“Studies on Arid Lands” 栏目所有文章列表

(按年度、期号倒序)

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部

Please wait a minute...
  • 全选
    |
  • Studies on Arid Lands
    JIANG Xiaohui, LIU Changming
    Journal of Geographical Sciences. 2010, 20(5): 701-711. https://doi.org/10.1007/s11442-010-0805-6
    CSCD(1)

    Water regulation has been carried out by the Heihe River Bureau since 2000, which aims to address the existing eco-environmental problems in the lower Heihe River. In the past nine years, great changes in spatial-temporal distribution of water resources took place in the lower Heihe River. In order to objectively evaluate the influence of water regulation on the eco-environment, the changes of groundwater table, typical vegetation, landscape types as well as East Juyan Lake have been analyzed in the lower Heihe River, by means of field surveys and remote sensing. These results indicate that there are obvious effects of water regulation on the eco-environment, which has been improved toward sustainability in the lower Heihe River.

  • Studies on Arid Lands
    DU Jianhui, YAN Ping, DONG Yuxiang
    Journal of Geographical Sciences. 2010, 20(5): 712-728. https://doi.org/10.1007/s11442-010-0806-5
    CSCD(5)

    Nebkhas are often extensively distributed in arid and semi-arid areas, and play an important role in the stabilization of ecological environment in these areas. This paper reviews the following aspects, including formation and succession, spatial distribution, shape and surface airflow characteristics, balance between erosion and deposition, ecological and physiological characteristics of vegetation, response to precipitation and groundwater, soil properties as well as the protection measures. We found that nebkhas were studied without differentiation of succession periods, and shape characteristics, surface airflow, soil properties as well as vegetation dynamics in different succession periods were not fully understood, which made it difficult to explain the succession dynamics of nebkhas and its affecting factors. Previous studies of nebkhas were over-emphasized for its role as an indicator of land degradation, while its ecological functions in degraded ecosystems were neglected, which was unfavorable for the ecological restorations in arid and semi-arid areas. Future studies should pay more attention to the variation of vegetation, soil as well as hydrological process in the succession of nebkhas and its interaction between different influencing factors. In addition, positive role of nebkhas in degraded ecosystems in arid and semi-arid areas should be fully discussed. According to the data got from the above, effective protection measures of nebkhas should be explored.

  • Studies on Arid Lands
    YANG Yuhai, CHEN Yaning, LI Weihong, CHEN Yapeng
    Journal of Geographical Sciences. 2010, 20(5): 729-740. https://doi.org/10.1007/s11442-010-0807-4
    CSCD(2)

    We analyzed and estimated the distribution and reserves of soil organic carbon under nine different vegetation conditions including alpine meadow, meadow steppe, typical steppe, desert steppe, and temperate coniferous forest and so on, in the Ili River valley, Xinjiang according to data from field investigations and laboratory analyses in 2008 and 2009. The study results show that the soil organic carbon content in the Ili River valley varies with the type of vegetation. In the 0–50 cm soil horizon, the soil organic carbon content is the highest under the vegetation types of alpine meadow and meadow steppe, slightly lower under temperate coniferous forest and typical steppe, and the lowest under the intrazonal vegetation and desert vegetation types. The soil organic carbon content shows basically a tendency to decrease as soil depth increases under various vegetation types except in the case of the intrazonal vegetation. Similarly, the soil organic carbon density is the highest and varies little under the vegetation types of alpine meadow, meadow steppe and temperate coniferous forest, and is the lowest under the desert vegetation type. Both the soil organic carbon content and density in the topsoil of meadows in the Ili River valley are high, so protecting meadows in the Ili River valley, and especially their topsoil, should be a priority so that the potential of change in soil organic carbon in the shallow soil horizon is reduced, and this means maintenance of the stability of the soil carbon pool.