“Vegetation Change” 栏目所有文章列表

(按年度、期号倒序)

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部

Please wait a minute...
  • 全选
    |
  • Vegetation Change
    CUI Linli, SHI Jun
    Journal of Geographical Sciences. 2010, 20(2): 163-176. https://doi.org/10.1007/s11442-010-0163-4

    Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year, spring, summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT–NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China. The results indicate that as a whole, the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China. Vegetation NDVI maximally responds to the variation of temperature with a lag of about 10 days, and it maximally responds to the variation of precipitation with a lag of about 30 days. The response of vegetation NDVI to temperature and precipitation is most pronounced in autumn, and has the longest lag in summer. Spatially, the maximum response of vegetation NDVI to the variation of temperature is more pronounced in the northern and middle parts than in the southern part of eastern China. The maximum response of vegetation NDVI to the variation of precipitation is more pronounced in the northern part than in the middle and southern parts of eastern China. The response of vegetation NDVI to the variation of temperature has longer lag in the northern and southern parts than in the middle part of eastern China. The response of vegetation NDVI to the variation of precipitation has the longest lag in the southern part, and the shortest lag in the northern part of eastern China. The response of vegetation NDVI to the variation of temperature and precipitation in eastern China is mainly consistent with other results, but the lag time of vegetation NDVI to the variation of temperature and precipitation has some differences with those results of the monsoon region of eastern China.

  • Vegetation Change
    SUN Aizhi, FENG Zhaodong, MA Yuzhen
    Journal of Geographical Sciences. 2010, 20(2): 177-192. https://doi.org/10.1007/s11442-010-0177-y

    Pollen records from the Chinese Loess Plateau revealed a detailed history of vegetation variation and associated climate changes during the last 13.0 ka BP. Before 12.1 ka BP, steppe or desert-steppe vegetation dominated landscape then was replaced by a coniferous forest under a generally wet climate (12.1–11.0 ka BP). The vegetation was deteriorated into steppe landscape and further into a desert-steppe landscape between 11.0 and 9.8 ka BP. After a brief episode of a cool and wet climate (9.8–9.6 ka BP), a relatively mild and dry condition prevailed during the early Holocene (9.6–7.6 ka BP). The most favourable climate of warm and humid period occurred during mid-Holocene (7.6–~4.0 ka BP) marked by forest-steppe landscape and vegetation alternatively changed between steppe and desert- steppe from ~4.0 to ~1.0 ka BP.

  • Vegetation Change
    XING Xiaoxu, XU Xingliang, ZHANG Xianzhou, ZHOU Caiping, SONG Minghua, SHAO Bin, *OUYANG Hua
    Journal of Geographical Sciences. 2010, 20(2): 193-204. https://doi.org/10.1007/s11442-010-0193-y

    The net primary production (NPP) of grasslands in northeastern Asia was estimated using improved CASA model with MODIS data distributed from 2000 and ground data as driving variables from 2000 to 2005. Average annual NPP was 146.05 g C m?2 yr?1 and average annual total NPP was 0.32 Pg C yr?1 in all grasslands during the period. It was shown that average annual grassland NPP in the whole northeastern Asia changed dramatically from 2000 to 2005, with the highest value of 174.80 g C m?2 yr?1 in 2005 and the lowest value of 125.65 g C m?2 yr?1 in 2001. On regional scale, average annual grassland NPP of 179.71 g C m?2 yr?1 in southeastern Russia was the highest among the three main grassland regions in the six years. Grasslands in northern China exhibited the highest average annual total NPP of 0.16 Pg C yr?1 and contributed 51.42% of the average annual total grassland NPP in northeastern Asia. Grassland NPP in northeastern Asia also showed a clear seasonal pattern with the highest NPP occurred in July every year. Average monthly grassland NPP in southeastern Russia was the highest from May to August while average monthly grassland NPP in northern China showed the highest NPP before May and after August. The change rate distribution of grassland NPP between the former three years and the latter three years showed grassland NPP changed slightly between the two stages in most regions, and that NPP change rate in 80.98% of northeastern Asia grasslands was between –0.2 and 0.2. Grassland NPP had close correlation with precipitation and temperature, that indicates climate change will influence the grassland NPP and thus have a great impact on domestic livestock in this region in future.