“Hydrology and Water Resources” 栏目所有文章列表

(按年度、期号倒序)

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部

Please wait a minute...
  • 全选
    |
  • Hydrology and Water Resources
    LI Guosheng, WANG Hailong, LIAO Heping
    Journal of Geographical Sciences. 2010, 20(6): 923-937. https://doi.org/10.1007/s11442-010-0821-6

    Based on sediment and discharge flux data for the Yellow River, realistic forcing fields and bathymetry of the Bohai Sea, a suspended sediment transport module is driven by a wave-current coupled model to research seasonal variations and mechanisms of suspended load transport to the Bohai Sea. It could be concluded that surface sediment concentration indicates a distinct spatial distribution characteristic that varies seasonally in the Bohai Sea. Sediment concentration is rather high near the Yellow River estuary, seasonal variations of which are controlled by quantity of sediment from the Yellow River, suspended sediment concentration reaches its maximum during summer and fall. Furthermore, sediment concentration decreases rapidly in other seas far from the Yellow River estuary and maintains a very low level in the center of the Bohai Sea, and is dominated by seasonal variations of climatology wind field in the Bohai Sea. Only a small amount of sediments imported from the Yellow River are delivered northwestward to the southern coast of the Bohai Bay. Majority of sediments are transported southeastward to the Laizhou Bay, where sediments are continuously delivered into the center of the Bohai Sea in a northeastward direction, and part of them are transported eastward alongshore through the Bohai Strait. 69% of sediments from the Yellow River are deposited near the river delta, 31% conveyed seaward, within which, 4% exported to the northern Yellow Sea through the Bohai Strait. Wind wave is the most essential contributor to seasonal variations of sediment concentration in the Bohai Sea, and the contribution of tidal currents is also significant in shallow waters when wind speed is low.

  • Hydrology and Water Resources
    LEITE Mariangela Garcia Pra?a, FUJACO Maria Augusta Gon?alves
    Journal of Geographical Sciences. 2010, 20(6): 938-946. https://doi.org/10.1007/s11442-010-0822-5

    Semi-arid and arid areas exhibit great temporal variability in water availability. In some of these regions, a one- or two-day rainfall is followed by intervening dry periods of variable length. In recent decades, many rivers of the semi-arid portion of the Jequitinhonha Basin have been undergoing a progressive discharge reduction, mainly of their base flow, the Araçuaí River is one of them. In order to understand this transformation, a long-term analysis of the annual water balance of the Araçuaí River Basin was performed, the results of which are presented herein. Satellite images, hydrometeorological and river discharge data were analyzed; mean and variance tests were conducted to determine temporal homogeneity. Historical pluviometric data analysis shows no corresponding precipitation reduction and temperature undergoes only a slight increase in the same period. On the other hand, evaporation is extremely high, higher than precipitation during most of the year, leaving almost no water for infiltration (aquifer recharge) and runoff. Furthermore, the Araçuaí headwaters of its tributaries are now occupied by a monoculture, Eucaliptus sp., used for paper production. Because of the decreased fluvial discharges, its lowlands, usually used for agriculture and pasture, are abandoned and partially eroded.

  • Hydrology and Water Resources
    LI Zijun, LI Xiubin, XU Zhimei
    Journal of Geographical Sciences. 2010, 20(6): 947-960. https://doi.org/10.1007/s11442-010-0823-4

    Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961–2005 were analyzed applying Mann-Kendall test method on the basis of the hydrologic data of the major hydrological station (Xiahui Station) located at the outlet of the drainage basin and the meteorological data of 17 rainfall stations. Human activities including water conservancy projects construction and water diversion as well as implementation of soil and water conservation from 1961 to 2005 were carefully studied using time series contrasting method. The referenced period (1961–1980) that influenced slightly by human activities and the compared period (1981–2005) that influenced significantly by water conservancy and soil conservation measures were identified according to the runoff variation process analysis and abrupt change points detection during 1961–2005 applying double accumulative curve method, mean shift t-test method and Mann-Kendall mutation test technique. Based on the establishment of a rainfall-runoff empirical statistical model, impacts and the runoff-reducing effects of water conservancy and soil conservation measures on runoff reduction were evaluated quantitatively. The major results could be summarized as follows: (1) The annual precipitation in the drainage basin tends to decrease while the runoff has declined markedly since the 1960s, the average annual runoff from 1991 to 2000 was only 90.9% in proportion to that from 1961 to 1970. (2) The annual runoff variations in the drainage basin are significantly related to human activities. (3) During 1981–1990, 1991–2000, 2001–2005 and 1981–2005, the average annual runoff reduction amounts were 1.15×108, 0.28×108, 1.10×108 and 0.79×108 m3 respectively and the average annual runoff-reducing effects were 31.99%, 7.13%, 40.71% and 23.79% accordingly. Runoff-reducing effects by water conservancy and soil conservation measures are more prominent in the low water period.