地理学报(英文版) ›› 2022, Vol. 32 ›› Issue (3): 499-516.doi: 10.1007/s11442-022-1958-9
收稿日期:
2021-08-17
接受日期:
2022-01-05
出版日期:
2022-03-25
发布日期:
2022-05-25
WANG Haijun1,2(), WU Yue1(
), DENG Yu3,*(
), XU Shan4
Received:
2021-08-17
Accepted:
2022-01-05
Online:
2022-03-25
Published:
2022-05-25
Contact:
DENG Yu
E-mail:landgiswhj@163.com;dengy@igsnrr.ac.cn
About author:
Wang Haijun (1972‒), PhD, specialized in geographic simulation, territorial spatial planning and land resource evaluation research. E-mail: landgiswhj@163.com
Supported by:
. [J]. 地理学报(英文版), 2022, 32(3): 499-516.
WANG Haijun, WU Yue, DENG Yu, XU Shan. Model construction of urban agglomeration expansion simulation considering urban flow and hierarchical characteristics[J]. Journal of Geographical Sciences, 2022, 32(3): 499-516.
Data name | Data specification | Data source |
---|---|---|
Land-use data | The impervious surface data of urban areas are obtained by using the reliable impervious surface mapping algorithms and GEE platform with a resolution of 30 m×30 m. The impervious surface is regarded as urban land, while the others are non-urban land, which is resampled to 90 m ×90 m | Published by Gong et al. ( ( |
Road data | Shapefile data including railways, thruways and national highways | Resource and Environment Science and Data Center( |
DEM | Based on the latest SRTM V4.1 data after collation and stitching, the resolution is 90 m×90 m | Resource and Environment Science and Data Center( |
Urban flow data | According to statistical yearbook data and big data of spatio-temporal geography, models of economic flow, population flow, traffic flow, and information flow (Wang et al., | See references (Zhai, |
Coefficient | P | Coefficient | P | ||
---|---|---|---|---|---|
Intercept: | Control variables: | ||||
Level 1 intercept β0 | Elevation | ||||
Intercept γ00 | ‒1.429 | 0.000 | Intercept γ40 | ‒0.592 | 0.000 |
Urban flow γ01 | 0.947 | 0.000 | Slope | ||
Independent variables: | Intercept γ50 | ‒1.764 | 0.000 | ||
Distance to city centers β1 | Distance to water | ||||
Intercept γ10 | ‒3.261 | 0.000 | Intercept γ60 | 0.313 | 0.315 |
Urban flow γ11 | ‒8.176 | 0.000 | Distance to national highways | ||
Distance to district and county centers β2 | Intercept γ70 | ‒0.486 | 0.111 | ||
Intercept γ20 | ‒1.899 | 0.001 | Distance to thruways | ||
Urban flow γ21 | ‒1.790 | 0.206 | Intercept γ80 | ‒0.297 | 0.391 |
Distance to railways β3 | |||||
Intercept γ30 | ‒1.338 | 0.048 | |||
Urban flow γ31 | 4.752 | 0.021 |
HGLM-CA | Logistic-CA | BBO-CA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
OA | Kappa | FoM | OA | Kappa | FoM | OA | Kappa | FoM | ||
Overall accuracy | Urban agglomeration | 0.99436 | 0.79872 | 0.18085 | 0.99427 | 0.79574 | 0.17374 | 0.99455 | 0.80567 | 0.19779 |
Local accuracy | Wuhan | 0.95525 | 0.78844 | 0.14126 | 0.93924 | 0.74020 | 0.18817 | 0.94952 | 0.77246 | 0.18303 |
Huangshi | 0.97859 | 0.81788 | 0.17746 | 0.98138 | 0.83651 | 0.16789 | 0.98146 | 0.83816 | 0.18391 | |
Yichang | 0.99445 | 0.78486 | 0.20519 | 0.99461 | 0.78646 | 0.18571 | 0.99448 | 0.78702 | 0.21576 | |
Xiangyang | 0.99498 | 0.82902 | 0.15516 | 0.99514 | 0.82517 | 0.03963 | 0.99475 | 0.82610 | 0.19173 | |
Ezhou | 0.94591 | 0.69046 | 0.14923 | 0.95070 | 0.70959 | 0.15293 | 0.96023 | 0.75093 | 0.16121 | |
Jingmen | 0.99516 | 0.82205 | 0.11262 | 0.99563 | 0.83010 | 0.01952 | 0.99485 | 0.81586 | 0.14256 | |
Xiaogan | 0.98711 | 0.77240 | 0.17225 | 0.98773 | 0.77889 | 0.16251 | 0.98763 | 0.77942 | 0.17561 | |
Jingzhou | 0.99185 | 0.78990 | 0.15924 | 0.99196 | 0.79076 | 0.14808 | 0.99238 | 0.80328 | 0.18866 | |
Huanggang | 0.99170 | 0.76696 | 0.15049 | 0.99208 | 0.77326 | 0.14080 | 0.99192 | 0.77603 | 0.18343 | |
Xianning | 0.99392 | 0.82252 | 0.12214 | 0.99464 | 0.83704 | 0.08533 | 0.99347 | 0.81337 | 0.13292 | |
Xiantao | 0.99208 | 0.83366 | 0.00041 | 0.99204 | 0.83445 | 0.02894 | 0.99065 | 0.82169 | 0.16428 | |
Qianjiang | 0.98856 | 0.81205 | 0.04288 | 0.98857 | 0.81206 | 0.04001 | 0.98702 | 0.80615 | 0.18890 | |
Tianmen | 0.99343 | 0.79276 | 0.01163 | 0.99346 | 0.79249 | 0.00210 | 0.99301 | 0.80157 | 0.19527 | |
Changsha | 0.97542 | 0.79792 | 0.19991 | 0.97230 | 0.78174 | 0.21561 | 0.97574 | 0.80148 | 0.21485 | |
Zhuzhou | 0.98999 | 0.77736 | 0.18150 | 0.99006 | 0.77920 | 0.18720 | 0.99081 | 0.79106 | 0.18815 | |
Xiangtan | 0.97724 | 0.75437 | 0.21572 | 0.97718 | 0.75427 | 0.21746 | 0.98161 | 0.78615 | 0.20658 | |
Hengyang | 0.99068 | 0.77667 | 0.20602 | 0.99089 | 0.78041 | 0.20796 | 0.99141 | 0.78814 | 0.20171 | |
Yueyang | 0.99359 | 0.81224 | 0.14242 | 0.99422 | 0.82528 | 0.12560 | 0.99355 | 0.81314 | 0.16095 | |
Changde | 0.99417 | 0.78845 | 0.17407 | 0.99461 | 0.79653 | 0.14288 | 0.99435 | 0.79537 | 0.19085 | |
Yiyang | 0.99511 | 0.78612 | 0.18180 | 0.99544 | 0.79554 | 0.17560 | 0.99578 | 0.80790 | 0.18663 | |
Loudi | 0.99284 | 0.80869 | 0.19307 | 0.99392 | 0.82569 | 0.13254 | 0.99350 | 0.82162 | 0.19003 | |
Nanchang | 0.96873 | 0.79236 | 0.25293 | 0.96683 | 0.78406 | 0.25614 | 0.97187 | 0.80732 | 0.25144 | |
Jingdezhen | 0.98913 | 0.79545 | 0.27337 | 0.98991 | 0.80425 | 0.26468 | 0.99082 | 0.81581 | 0.25770 | |
Pingxiang | 0.98945 | 0.79041 | 0.17084 | 0.99075 | 0.79585 | 0.01749 | 0.98967 | 0.79303 | 0.16650 | |
Jiujiang | 0.99296 | 0.80933 | 0.21376 | 0.99308 | 0.81093 | 0.20696 | 0.99303 | 0.81233 | 0.22926 | |
Xinyu | 0.98812 | 0.85138 | 0.27223 | 0.99066 | 0.86902 | 0.09938 | 0.98876 | 0.85730 | 0.26929 | |
Yingtan | 0.98118 | 0.73188 | 0.23667 | 0.98301 | 0.74787 | 0.23628 | 0.98613 | 0.77889 | 0.23856 | |
Ji’an | 0.99532 | 0.77351 | 0.20956 | 0.99562 | 0.78092 | 0.19306 | 0.99591 | 0.79410 | 0.21761 | |
Yichun | 0.99310 | 0.81064 | 0.12226 | 0.99302 | 0.80679 | 0.09893 | 0.99240 | 0.80345 | 0.18943 | |
Fuzhou | 0.99558 | 0.80872 | 0.17760 | 0.99598 | 0.81430 | 0.09066 | 0.99566 | 0.81252 | 0.19129 | |
Shangrao | 0.99397 | 0.79382 | 0.16224 | 0.99446 | 0.80489 | 0.14914 | 0.99459 | 0.81160 | 0.18193 |
[1] |
Chen Y, Li X, Liu X et al., 2019. Tele-connecting China’s future urban growth to impacts on ecosystem services under the shared socioeconomic pathways. Science of the Total Environment, 652: 765-779.
doi: 10.1016/j.scitotenv.2018.10.283 |
[2] | Couclelis H, 1985. Cellular worlds: A framework for modeling micro-macro dynamics. Environment & Planning A, 17(5): 585-596. |
[3] | Couclelis H, 1989. Macrostructure and microbehavior in a metropolitan area. Environment & Planning B Planning & Design, 16(2): 141-154. |
[4] | Fang C, 2014. Progress and the future direction of research into urban agglomeration in China. Acta Geographica Sinica, 69(8): 1130-1144. (in Chinese) |
[5] |
Gong P, Li X, Zhang W, 2019. 40-year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Science Bulletin, 64(11): 756-763.
doi: 10.1016/j.scib.2019.04.024 |
[6] | He J, Shi X, Gong J et al., 2016. Modeling the spatial expansion of urban agglomeration considering their spatial interaction: A case study of Wuhan metropolitan area. Geomatics and Information Science of Wuhan University, 41(4): 462-467. (in Chinese) |
[7] | He L, Liu Y, 2017. Simulating urban cooperative expansion in the metropolitan region based on improved CA model: A case study of Wuhan Urban Agglomeration, China. Journal of Central China Normal University, 51(2): 224-230. (in Chinese) |
[8] | Hox J, 1999. Multilevel Modeling:When and Why. Berlin Heidelberg: Springer. |
[9] | Lei L, Zhang L, 2002. Principle and application of the hierarchical linear model. Journal of Capital Normal University (Social Sciences Edition), 30(2): 110-114. (in Chinese) |
[10] | Li X, Xin T, 2006. Hierarchical Linear Model for binary data: Principle and application. Psychological Development and Education, 22(4): 97-102. (in Chinese) |
[11] | Li X, Ye J, 2002. Neural-network-based cellular automata for realistic and idealized urban simulation. Acta Geographica Sinica, 57(2): 159-166. (in Chinese) |
[12] | Li X, Ye J, 2007. Geographical Simulation System:Cellular Automata and Multi-Agent System. Beijing: Science Press, 43-46. (in Chinese) |
[13] | Luijten J C, 2003. A systematic method for generating land use patterns using stochastic rules and basic landscape characteristics: Results for a Colombian hillside watershed. Agriculture, Ecosystems & Environment, 21(95): 427-441. |
[14] |
Shu B, Zhu S, Qu Y et al., 2020. Modeling multi-regional urban growth with multilevel logistic cellular automata. Computers, Environment and Urban Systems, 80: 101457. doi: 10.1016/j.compenvurbsys.2019.101457.
doi: 10.1016/j.compenvurbsys.2019.101457 |
[15] | Sun Y, Yang J, Song S et al., 2020. Modeling of multi-level vector cellular automata and its simulation of land use change based on urban planning. Acta Geographica Sinica, 75(10): 2164-2179. (in Chinese) |
[16] |
Tobler W R, 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(Suppl.1): 234-240.
doi: 10.2307/143141 |
[17] | Wang H, Xia C, Liu X et al., 2016. Theoretical and methodological perspectives of fine-scale urban expansion cellular automata for the large regions. Geography and Geo-Information Science, 32(5): 1-8. (in Chinese) |
[18] | Wang H, Xia C, Zhang A et al., 2017. Calibrating urban expansion cellular automata using biogeography-based optimization. Geomatics and Information Science of Wuhan University, 42(9): 1323-1329. (in Chinese) |
[19] | Wang H, Zhai L, Liu Y, 2018. Urban connection and function in Wuhan urban agglomeration based on multi- dimensional urban factor flows. Economic Geography, 38(7): 50-58. (in Chinese) |
[20] | Wang H, Zhang B, Liu Y et al., 2018. Urban expansion patterns and their driving forces based on the center of gravity-GTWR model: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Acta Geographica Sinica, 73(6): 1076-1092. (in Chinese) |
[21] |
Wang H, Zhang B, Xia C et al., 2020. Using a maximum entropy model to optimize the stochastic component of urban cellular automata models. International Journal of Geographical Information Science, 34(5): 924-946.
doi: 10.1080/13658816.2019.1687898 |
[22] |
Wu F, Yeh A G, 1997. Changing spatial distribution and determinants of land development in Chinese cities in the transition from a centrally planned economy to a socialist market economy: A case study of Guangzhou. Urban Studies, 34(11): 1851-1879.
doi: 10.1080/0042098975286 |
[23] |
Wu H, Li Z, Clarke KC et al., 2019. Examining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change. International Journal of Geographical Information Science, 33(5): 1040-1061.
doi: 10.1080/13658816.2019.1568441 |
[24] | Wu K, Fang C, Zhao M, 2015. The spatial organization and structure complexity of Chinese intercity networks. Geographical Research, 34(4): 711-728. (in Chinese) |
[25] | Wuhan Statistical Bureau (WSB), 2020. 2019 Statistical bulletin of the national economic and social development of Wuhan Province. www.wuhan.gov.cn/zwgk/tzgg, 2020-03-29(006). (in Chinese) |
[26] |
Xia C, Zhang A, Wang H et al., 2019. Modeling urban growth in a metropolitan area based on bidirectional flows, an improved gravitational field model, and partitioned cellular automata. International Journal of Geographical Information Science, 33(5): 877-899. doi: 10.1016/j.landusepol.2019.104332.
doi: 10.1016/j.landusepol.2019.104332 |
[27] |
Xia C, Zhang A, Wang H et al., 2020. Delineating early warning zones in rapidly growing metropolitan areas by integrating a multiscale urban growth model with biogeography-based optimization. Land Use Policy, 90: 104332.
doi: 10.1016/j.landusepol.2019.104332 |
[28] | Xie Z, Wang H, Zhang B et al., 2020. Urban expansion cellular automata model based on multi-structures convolutional neural networks. Acta Geodaetica et Cartographica Sinica, 49(3): 375-385. (in Chinese) |
[29] | Yang Q, Li X, 2007. Integration of multi-agent systems with cellular automata for simulating urban land expansion. Scientia Geographica Sinica, 27 (4): 542-548. (in Chinese) |
[30] | Zhai L, 2019. Urban spatial connection and function of urban agglomeration in the middle reaches of Yangtze River[D]. Wuhan: Wuhan University. (in Chinese) |
[31] |
Zhang B, Wang H, Xia C et al., 2020. Analyzing the effects of stochastic perturbation and fuzzy distance transformation on Wuhan urban growth simulation. Transactions in GIS, 24(6): 1779-1798.
doi: 10.1111/tgis.v24.6 |
[32] | Zhang K, Qian Q, Yang Q, 2020. An analysis of multilevel variables influencing China’s land urbanization process. Acta Geographica Sinica, 75(1): 179-193. (in Chinese) |
[33] | Zhang Y, 2020. Promoting China’s green urbanization based on ecological civilization. China Population, Resources and Environment, 30(10): 19-27. (in Chinese) |
No related articles found! |
|