“Ecology” 栏目所有文章列表

(按年度、期号倒序)

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部

Please wait a minute...
  • 全选
    |
  • Ecology
    YAN Yuan, WANG Shaoqiang, WANG Yidong, WU Weixing, WANG Jingyuan, CHEN Bin, YANG Fengting
    Journal of Geographical Sciences. 2011, 21(3): 458-474. https://doi.org/10.1007/s11442-011-0857-2

    A generalized, lumped-parameter ecological model PnET-CN was calibrated and validated for a subtropical coniferous plantation in southern China. PnET-CN model describes the biogeochemical cycles of carbon (C) and nitrogen (N) and can assist in estimating carbon sequestration potential. For validation of PnET-CN, data from coniferous forest plantations in southern China was used. Simulated daily gross primary productivity (GPP) from 2005 to 2007 agreed well with observations (R2=0.56, S.D.=0.009). Simulations of monthly soil respiration (Rs) from 2005–2007 agreed well with Rs observations (R2=0.67, S.D. =0.03). Simulated annual net primary productivity (NPP) from 1998–2006 was 803±33 gCm-2a-1, about 4% higher than NPP observation (752±51 gCm-2a-1). Simulations of annual NEP from 2005-2007 only overestimate 9 gCm-2a-1 (4%), 4 gCm-2a-1 (1%) and 34 gCm-2a-1 (8%) compared to NEP observations, respectively. Simulated annual foliar N concentration (FolNCon) (1.09%) is 10% lower than observed monthly FolNCon (0.87%–1.58%). Simulated annual N leaching (0.26 gNm-2) is about 10% lower than leaching observation (0.29 gNm-2). PnET-CN model validation indicates that PnET-CN is capable to simulate daily GPP, annual NPP, annual NEP, monthly Rs, annual FolNCon and annual nitrate N leaching for subtropical coniferous plantations in southern China. The results obtained from the validation test revealed that PnET-CN model can be used to simulate carbon sequestration of planted coniferous forests in southern China to a high level of precision. Sensitivity analysis suggests that great care should be taken in developing generalizations as to how forests will respond to a changing climate. PnET-CN performed satisfactorily in comparison to other models that have already been calibrated and validated in coniferous planted subtropical forests in China. Based on PnET-CN validation and its comparison to other models, future improvement of PnET-CN should focus on seasonal foliar N dynamics and the effects of water stress on autotrophic respirations in subtropical coniferous plantations in southern China.