Table of Content

    15 August 2010, Volume 20 Issue 4 Previous Issue    Next Issue
    Land Use Change
    Spatial patterns and driving forces of land use change in China during the early 21st century
    LIU Jiyuan, ZHANG Zengxiang, XU Xinliang, KUANG Wenhui, ZHOU Wancun, ZHANG Shuwen, LI Rendong, YAN Changzhen, YU Dongsheng, WU Shixin, JIANG Nan
    2010, 20 (4):  483-494.  doi: 10.1007/s11442-010-0483-4
    Abstract ( )   PDF (637KB) ( )   Save

    Land use and land cover change as the core of coupled human-environment systems has become a potential field of land change science (LCS) in the study of global environmental change. Based on remotely sensed data of land use change with a spatial resolution of 1 km × 1 km on national scale among every 5 years, this paper designed a new dynamic regionalization according to the comprehensive characteristics of land use change including regional differentiation, physical, economic, and macro-policy factors as well. Spatial pattern of land use change and its driving forces were investigated in China in the early 21st century. To sum up, land use change pattern of this period was characterized by rapid changes in the whole country. Over the agricultural zones, e.g., Huang-Huai-Hai Plain, the southeast coastal areas and Sichuan Basin, a great proportion of fine arable land were engrossed owing to considerable expansion of the built-up and residential areas, resulting in decrease of paddy land area in southern China. The development of oasis agriculture in Northwest China and the reclamation in Northeast China led to a slight increase in arable land area in northern China. Due to the “Grain for Green” policy, forest area was significantly increased in the middle and western developing regions, where the vegetation coverage was substantially enlarged, likewise. This paper argued the main driving forces as the implementation of the strategy on land use and regional development, such as policies of “Western Development”, “Revitalization of Northeast”, coupled with rapidly economic development during this period.

    References | Related Articles | Metrics
    Simulation on the dynamics of forest area changes in Northeast China
    DENG Xiangzheng, JIANG Qun'ou, ZHAN Jinyan, HE Shujin, LIN Yingzhi
    2010, 20 (4):  495-509.  doi: 10.1007/s11442-010-0495-0
    Abstract ( )   PDF (636KB) ( )   Save

    There is plenty of forests in Northeast China which contributes a lot to the conservation of water and land resources, produces timber products, and provides habitats for a huge number of wild animals and plants. With changes of socio-economic factors as well as the geophysical conditions, there are dramatic changes on the spatial patterns of forest area. In this sense, it is of great significance to shed light on the dynamics of forest area changes to find the underlining reasons for shaping the changing patterns of forest area in Northeast China. To explore the dynamics of forest area change in Northeast China, an econometric model is developed which is composed of three equations identifying forestry production, conversion from open forest to closed forest and conversion from other land uses to closed forest so as to explore the impacts on the forest area changes from demographic, social, economic, location and geophysical factors. On this basis, we employ the Dynamics of Land System (DLS) model to simulate land-use conversions between forest area and non-forest cover and the land-use conversions within the sub-classes of forest area for the period 2000–2020 under business as usual scenario, environmental protection scenario and economic growth scenario. The simulation results show that forest area will expand continuously and there exist various kinds of changing patterns for the sub-classes of forest area, for example, closed forest will expand continuously and open forest and shrub will decrease a little bit, while area of other forest will keep intact. The research results provide meaningful decision-making information for conserving and exploiting the forest resources and making out the planning for forestry production in the Northeast China region.

    References | Related Articles | Metrics
    Sustainable land-use patterns for arid lands:A case study in the northern slope areas of the Tianshan Mountains
    LUO Geping, FENG Yixing, ZHANG Baiping, CHENG Weiming
    2010, 20 (4):  510-524.  doi: 10.1007/s11442-010-0510-5
    Abstract ( )   PDF (484KB) ( )   Save

    Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited precipitation, and where human activities have greatly transformed natural desert system by clearing natural vegetation, expanding oases and even building dams on inland rivers. However, the current studies on land use patterns are still characterized by field investigations and case studies, with almost no solid scientific basis. This paper holds that land types and their combination patterns are the principal basis for designing sustainable land use patterns, and that GIS and RS-based large-scale land type mapping and the study of their spatial combination structures should be coordinated with the demand of social development. The existing environmental problems induced by irrational land use mostly result from their deviation from the natural properties of land types. Taking the northern slope of the Tianshan Mountains (NSTM) as an example and considering land type patterns as the basis of land use patterns, this paper improves the vertical oasis- and-mid-mountain two-belts development model and the sustainable mountain land use model for arid lands put forward in recent years; and in terms of oases patterns, it outlines oasis development models, including intensive land use pattern in alluvial-diluvial fans, moderate agricultural development pattern in alluvial plains, and ecological land use pattern in river-end oases.

    References | Related Articles | Metrics
    Factors and mechanism driving the land-use conversion in Jiangxi Province
    ZHAN Jinyan, SHI Nana, HE Shujin, LIN Yingzhi
    2010, 20 (4):  525-539.  doi: 10.1007/s11442-010-0525-y
    Abstract ( )   PDF (557KB) ( )   Save

    This article explores the factors and mechanism driving the land-use conversion at regional level by developing and using an econometric approach which is called the simultaneous equations model (SEM). A case study in Jiangxi Province of China is conducted by establishing the SEM, which consists of three equations including agricultural production, land conversion of cultivated land to built-up area and land conversion of cultivated land to forest cover/grassland from 1988 to 2005. And then this paper employs the method of piecewise estimation to represent the influences of the factors such as population, society, economy, location and geophysical conditions on the process of land-use conversion in Jiangxi Province. Estimation results show that population is a predominant factor driving the land-use conversion at counties, while social and economic factors are determinant factors in the short term for the entire Jiangxi Province. Specifically, the size of agricultural population and the magnitude of agricultural input determine the agricultural production to a large extent; population size, plain area proportion at counties and land management policies together affect the direction and magnitude of conversion between cultivated land and built-up area; agricultural population proportion, terrain slope, grain production and non-agricultural industry promote the conversion of cultivated land to forest cover/grassland. Furthermore, the explored mechanism also reveals the underlying causes of the land use changes driven by a series of factors in Jiangxi Province. Finally, this paper concludes that factors proven to play an important role in driving the land-use conversion need to be considered when the land management agencies make out the land use planning to optimize the land use, expand the agricultural production, and conserve the cultivated land.

    References | Related Articles | Metrics
    Modelling urban expansion using a multi agentbased model in the city of Changsha
    ZHANG Honghui, ZENG Yongnian, BIAN Ling, YU Xijun
    2010, 20 (4):  540-556.  doi: 10.1007/s11442-010-0540-z
    Abstract ( )   PDF (536KB) ( )   Save

    Although traditional urban expansion simulation models can simulate dynamic features, these models fail to address complex changes produced by different agents' behaviors. The paper has built up a set of spatial-temporal land resource allocation rules and developed a dynamic urban expansion model based on a multi-agent system, which can simulate the interaction among different agents, such as residents, peasants, and governments. This model is applied to simulate urban expansion process taking Changsha City, in China as a study area. The results show that this model can not only reflect basic characteristics of urban expansion, but also help explain the reasons for urban expansion process and understand the effect of agents' behavior on the expansion process, and provide insights into the causing factors behind the expansion. In addition, in contrast to simulation results with land use classification map from remote sensing images, the precision of the simulation reached over 68% with higher precision than cellular automata model according to the cell-by-cell comparison. The results suggest that the model can help to provide land use decision making support to government and urban planners.

    References | Related Articles | Metrics
    Climate Change
    Trend in pan evaporation and its attribution over the past 50 years in China
    LIU Min, SHEN Yanjun, ZENG Yan, LIU Changming
    2010, 20 (4):  557-568.  doi: 10.1007/s11442-010-0557-3
    Abstract ( )   PDF (957KB) ( )   Save

    Trends in pan evaporation are widely relevant to the hydrological community as indicators of hydrological and climate change. Pan evaporation has been decreasing in the past few decades over many large areas with differing climates globally. This study analyzes pan evaporation data from 671 stations in China over the past 50 years in order to reveal the trends of it and the corresponding trend attribution. Mann-Kendall test shows a significant declining trend in pan evaporation for most stations, with an average decrease of 17.2 mm/10a in China as a whole, the rate of decline was the steepest in the humid region (29.7 mm/10a), and was 17.6 mm/10a and 5.5 mm/10a in the semi-humid/semi-arid region and arid region, respectively. Complete correlation coefficients of pan evaporation with 7 climate factors were computed, and decreases in diurnal temperature range (DTR), SD (sunshine duration) and wind speed were found to be the main attributing factors in the pan evaporation declines. Decrease in DTR and SD may relate to the increase of clouds and aerosol as well as the other pollutants, and decrease in wind speed to weakening of the Asian winter and summer monsoons under global climate warming.

    References | Related Articles | Metrics
    Change of the solar radiation and its causes in the Haihe River Basin and surrounding areas
    LIU Changming, LIU Xiaomang, ZHENG Hongxing, ZENG Yan
    2010, 20 (4):  569-580.  doi: 10.1007/s11442-010-0569-z
    Abstract ( )   PDF (796KB) ( )   Save

    Solar radiation is an important driving force for the formation and evolution of climate system. Analysis of change in solar radiation is helpful in understanding mechanism of climate change. In this study, the temporal and spatial variations of solar radiation and the cause of the change in solar radiation have been analyzed based on meteorological data from 46 national meteorological stations and aerosol index data from TOMS over the Haihe River Basin and surrounding areas. The results have shown that solar radiation and direct radiation significantly decreased, while scattered radiation increased during the period 1957–2008. Spatially, the decreasing trend of solar radiation was more and more significant from low population density areas to high population density areas. The spatial distribution of increase in aerosol index is consistent with that of decrease in solar radiation. The increase in aerosols resulting from human activities was an important reason for the decrease in solar radiation.

    References | Related Articles | Metrics
    Summertime temperature variations in the middle and lower reaches of Yangtze River and their related circulation anomalies in the past five decades
    CAI Jiaxi, GUAN Zhaoyong, GAO Qingjiu, LIN Xin, QIAN Daili
    2010, 20 (4):  581-598.  doi: 10.1007/s11442-010-0581-3
    Abstract ( )   PDF (1616KB) ( )   Save

    Using the daily data of temperature from China Meteorological Administration and the NCEP/NCAR reanalysis from 1960 to 2005, we have analyzed the relationships between the summertime high/low temperature events in the middle and lower reaches of the Yangtze River (MLRYR) and the related circulation anomalies in the Eastern Hemisphere. Our results have demonstrated that a significantly increasing trend is observed in daily minimum temperature in the past 50 years. And in some regions in the Northern Hemisphere, the opposite scenarios are observed in circulation anomalies in lower and upper parts of the troposphere in the years when the temperatures are higher than normal, as compared to those in the years when the temperatures are lower than normal in the middle and lower reaches of the Yangtze River (MLRYR). Additionally, the anomalous circulation structure in vertical direction in both the high and lower temperature years are barotropic. It is found that the emergence and maintenance of the aforementioned anomalous circulations are related to three kinds of wave train teleconnection patterns. Further more, influences of the long wave surface radiation on the air temperature are stronger in the nighttime than that in the daytime. While both the maximum and minimum temperatures have negative relationships with the sensible heat flux but positive relationships with the latent heat flux. To some extent, the anomalous dynamic heating (cooling) caused by the vertical thermal advection as well as the diabatic heating (cooling) caused by diabatic processes can explain the formation of the high (low) temperature events in the middle and lower reaches of the Yangtze River (MLRYR) in boreal summer.

    References | Related Articles | Metrics
    Water Resources
    Hydrology and water resources variation and its response to regional climate change in Xinjiang
    XU Changchun, CHEN Yaning, YANG Yuhui, HAO Xingming, SHEN Yongping
    2010, 20 (4):  599-612.  doi: 10.1007/s11442-010-0599-6
    Abstract ( )   PDF (835KB) ( )   Save

    Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-term trend and jump point of time series, the surface runoff, mean annual temperature and annual precipitation. Meanwhile, the paper analyzed the relationship between runoff and temperature and precipitation, and the flood frequency and peak flow. Results showed that climate of all parts of Xinjiang conformably has experienced an increase in temperature and precipitation since the mid-1980s. Northern Xinjiang was the area that changed most significantly followed by southern and eastern Xinjiang. Affected by temperature and precipitation variation, river runoff had changed both inter- annually and intra-annually. The surface runoff of most rivers has increased significantly since the early 1990s, and some of them have even witnessed the earlier spring floods, later summer floods and increasing flood peaks. The variation characteristics were closely related with the replenishment types of rivers. Flood frequency and peak flow increased all over Xinjiang. Climate warming has had an effect on the regional hydrological cycle.

    References | Related Articles | Metrics
    Response of delta sedimentary system to variation of water and sediment in the Yellow River over past six decades
    PENG Jun, CHEN Shenliang
    2010, 20 (4):  613-627.  doi: 10.1007/s11442-010-0613-z
    Abstract ( )   PDF (574KB) ( )   Save

    In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment load in the Yellow River Basin caused by human disturbances were analyzed by means of statistics. It was shown that the water discharge and sediment load into the sea were decreasing from 1950 to 2007 with serious fluctuation. The human activities were the main cause for decrease of water discharge and sediment load into the sea. From 1950 to 2005, the average annual reduction of water discharge and sediment load by means of water-soil conservation practices were 2.02×109 m3 and 3.41×108 t respectively, and the average annual volume by water abstraction for industry and agriculture were 2.52×1010 m3 and 2.42×108 t respectively. The average sediment trapped by Sanmenxia Reservoir was 1.45×108 t from 1960 to 2007, and the average sediment retention of Xiaolangdi Reservoir was 2.398×108 t from 1997 to 2007. Compared to the data records at Huanyuankou, the water discharge and sediment load into the sea decreased with siltation in the lower reaches and increased with scouring in the lower reaches. The coastline near river mouth extended and the delta area increased when the ratio of accumulative sediment load and accumulative water discharge into the sea (SSCT) is 25.4–26.0 kg/m3 in different time periods. However, the sharp decrease of water discharge and sediment load into the sea in recent years, especially the Yellow River into the sea at Qing 8, the entire Yellow River Delta has turned into erosion from siltation, and the time for a reversal of the state was about 1997.

    References | Related Articles | Metrics
    Man-Land Relationship
    Classification of densities and characteristics of curve of population centers in China by GIS
    GE Meiling, FENG Zhiming
    2010, 20 (4):  628-640.  doi: 10.1007/s11442-010-0628-5
    Abstract ( )   PDF (807KB) ( )   Save

    In this paper, with the spatial analysis functions in ArcGIS and the county-level census data of 2000 in China, the population density map was divided and shown by classes, meanwhile, the map system of population distribution and a curve of population centers were formed; in accordance with the geographical proximity principle, the classes of population densities were reclassified and a population density map was obtained which had the spatial clustering characteristic. The multi-layer superposition based on the population density classification shows that the population densities become denser from the Northwest to the Southeast; the multi-layer clustering phenomenon of the Chinese population distribution is obvious, the populations have a water-based characteristic gathering towards the rivers and coastlines. The curve of population centers shows the population densities transit from the high density region to the low one on the whole, while in low-density areas there are relatively dense areas, and in high-density areas there are relatively sparse areas. The reclassification research on the population density map based on the curve of population centers shows that the Chinese population densities can be divided into 9 classes, hereby, the geographical distribution of Chinese population can be divided into 9 type regions: the concentration core zone, high concentration zone, moderate concentration zone, low concentration zone, general transitional zone, relatively sparse area, absolute sparse area, extreme sparse area, and basic no-man's land. More than 3/4 of the population of China is concentrated in less than 1/5 of the land area, and more than half of the land area is inhabited by less than 2% of the population, the result reveals a better space law of China’s population distribution.

    References | Related Articles | Metrics