Please wait a minute...
 Home  About the Journal Subscription Advertisement Contact us   英文  
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited
地理学报(英文版)  2015, Vol. 25 Issue (12): 1479-1506    DOI: 10.1007/s11442-015-1247-y
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data
1. Institute for Groundwater Management, TU Dresden, 01069 Dresden, Germany
2. University of Agriculture, Faisalabad, Pakistan
3. Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany;
全文: PDF(2804 KB)  
输出: BibTeX | EndNote (RIS)      
E-mail Alert

Detailed analysis of Land Use/Land Cover (LULC) using remote sensing data in complex irrigated basins provides complete profile for better water resource management and planning. Using remote sensing data, this study provides detailed land use maps of the Lower Chenab Canal irrigated region of Pakistan from 2005 to 2012 for LULC change detection. Major crop types are demarcated by identifying temporal profiles of NDVI using MODIS 250 m × 250 m spatial resolution data. Wheat and rice are found to be major crops in rabi and kharif seasons, respectively. Accuracy assessment of prepared maps is performed using three different techniques: error matrix approach, comparison with ancillary data and with previous study. Producer and user accuracies for each class are calculated along with kappa coefficients (K). The average overall accuracies for rabi and kharif are 82.83% and 78.21%, respectively. Producer and user accuracies for individual class range respectively between 72.5% to 77% and 70.1% to 84.3% for rabi and 76.6% to 90.2% and 72% to 84.7% for kharif. The K values range between 0.66 to 0.77 for rabi with average of 0.73, and from 0.69 to 0.74 with average of 0.71 for kharif. LULC change detection indicates that wheat and rice have less volatility of change in comparison with both rabi and kharif fodders. Transformation between cotton and rice is less common due to their completely different cropping conditions. Results of spatial and temporal LULC distributions and their seasonal variations provide useful insights for establishing realistic LULC scenarios for hydrological studies.

Key wordsland use/land cover    remote sensing    normalized difference vegetation index    accuracy assessment    change detection    hydrological modeling
收稿日期: 2014-11-08      出版日期: 2016-01-05
. [J]. 地理学报(英文版), 2015, 25(12): 1479-1506.
M USMAN,R LIEDL,M A SHAHID,A ABBAS. Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. Journal of Geographical Sciences, 2015, 25(12): 1479-1506.
链接本文:      或
Table 1  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Table 2  
Table 3  
Table 4  
Figure 6  
Figure 7  
Table 5  
Figure 8  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
1 Agricultural Outlook Forum, 2012. The world and United States cotton outlook. United States Department of Agriculture.
2 Anderson J R, 1977. Land use and land cover changes: A framework for monitoring.Journal of Research by the Geological Survey, 5: 143-153.
3 Barraza V, Grings F, Salvia Met al., 2013. Monitoring and modelling land surface dynamics in Bermejo River Basin, Argentina: Time series analysis of MODIS NDVI data.International Journal of Remote Sensing, 34(15): 5429-5451. doi: 10.1080/01431161.2013.791759.
doi: 10.1080/01431161.2013.791759
4 Bastiannssen W G M, 1998a. Remote sensing in water resources management: The state of the art. International Water Management Institute, Colombo, Sri Lanka.
5 Bastiaanssen W G M, Menenti M, Feddes R Aet al., 1998b. A remote sensing surface energy balance algorithm for land (SEBAL) formulation.J. Hydrol., 212/213: 198-212.
doi: 10.1016/S0022-1694(98)00253-4
6 Black A, Stephen H, 2014. GIScience & remote sensing relating temperature trends to the normalized difference vegetation index in Las Vegas.GIScience and Remote Sensing, 51(4): 468-482.
doi: 10.5311/JOSIS.2014.9.204
7 Campbell J B, 2002. Introduction to Remote Sensing. New York: The Guilford Press.
8 Cheema M J M, Bastiaanssen W G M, 2010. Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis.Agricultural Water Management, 97(10): 1541-1552. doi: 10.1016/j.agwat.2010.05.009.
doi: 10.1016/j.agwat.2010.05.009
9 Congalton R, Green K, 1999. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Boca Raton: CRC/Lewis Press, FL. 137 p./s?wd=paperuri%3A%28f37f6968c54d898f521e41f00bde069e%29&filter=sc_long_sign&sc_ks_para=q%3DAssessing%20the%20Accuracy%20of%20Remotely%20Sensed%20Data&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
10 Congalton R G, 1996. Accuracy assessment: A critical component of land cover mapping in gap analysis: A landscape approach to biodiversity planning. A Peer-Reviewed Proceedings of the ASPRS/GAP Symposium, February 27 - March 2, 1995, Charlotte, N.C. 119-131./s?wd=paperuri%3A%281a6eab068a568f67c9b2165656f17dfe%29&filter=sc_long_sign&sc_ks_para=q%3DGap%20analysis%3A%20a%20landscape%20approach%20to%20biodiversity%20planning&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
11 Dappen Patti R, Ratcliffe I C, Robbins C R et al., 2008. Mapping agricultural land cover for hydrologic modeling in the Platte River Watershed of Nebraska. Great Plains Research: A Journal of Natural and Social Sciences, Paper 926, .
12 Ding H, Shi W, 2013. Land-use/land-cover change and its influence on surface temperature: A case study in Beijing City.International Journal of Remote Sensing, 34(15): 5503-5517. doi: 10.1080/01431161.2013.792966.
doi: 10.1080/01431161.2013.792966
13 Douglas K B, Mark A F, 2013. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics.Agricultural and Forest Meteorology, 173: 74-84.
doi: 10.1016/j.agrformet.2013.01.007
14 Fang W, Chen J, Shi P, 2005. Variability of the phenological stages of winter wheat in the North China Plain with NOAA/AVHRR NDVI data (1982-2000).IEEE International Geoscience and Remote Sensing Symposium Proceedings, 5: 3124-3127.
doi: 10.1109/IGARSS.2005.1526499
15 Fisher P F, 2010. Remote sensing of land cover classes as type 2 fuzzy sets.Remote Sensing of Environment, 114: 309-321.
16 Foody G M, 2002. Status of land cover classification accuracy assessment.Remote Sensing of Environment, 80: 185-201.
doi: 10.1016/S0034-4257(01)00295-4
17 Gao X, Huete A R, Ni Wet al., 2000. Optical-biophysical relationships of vegetation spectra without back-ground contamination.Remote Sensing of Environment, 74: 609-620.
18 Giri, Chandra, Jenkins C, 2005. Land cover mapping of greater Mesoamerica using MODIS data. Remote Sensing, 31(4): 274-282. Retrieved at .
19 Gong P, Wang J, Yu Let al., 2013. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data.International Journal of Remote Sensing, 34(7): 2607-2654. doi: 10.1080/01431161.2012.748992./s?wd=paperuri%3A%28dd26c4a4f0dedbff7d37fc6a3ec762ad%29&filter=sc_long_sign&sc_ks_para=q%3DFiner%20resolution%20observation%20and%20monitoring%20of%20global%20land%20cover%3A%20First%20mapping%20results%20with%20Landsat%20TM%20and%20ETM%2B%20data&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
20 Gumma M K, Nelson A, Thenkabail P Set al., 2011. Mapping rice areas of South Asia using MODIS multitemporal data.J. Applied Remote Sensing, 5(1): 53547. doi: 10.1117/1.3619838.
doi: 10.1117/1.3619838
21 Jensen J R, 1996. Introductory Digital Image Processing: A Remote Sensing Perspective. 2nd ed. New Jersey: Prentice-Hall, 316p.
doi: 10.1080/10106048709354084
22 Jeong S, Jang K, Hong Set al., 2011. Detection of irrigation timing and the mapping of paddy cover in Korea using MODIS images data.Korean Journal of Agricultural and Forest Meteorology, 13: 69-78.
23 Julien Y, Sobrino J A, 2009. Global land surface phenology trends from GIMMS database.International Journal of Remote Sensing, 30: 3495-3513.
doi: 10.1080/01431160802562255
24 Kim Y.2013. Drought and elevation effects on MODIS vegetation indices in northern Arizona ecosystems.International Journal of Remote Sensing, 34(14): 4889-4899. doi: 10.1080/2150704X.2013.781700.
doi: 10.1080/2150704X.2013.781700
25 Kimaro T A, Tachikawa Y, Takara K, 2005. Distributed hydrologic simulations to analyze the impacts of land use changes on flood characteristics in the Yasu River Basin in Japan.Journal of Natural Disaster Sciences, 27(2): 85-94.
26 Latifovic R, Olthof I, 2004. Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data.Remote Sensing of Environment, 90: 153-165.
doi: 10.1016/j.rse.2003.11.016
27 Leff B, Ramankutty N, Foley J A, 2004. Geographic distribution of major crops across the world. Global Biogeochem. Cycles, 18, GB 1009. doi: 10.1029/203GB002108.
doi: 10.1029/2003GB002108
28 Liang L, Gong P, 2013. Evaluation of global land cover maps for cropland area estimation in the conterminous United States.International Journal of Digital Earth: 1-16. doi: 10.1080/17538947.2013.854414.
doi: 10.1080/17538947.2013.854414
29 Lorencov′ A E, Fr′ Elichov′ A J, Nelson Eet al., 2013. Past and future impacts of land use and climate change on agricultural ecosystem services in the Czech Republic.Land Use Policy, 33: 183-194.
doi: 10.1016/j.landusepol.2012.12.012
30 Lu D, Li G, Moran Eet al., 2013. Spatiotemporal analysis of land use and land cover change in the Brazilian Amazon.International Journal of Remote Sensing, 34(16): 5953-5978. doi:10.1080/01431161.2013.802825.
doi: 10.1080/01431161.2013.802825 pmid: 24127130
31 Matthews E, 1983. Global vegetation and landuse: New high resolution data bases for climate studies.Journal of Climate and Applied Meteorology, 22: 474-487.
doi: 10.1175/1520-0450(1983)0222.0.CO;2
32 Mitrakis N E, Mallinis G, Koutsias Net al., 2011. Burned area mapping in Mediterranean environment using medium-resolution multi-spectral data and a neuro-fuzzy classifier.International Journal of Image and Data Fusion, 1-20.
doi: 10.1080/19479832.2011.635604
33 Molden D, 1997. Accounting for water use and productivity. SWIM paper 1. Colombo, Srilanka./s?wd=paperuri%3A%28f58ba211945cf98274b126d5e23221ad%29&filter=sc_long_sign&sc_ks_para=q%3DAccounting%20for%20water%20use%20and%20productivity.%20SWIM%20Paper%201&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
34 Morton D C, DeFries R S, Shimabukuro Y Eet al., 2006. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon.Proceedings of the National Academy of Sciences of the United States of America, 103(39): 14637-14641.
doi: 10.1073/pnas.0606377103 pmid: 16973742
35 Niu Z, Zhang H, Wang Xet al., 2012. Mapping wetland changes in China between 1978 and 2008.Chinese Science Bulletin, 57(22): 2813-2823. doi: 10.1007/s11434-012-5093-3.
doi: 10.1007/s11434-012-5093-3
36 Osborne P, Alonso J, Bryant R, 2001. Modelling landscape-scale habitat use using GIS and remote sensing: A case study with great bustards.Journal of Applied Ecology, 38: 458-471.
doi: 10.1046/j.1365-2664.2001.00604.x
37 Oslon J S, 1994. Global ecosystem framework definitions. USGS EROS Data Center Internal Report, Sioux Falls, SD, 37p.
38 Peng D, Huete A R, Huang Jet al., 2011. Detection and estimation of mixed paddy rice cropping patterns with MODIS data.International Journal of Applied Earth Observation and Geoinformation, 13: 13-23.
doi: 10.1016/j.jag.2010.06.001
39 Pettorelli N, 2013. The Normalized Difference Vegetation Index. Oxford: Oxford University Press./s?wd=paperuri%3A%28a4818eaa0e43c37780a7d4c40a012af3%29&filter=sc_long_sign&sc_ks_para=q%3DThe%20Normalized%20Difference%20Vegetation%20Index&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
40 Portmann F T, Siebert S, D?ll P, 2010. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24: GB1011.
41 Prakasam C, 2010. Land use and land cover change detection through remote sensing approach: A case study of Kodaikanal taluk, Tamil nadu.International Journal of Geomatics and Geosciences, 1(2): 150-158.
42 Reed B C, Brown J F, VanderZee Det al., 1994. Measuring phenological variability from satellite imagery.Journal of Vegetation Science, 5: 703-714.
doi: 10.2307/3235884
43 Reis S, 2008. Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey.Sensors, 8(10): 6188-6202. doi: 10.3390/s8106188.
doi: 10.3390/s8106188
44 Schilling K E, Jha M K, Zhang Y et al., 2008. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resources Research, 44(7): 1-12. Available at: [Accessed October 8, 2014].
45 Shao Y, Fan X, Liu Het al., 2001. Rice monitoring and production estimation using multitemporal RADARSAT.Remote Sensing of Environment, 76(3): 310-325. doi: 10.1016/S0034-4257(00)00212-1.
doi: 10.1016/S0034-4257(00)00212-1
46 Shi J, Huang J, Zhang F, 2013. Multi-year monitoring of paddy rice planting area in Northeast China using MODIS time series data. Journal of Zhejiang University (Science B), 14(10) (October): 934-946. doi: 10.1631/jzus.B1200352.
doi: 10.1631/jzus.B1200352 pmid: 24101210
47 Thi T, Nguyen H, De-Bie C A J Met al., 2012. Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis.International Journal of Remote Sensing, 33(2): 415-434.
doi: 10.1080/01431161.2010.532826
48 Tou J T, Gonzalez R C, 1974. Pattern Recognition Principles. London: Addison-Wesley, 1974.
49 Tucker C J, 1979. Red and photographic infrared linear combinations for monitoring vegetation.Remote Sensing of Environment, 8: 127-150.
doi: 10.1016/0034-4257(79)90013-0
50 Tucker C J, Vanpraet C L, Sharman M Jet al., 1985. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980-1984.Remote Sensing of Environment, 17: 233-249.
doi: 10.1016/0034-4257(85)90097-5
51 Usman M, Liedl R, Awan U K, 2015a. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan.J. Hydrol. doi: 10.1016/j.jhydrol.2015.03.031.
52 Usman M, Liedl R, Kavousi A, 2015b. Estimation of distributed seasonal net recharge by modern satellite data in irrigated agricultural regions of Pakistan.Environ. Earth Sciences. doi: 10.1007/s12665-015-4139-7.
doi: 10.1007/s12665-015-4139-7
53 Usman M, Liedl R, Shahid M A M, 2014. Managing irrigation water by yield and water productivity assessment of a rice-wheat system using remote sensing.Journal of Irrigation and Drainage Engineering. doi: 10.1061/(ASCE)IR.1943-4774.0000732.
doi: 10.1061/(ASCE)IR.1943-4774.0000732
54 Wajid A, Ahmad A, Khaliq Tet al., 2010. Quantification of growth, yield and radiation use efficiency of promising cotton cultivars at varying nitrogen levels.Pakistan Journal of Botany, 42(3): 1703-1711.
doi: 10.3417/2008072
55 Wajid A, Hussain K, Maqsood Met al., 2007. Simulation modeling of growth, development and grain yield of wheat under semi arid conditions of Pakistan.Pakistan Journal of Agricultural Sciences, 44(2): 194-199.
56 Wardlow B D, Egbert S L, Kastens J H, .
57 Wegehenkel M, 2009. Modeling of vegetation dynamics in hydrological models for the assessment of the effects of climate change on evapotranspiration and groundwater recharge.Adv. Geosci., 21: 109-115. doi: 10.5194/adgeo-21-109-2009.
doi: 10.5194/adgeo-21-109-2009
58 Wilson M, Henderson-Sellers A, 1985. A global archive of land cover and soils data for use in general circulation models.Journal of Climatology, 5: 119-143.
59 Xiao X, Boles S, Frolking S et al., 2006. Mapping paddy rice agriculture in South and South-east Asia using multi-temporal MODIS images. Remote Sensing of Environment, 100: 95-113 .. j.rse.2005.10.004
60 Yu L, Wang J, Gong P, 2013. Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: A segmentation-based approach.International Journal of Remote Sensing, 34(16): 5851-5867. doi: 10.1080/01431161.2013.798055.
doi: 10.1080/01431161.2013.798055
61 Zhao L, Xia J, Xu Cet al., 2013. Evapotranspiration estimation methods in hydrological models.J. Geogr. Sciences, 23(2): 359-369. doi: 10.1007/s11442-013-1015-9.
doi: 10.1007/s11442-013-1015-9
62 Zheng P Q, Baetz B W, 1999. GIS-based analysis of development options from a hydrology perspective.Journal of Urban Planning and Development, 125: 164-180.
doi: 10.1061/(ASCE)0733-9488(1999)125:4(164)
No related articles found!
Full text



版权所有 © 《地理学报(英文版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持