant forming factors, vulnerable regions of food security in China could be classified into three categories: (1) Vulnerable regions of food security dominated by natural factors (including Type IV and Type VIa), which account for 39.4% of the total number of counties (cities), mainly located in fragile ecologic zones, i.e., farming-grazing transitional zones in the marginal areas of summer monsoon, the poor hilly areas in southern China and so on; (2) Vulnerable regions of food security dominated by low ratio of grain-sown areas (including Type VIb and Type V), which account for 16.7% of the total number of counties (cities), mostly located in the developed areas in the eastern coast of China; (3) Potential vulnerable regions of food security with underdeveloped local economies (Type II), of which 57% are the main grain-surplus regions in China, mainly located in the areas of plains and basins with favorable climate.

  • Climate and Environmental Change
    CHEN Yuqi, LI Xiubin, TIAN Yujun, TAN Minghong
    Journal of Geographical Sciences. 2009, 19(5): 545-556. doi: 10.1007/s11442-009-0545-7

    Based on the data from the Cost-benefit Data of Farm Produce and the China Agricultural Yearbook, this paper divided the intensity of cultivated land use into labor intensity and capital intensity, and then analyzed their temporal and spatial change at both national and provincial levels between 1980 and 2006. The results showed that: (1) At the national level, labor intensity on food produce decreased from 398.5 day/ha in 1980 to 130.25 day/ha in 2006; and a continuous decrease with a steep decline between 1980 and 1986, a slower decline from 1987 to 1996, and another steep decline from 1997 to 2006. On the contrary, capital intensity shows an increasing trend since 1980. As to the internal composition of capital intensity, the proportion of seed, chemical fertilizer and pesticide input decreased from 90.36% to 73.44% and the proportion of machinery increased from 9.64% to 26.56%. The less emphasis on yield-increasing input and more emphasis on labor-saving input are the main reasons for a slow increase of yield per unit area after 1996. (2) At the provincial level, the developed areas have lower labor intensity and higher capital intensity. The less developed ones have higher labor intensity but lower capital intensity. From the viewpoint of the internal composition of capital intensity, labor-saving input accounts for more proportion in the developed areas than that of other areas. The main reason is that in these developed areas, labor input has become a constraint factor in food production as more and more labors engaged in off-farm work. Farmers increase the labor-saving input for higher labor productivity. However, in the less developed areas, the major constraint is the shortage of capital; food production is still depending on labor and yield-increasing inputs.

  • Climate and Environmental Change
    LIU Yansui, ZHANG Fugang, ZHANG Yingwen
    Journal of Geographical Sciences. 2009, 19(5): 557-567. doi: 10.1007/s11442-009-0557-3

    The sustainability of regional rural development depends on the integrated status and the coordination between rural resources-environment conditions and rural socioeconomic development. In this paper a diagnostic indicator system is proposed to appraise four representative rural development models such as Mentougou model, Taicang model, Yueqing model and Qionghai model in the eastern coastal region of China from the integrated perspective of population, resources, environment, and development. In conclusion, the formation and evolution of these diverse rural development models are the direct response to the very different characteristics in the environment, market demand, and regional culture. These models are common in that their sustainability depends on the scientific guidance of the regional development functional positioning, strong intra-regional interactions, and self-adaptability to the external conditions.

  • Climate and Environmental Change
    GUO Liying, WANG Daolong, QIU Jianjun, WANG Ligang, LIU Yu
    Journal of Geographical Sciences. 2009, 19(5): 568-576. doi: 10.1007/s11442-009-0568-0

    Based on TM image data and other survey materials, this paper analyzed the spatiotemporal patterns of land use change in the Bohai Rim during 1985–2005. The findings of this study are summarized as follows: (1) Land use pattern changed dramatically during 1985–2005. Industrial and residential land in urban and rural areas increased by 643,946 hm2, of which urban construction land had the largest and fastest increase of 294,953 hm2 at an annual rate of 3.72%. (2) The outward migration of rural population did not prevent the expansion of residential land in rural areas by 184,869 hm2. This increase reveals that construction of rural residences makes seriously wasteful and inefficient use of land. (3) Arable land, woodland and grassland decreased at a rate of –0.02%, –0.12% and –1.32% annually, while unused land shrank by 157,444 hm2 at an annual rate of –1.69%. (4) The change of land use types showed marked fluctuations over the two stages (1985–1995 and 1995–2005). In particular, arable land, woodland and unused land experienced an inversed trend of change. (5) There was a significant interaction between arable land and woodland. Industrial construction land in urban and rural areas showed a net trend of increase during the earlier period, but only adjustment to its internal structure during the second period. The loss of arable land to the construction of factories, mines and residences took place mainly in the fringe areas of large and medium-sized cities, along the routes of major roads, as well as in the economically developed coastal areas in the east. Such changes are closely related to the spatial differentiation of the level of urbanization and industrialization in the region.

  • Climate and Environmental Change
    XU Yong, TANG Qing
    Journal of Geographical Sciences. 2009, 19(5): 577-586. doi: 10.1007/s11442-009-0577-z

    At present, land use optimization at small watershed scale is the key measure to control soil erosion, restore the eco-environment and improve the farmers’ living standard on the Loess Plateau, China. Based on the land use survey maps of 1966, 1988, 1997, 2003 and the digital topographic map of 1984 in Yangou watershed, and assisted by spatial techniques of GIS, the basic characteristics and driving forces of land use change in Yangou watershed are analyzed. According to the summarization of land-use optimization characteristics since 1997, and with the help of continuous monitoring data for years and farmer investigation data, this paper appraises eco-environmental benefits, economic benefits and sustainability of Yangou watershed. We have used sediment reduction benefits, coverage ratio of permanent vegetation, per capita food production and per capita income of farmers as indices. The results show that Yangou watershed project has successfully controlled the soil and water loss and the farmers’ living standard has been improved markedly by reasonable adjustment to land use structure. The benefit of sediment reduction is higher than 80% and the coverage ratio of permanent vegetation reaches 61.03%. In 2006, the per capita income increased by 1493 yuan compared with the year 1998.The successful measures and experiences of Yangou watershed are worth promoting on the Loess Plateau.