地理学报(英文版) ›› 2021, Vol. 31 ›› Issue (12): 1852-1872.doi: 10.1007/s11442-021-1926-9
收稿日期:
2021-03-05
接受日期:
2021-08-17
出版日期:
2021-12-25
发布日期:
2022-02-25
ZHANG Xuhui1,2(), LI Huan1,2,*(
), GONG Zheng1,2, ZHOU Zeng1,2, DAI Weiqi3, WANG Lizhu4, Samuel DARAMOLA2
Received:
2021-03-05
Accepted:
2021-08-17
Online:
2021-12-25
Published:
2022-02-25
Contact:
LI Huan
E-mail:zhangxuhui_hhu@163.com;anuolihuan@163.com
About author:
Zhang Xuhui (1996-), Master Candidate, specialized in tidal flats and remote sensing, E-mail: zhangxuhui_hhu@163.com
Supported by:
. [J]. 地理学报(英文版), 2021, 31(12): 1852-1872.
ZHANG Xuhui, LI Huan, GONG Zheng, ZHOU Zeng, DAI Weiqi, WANG Lizhu, Samuel DARAMOLA. Method for UAV-based 3D topography reconstruction of tidal creeks[J]. Journal of Geographical Sciences, 2021, 31(12): 1852-1872.
[1] | Akay S S, Ozcan O, Sen O L, 2019. Modeling morphodynamic processes in a meandering river with unmanned aerial vehicle-based measurements. Journal of Applied Remote Sensing, 13(4): 1-18. |
[2] |
Allen, J R L, 2000. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19(12): 1155-1231.
doi: 10.1016/S0277-3791(99)00034-7 |
[3] | Bearman J A, Friedrichs C T, Jaffe B E et al., 2010. Spatial trends in tidal flat shape and associated environmental parameters in South San Francisco Bay. Journal of Coastal Research, 26(2): 342-349. |
[4] |
Brunier G, Fleury J, Anthony E J et al., 2016. Close-range airborne Structure-from-Motion photogrammetry for high-resolution beach morphometric surveys: Examples from an embayed rotating beach. Geomorphology, 261: 76-88.
doi: 10.1016/j.geomorph.2016.02.025 |
[5] |
Chen L C, 1998. Detection of shoreline changes for tideland areas using multi-temporal satellite images. International Journal of Remote Sensing, 19(17): 3383-3397.
doi: 10.1080/014311698214055 |
[6] |
Coco G, Zhou Z, van Maanen B et al., 2013. Morphodynamics of tidal networks: Advances and challenges. Marine Geology, 346: 1-16.
doi: 10.1016/j.margeo.2013.08.005 |
[7] | Dai W, Li H, Gong Z et al., 2019. Application of unmanned aerial vehicle technology in geomorphological evolution of tidal flat. Advances in Water Science, 30(3): 359-372. (in Chinese) |
[8] | D’Alpaos A, Lanzoni S, Marani M et al., 2005. Tidal network ontogeny: Channel initiation and early development. Journal of Geophysical Research, 110: F02001. |
[9] |
Dash J, Pearse G, Watt M, 2018. UAV multispectral imagery can complement satellite data for monitoring forest health. Remote Sensing, 10(8): 1216.
doi: 10.3390/rs10081216 |
[10] | Davies G, Woodroffe C D, 2010. Tidal estuary width convergence: Theory and form in North Australian estuaries. Earth Surface Processes and Landforms, 35(7): 737-749. |
[11] |
Dietrich J T, 2017. Bathymetric Structure-from-Motion: Extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surface Processes and Landforms, 42(2): 355-364.
doi: 10.1002/esp.v42.2 |
[12] |
Elgar S, Raubenheimer B, 2011. Currents in a small channel on a sandy tidal flat. Continental Shelf Research, 31(1): 9-14.
doi: 10.1016/j.csr.2010.10.007 |
[13] | Fagherazzi S, Mariotti G, 2012. Mudflat runnels: Evidence and importance of very shallow flows in intertidal morphodynamics. Geophysical Research Letters, 39(14): L14402. |
[14] |
Fruergaard M, Andersen T J, Nielsen L H et al., 2011. Punctuated sediment record resulting from channel migration in a shallow sand-dominated micro-tidal lagoon, Northern Wadden Sea, Denmark. Marine Geology, 280: 91-104.
doi: 10.1016/j.margeo.2010.12.003 |
[15] |
Gomez C, Hayakawa Y, Obanawa H, 2015. A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology, 242: 11-20.
doi: 10.1016/j.geomorph.2015.02.021 |
[16] | Gong Z, Wang Z B, Stive M J F et al., 2012. Process-based morphodynamic modeling of a schematized mudflat dominated by a long-shore tidal current at the Central Jiangsu Coast, China. Journal of Coastal Research, 28(6): 1381-1392. |
[17] |
Hayakawa Y S, Obanawa H, 2020. Volumetric change detection in bedrock coastal cliffs using terrestrial laser scanning and UAS-based SfM. Sensors, 20(12): 3403.
doi: 10.3390/s20123403 |
[18] |
Hibma A, Stive M J F, Wang Z B, 2004. Estuarine morphodynamics. Coastal Engineering, 51: 765-778.
doi: 10.1016/j.coastaleng.2004.07.008 |
[19] |
Hood W G, 2010. Tidal channel meander formation by depositional rather than erosional processes: Examples from the prograding Skagit River Delta (Washington, USA). Earth Surface Processes and Landforms, 35(3): 319-330.
doi: 10.1002/esp.v35:3 |
[20] | Hughes Z J, 2012. Tidal channels on tidal flats and marshes. In: Richard A Fuller, Robert W Dalrymple eds. Principles of Tidal Sedimentology. Dordrecht, Netherlands: Springer 269-300. |
[21] |
Ichoku C, Chorowicz J, 1994. A numerical approach to the analysis and classification of channel network patterns. Water Resources Research, 30(2): 161-174.
doi: 10.1029/93WR02279 |
[22] |
van Iersel W, Straatsma M, Middelkoop H et al., 2018. Multitemporal classification of river floodplain vegetation using time series of UAV images. Remote Sensing, 10(7): 1144.
doi: 10.3390/rs10071144 |
[23] |
Ishiguro S, Yamano H, Oguma H, 2016. Evaluation of DSMs generated from multi-temporal aerial photographs using emerging structure from motion-multi-view stereo technology. Geomorphology, 268: 64-71.
doi: 10.1016/j.geomorph.2016.05.029 |
[24] |
Kasvi E, Salmela J, Lotsari E et al., 2019. Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers. Geomorphology, 333: 180-197.
doi: 10.1016/j.geomorph.2019.02.017 |
[25] |
Lanzoni S, D’Alpaos A, 2015. On funneling of tidal channels. Journal of Geophysical Research: Earth Surface, 120(3): 433-452.
doi: 10.1002/2014JF003203 |
[26] |
Li C X, Z J Q, Fan D et al., 2001. Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, East China. Marine Geology, 173: 97-120.
doi: 10.1016/S0025-3227(00)00169-9 |
[27] |
Liu Y X, Zhou M X, Zhao S S et al., 2015. Automated extraction of tidal creeks from airborne laser altimetry data. Journal of Hydrology, 527: 1006-1020.
doi: 10.1016/j.jhydrol.2015.05.058 |
[28] |
Magolan, J L, Halls J N, 2020. A multi-decadal investigation of tidal creek wetland changes, water level rise, and ghost forests. Remote Sensing, 12(7): 1141.
doi: 10.3390/rs12071141 |
[29] |
Mallin M A, Lewitus A J, 2004. The importance of tidal creek ecosystems. Journal of Experimental Marine Biology and Ecology, 298(2): 145-149.
doi: 10.1016/S0022-0981(03)00356-3 |
[30] |
Mancini F, Dubbini M, Gattelli M et al., 2013. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sensing, 5(12): 6880-6898.
doi: 10.3390/rs5126880 |
[31] | Mariotti G, Fagherazzi S, 2012. Channels-tidal flat sediment exchange: The channel spillover mechanism. Journal of Geophysical Research: Oceans, 117: C03032. |
[32] |
Mason D C, Davenport I J, Flather R A, 1997. Interpolation of an intertidal digital elevation model from heighted shorelines: A case study in the Western Wash. Estuarine, Coastal and Shelf Science, 45(5): 599-612.
doi: 10.1016/S0272-7714(97)90001-9 |
[33] |
Mason D C, Davenport I J, Flather R A et al., 1998. A digital elevation model of the inter-tidal areas of the Wash, England, produced by the waterline method. International Journal of Remote Sensing, 19(8): 1455-1460.
doi: 10.1080/014311698215289 |
[34] | Mason D C, Scott T R, H-J Wang. 2006. Extraction of tidal channel networks from airborne scanning laser altimetry. ISPRS Journal of Photogrammetry & Remote Sensing, 61: 67-83. |
[35] |
Meinen B U, Robinson D T, 2020. Mapping erosion and deposition in an agricultural landscape: Optimization of UAV image acquisition schemes for SfM-MVS. Remote Sensing of Environment, 239: 111666.
doi: 10.1016/j.rse.2020.111666 |
[36] |
Mohamad N, Abdul Khanan M F, Ahmad A et al., 2019. Evaluating water level changes at different tidal phases using UAV photogrammetry and GNSS vertical data. Sensors, 19(17): 3778.
doi: 10.3390/s19173778 |
[37] |
d’Oleire-Oltmanns S, Marzolff I, Peter K et al., 2012. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sensing, 4(11): 3390-3416.
doi: 10.3390/rs4113390 |
[38] | Perillo G M E, 2009. Tidal courses: Classification, origin and functionality. In: Coastal Wetlands: An Integrated Ecosystem Approach. New York: Elsevier Science, 185-209. |
[39] |
Rao W B, Mao C P, Wang Y G et al., 2015. Geochemical constraints on the provenance of surface sediments of radial sand ridges off the Jiangsu coastal zone, East China. Marine Geology, 359: 35-49.
doi: 10.1016/j.margeo.2014.11.007 |
[40] |
Shi B W, Cooper J R, Pratolongo P D et al., 2017. Erosion and accretion on a mudflat: The importance of very shallow‐water effects. Journal of Geophysical Research: Oceans, 122(12): 9476-9499.
doi: 10.1002/jgrc.v122.12 |
[41] |
Snavely N, Seitz S M, Szeliski R, 2008. Modeling the world from internet photo collections. International Journal of Computer Vision, 80(2): 189-210.
doi: 10.1007/s11263-007-0107-3 |
[42] | Stefanon L, Carniello L, D’Alpaos A et al., 2012. Signatures of sea level changes on tidal geomorphology: Experiments on network incision and retreat. Geophysical Research Letters, 39: L12402. |
[43] |
Stevenson J A, Sun X F, Mitchell N C, 2010. Despeckling SRTM and other topographic data with a denoising algorithm. Geomorphology, 114: 238-252.
doi: 10.1016/j.geomorph.2009.07.006 |
[44] |
Tong X H, Liu X F, Chen P et al., 2015. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sensing, 7(6): 6635-6662.
doi: 10.3390/rs70606635 |
[45] |
Um I, Park S, Kim H T et al., 2020. Configuring RTK-GPS architecture for system redundancy in multi-drone operations. IEEE Access, 8: 76228-76242.
doi: 10.1109/Access.6287639 |
[46] |
Vandenbruwaene W, Meire P, Temmerman S, 2012. Formation and evolution of a tidal channel network within a constructed tidal marsh. Geomorphology, 151/152: 114-125.
doi: 10.1016/j.geomorph.2012.01.022 |
[47] |
Vlaswinkel B M, Cantelli A, 2011. Geometric characteristics and evolution of a tidal channel network in experimental setting. Earth Surface Processes and Landforms, 36: 739-752.
doi: 10.1002/esp.2099 |
[48] |
Wang X Y, Ke X K, 1997. Grain-size characteristics of the extant tidal flat sediments along the Jiangsu coast, China. Sedimentary Geology, 112: 105-122.
doi: 10.1016/S0037-0738(97)00026-2 |
[49] | Wang Y, Zhu D K, You K Y et al., 1999. Evolution of radiative sand ridge field of the South Yellow Sea and its sedimentary characteristics. Science in China Series D Earth Sciences, 42: 97-112. |
[50] | Wang, Y P, Gao S, Jia J J et al., 2012. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Marine Geology, 291- 294: 147-161. |
[51] |
Watts A C, Ambrosia V G, Hinkley E A, 2012. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sensing, 4(6): 1671-1692.
doi: 10.3390/rs4061671 |
[52] |
Westoby M J, Alfieri J, Glasser N F et al., 2012. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179: 300-314.
doi: 10.1016/j.geomorph.2012.08.021 |
[53] |
Xing F, Wang Y P, Wang H V, 2012. Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea. Marine Geology, 291-294: 192-210.
doi: 10.1016/j.margeo.2011.06.006 |
[54] | Yin Y H, 1997. Actuality and advances in tidal creeks. Marine Geology Letters, 1-4. (in Chinese) |
[55] | Zhang C K, Xu M P, Zhou Z et al., 2018. Advances in cross-shore profile characteristics and sediment sorting dynamics of tidal flats. Advances in Water Science, 29(2): 269-282. (in Chinese) |
[56] |
Zhang R S, 1992. Suspended sediment transport processes on tidal mud flat in Jiangsu Province, China. Estuarine, Coastal and Shelf Science, 35(3): 225-233.
doi: 10.1016/S0272-7714(05)80045-9 |
[57] |
Zhang S M, Zhao G X, 2019. A harmonious satellite-unmanned aerial vehicle-ground measurement inversion method for monitoring salinity in coastal saline soil. Remote Sensing, 11(14): 1700.
doi: 10.3390/rs11141700 |
[58] |
Zhao B X, Liu Y X, Xu W X et al., 2019. Morphological characteristics of tidal creeks in the central coastal region of Jiangsu, China, using LiDAR. Remote Sensing, 11(20): 2426.
doi: 10.3390/rs11202426 |
[59] |
Zhou Z, Stefanon L, Olabarrieta M et al., 2014. Analysis of the drainage density of experimental and modelled tidal networks. Earth Surface Dynamics, 2: 105-116.
doi: 10.5194/esurf-2-105-2014 |
No related articles found! |
|