Please wait a minute...
 Home  About the Journal Subscription Advertisement Contact us   英文  
 
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited
地理学报(英文版)  2015, Vol. 25 Issue (12): 1479-1506    DOI: 10.1007/s11442-015-1247-y
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data
M USMAN1,R LIEDL1,M A SHAHID2,A ABBAS3,2
1. Institute for Groundwater Management, TU Dresden, 01069 Dresden, Germany
2. University of Agriculture, Faisalabad, Pakistan
3. Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany;
全文: PDF(2804 KB)  
输出: BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Detailed analysis of Land Use/Land Cover (LULC) using remote sensing data in complex irrigated basins provides complete profile for better water resource management and planning. Using remote sensing data, this study provides detailed land use maps of the Lower Chenab Canal irrigated region of Pakistan from 2005 to 2012 for LULC change detection. Major crop types are demarcated by identifying temporal profiles of NDVI using MODIS 250 m × 250 m spatial resolution data. Wheat and rice are found to be major crops in rabi and kharif seasons, respectively. Accuracy assessment of prepared maps is performed using three different techniques: error matrix approach, comparison with ancillary data and with previous study. Producer and user accuracies for each class are calculated along with kappa coefficients (K). The average overall accuracies for rabi and kharif are 82.83% and 78.21%, respectively. Producer and user accuracies for individual class range respectively between 72.5% to 77% and 70.1% to 84.3% for rabi and 76.6% to 90.2% and 72% to 84.7% for kharif. The K values range between 0.66 to 0.77 for rabi with average of 0.73, and from 0.69 to 0.74 with average of 0.71 for kharif. LULC change detection indicates that wheat and rice have less volatility of change in comparison with both rabi and kharif fodders. Transformation between cotton and rice is less common due to their completely different cropping conditions. Results of spatial and temporal LULC distributions and their seasonal variations provide useful insights for establishing realistic LULC scenarios for hydrological studies.

Key wordsland use/land cover    remote sensing    normalized difference vegetation index    accuracy assessment    change detection    hydrological modeling
收稿日期: 2014-11-08      出版日期: 2016-01-05
引用本文:   
. [J]. 地理学报(英文版), 2015, 25(12): 1479-1506.
M USMAN,R LIEDL,M A SHAHID,A ABBAS. Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. Journal of Geographical Sciences, 2015, 25(12): 1479-1506.
链接本文:  
http://www.geogsci.com/CN/10.1007/s11442-015-1247-y      或      http://www.geogsci.com/CN/Y2015/V25/I12/1479
Table 1  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Table 2  
Table 3  
Table 4  
Figure 6  
Figure 7  
Table 5  
Figure 8  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
1 Agricultural Outlook Forum, 2012. The world and United States cotton outlook. United States Department of Agriculture.http://www.researchgate.net/publication/23519694_THE_UNITED_STATES_AND_WORLD_COTTON_OUTLOOK
2 Anderson J R, 1977. Land use and land cover changes: A framework for monitoring.Journal of Research by the Geological Survey, 5: 143-153.
3 Barraza V, Grings F, Salvia Met al., 2013. Monitoring and modelling land surface dynamics in Bermejo River Basin, Argentina: Time series analysis of MODIS NDVI data.International Journal of Remote Sensing, 34(15): 5429-5451. doi: 10.1080/01431161.2013.791759.http://dl.acm.org/citation.cfm?id=2484679
doi: 10.1080/01431161.2013.791759
4 Bastiannssen W G M, 1998a. Remote sensing in water resources management: The state of the art. International Water Management Institute, Colombo, Sri Lanka.http://www.cabdirect.org/abstracts/19981913182.html
5 Bastiaanssen W G M, Menenti M, Feddes R Aet al., 1998b. A remote sensing surface energy balance algorithm for land (SEBAL) formulation.J. Hydrol., 212/213: 198-212.http://www.sciencedirect.com/science/article/pii/S0022169498002546
doi: 10.1016/S0022-1694(98)00253-4
6 Black A, Stephen H, 2014. GIScience & remote sensing relating temperature trends to the normalized difference vegetation index in Las Vegas.GIScience and Remote Sensing, 51(4): 468-482.http://www.researchgate.net/publication/275866304_GI_science_not_GIScience
doi: 10.5311/JOSIS.2014.9.204
7 Campbell J B, 2002. Introduction to Remote Sensing. New York: The Guilford Press.
8 Cheema M J M, Bastiaanssen W G M, 2010. Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis.Agricultural Water Management, 97(10): 1541-1552. doi: 10.1016/j.agwat.2010.05.009.http://www.sciencedirect.com/science/article/pii/S037837741000171X
doi: 10.1016/j.agwat.2010.05.009
9 Congalton R, Green K, 1999. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Boca Raton: CRC/Lewis Press, FL. 137 p./s?wd=paperuri%3A%28f37f6968c54d898f521e41f00bde069e%29&filter=sc_long_sign&sc_ks_para=q%3DAssessing%20the%20Accuracy%20of%20Remotely%20Sensed%20Data&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
10 Congalton R G, 1996. Accuracy assessment: A critical component of land cover mapping in gap analysis: A landscape approach to biodiversity planning. A Peer-Reviewed Proceedings of the ASPRS/GAP Symposium, February 27 - March 2, 1995, Charlotte, N.C. 119-131./s?wd=paperuri%3A%281a6eab068a568f67c9b2165656f17dfe%29&filter=sc_long_sign&sc_ks_para=q%3DGap%20analysis%3A%20a%20landscape%20approach%20to%20biodiversity%20planning&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
11 Dappen Patti R, Ratcliffe I C, Robbins C R et al., 2008. Mapping agricultural land cover for hydrologic modeling in the Platte River Watershed of Nebraska. Great Plains Research: A Journal of Natural and Social Sciences, Paper 926, .http://digitalcommons.unl.edu/greatplainsresearch/926
12 Ding H, Shi W, 2013. Land-use/land-cover change and its influence on surface temperature: A case study in Beijing City.International Journal of Remote Sensing, 34(15): 5503-5517. doi: 10.1080/01431161.2013.792966.http://www.tandfonline.com/doi/abs/10.1080/01431161.2013.792966
doi: 10.1080/01431161.2013.792966
13 Douglas K B, Mark A F, 2013. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics.Agricultural and Forest Meteorology, 173: 74-84.http://www.sciencedirect.com/science/article/pii/S0168192313000129
doi: 10.1016/j.agrformet.2013.01.007
14 Fang W, Chen J, Shi P, 2005. Variability of the phenological stages of winter wheat in the North China Plain with NOAA/AVHRR NDVI data (1982-2000).IEEE International Geoscience and Remote Sensing Symposium Proceedings, 5: 3124-3127.http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1526499
doi: 10.1109/IGARSS.2005.1526499
15 Fisher P F, 2010. Remote sensing of land cover classes as type 2 fuzzy sets.Remote Sensing of Environment, 114: 309-321.
16 Foody G M, 2002. Status of land cover classification accuracy assessment.Remote Sensing of Environment, 80: 185-201.http://www.sciencedirect.com/science/article/pii/S0034425701002954
doi: 10.1016/S0034-4257(01)00295-4
17 Gao X, Huete A R, Ni Wet al., 2000. Optical-biophysical relationships of vegetation spectra without back-ground contamination.Remote Sensing of Environment, 74: 609-620.
18 Giri, Chandra, Jenkins C, 2005. Land cover mapping of greater Mesoamerica using MODIS data. Remote Sensing, 31(4): 274-282. Retrieved at .http://thepimmgroup.org/wp-content/uploads/2007/11/remotesensing2.pdf
19 Gong P, Wang J, Yu Let al., 2013. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data.International Journal of Remote Sensing, 34(7): 2607-2654. doi: 10.1080/01431161.2012.748992./s?wd=paperuri%3A%28dd26c4a4f0dedbff7d37fc6a3ec762ad%29&filter=sc_long_sign&sc_ks_para=q%3DFiner%20resolution%20observation%20and%20monitoring%20of%20global%20land%20cover%3A%20First%20mapping%20results%20with%20Landsat%20TM%20and%20ETM%2B%20data&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
20 Gumma M K, Nelson A, Thenkabail P Set al., 2011. Mapping rice areas of South Asia using MODIS multitemporal data.J. Applied Remote Sensing, 5(1): 53547. doi: 10.1117/1.3619838.http://spie.org/Publications/Journal/10.1117/1.3619838
doi: 10.1117/1.3619838
21 Jensen J R, 1996. Introductory Digital Image Processing: A Remote Sensing Perspective. 2nd ed. New Jersey: Prentice-Hall, 316p.http://www.cabdirect.org/abstracts/20001911540.html
doi: 10.1080/10106048709354084
22 Jeong S, Jang K, Hong Set al., 2011. Detection of irrigation timing and the mapping of paddy cover in Korea using MODIS images data.Korean Journal of Agricultural and Forest Meteorology, 13: 69-78.
23 Julien Y, Sobrino J A, 2009. Global land surface phenology trends from GIMMS database.International Journal of Remote Sensing, 30: 3495-3513.http://www.cabdirect.org/abstracts/20093216923.html
doi: 10.1080/01431160802562255
24 Kim Y.2013. Drought and elevation effects on MODIS vegetation indices in northern Arizona ecosystems.International Journal of Remote Sensing, 34(14): 4889-4899. doi: 10.1080/2150704X.2013.781700.http://www.tandfonline.com/doi/pdf/10.1080/2150704X.2013.781700
doi: 10.1080/2150704X.2013.781700
25 Kimaro T A, Tachikawa Y, Takara K, 2005. Distributed hydrologic simulations to analyze the impacts of land use changes on flood characteristics in the Yasu River Basin in Japan.Journal of Natural Disaster Sciences, 27(2): 85-94.http://ci.nii.ac.jp/naid/110006248954
26 Latifovic R, Olthof I, 2004. Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data.Remote Sensing of Environment, 90: 153-165.http://www.sciencedirect.com/science/article/pii/S0034425703003729
doi: 10.1016/j.rse.2003.11.016
27 Leff B, Ramankutty N, Foley J A, 2004. Geographic distribution of major crops across the world. Global Biogeochem. Cycles, 18, GB 1009. doi: 10.1029/203GB002108.http://onlinelibrary.wiley.com/doi/10.1029/2003GB002108/suppinfo
doi: 10.1029/2003GB002108
28 Liang L, Gong P, 2013. Evaluation of global land cover maps for cropland area estimation in the conterminous United States.International Journal of Digital Earth: 1-16. doi: 10.1080/17538947.2013.854414.http://www.tandfonline.com/doi/ref/10.1080/17538947.2013.854414
doi: 10.1080/17538947.2013.854414
29 Lorencov′ A E, Fr′ Elichov′ A J, Nelson Eet al., 2013. Past and future impacts of land use and climate change on agricultural ecosystem services in the Czech Republic.Land Use Policy, 33: 183-194.http://www.sciencedirect.com/science/article/pii/S0264837712002578
doi: 10.1016/j.landusepol.2012.12.012
30 Lu D, Li G, Moran Eet al., 2013. Spatiotemporal analysis of land use and land cover change in the Brazilian Amazon.International Journal of Remote Sensing, 34(16): 5953-5978. doi:10.1080/01431161.2013.802825.http://www.tandfonline.com/doi/abs/10.1080/01431161.2013.802825
doi: 10.1080/01431161.2013.802825 pmid: 24127130
31 Matthews E, 1983. Global vegetation and landuse: New high resolution data bases for climate studies.Journal of Climate and Applied Meteorology, 22: 474-487.http://ci.nii.ac.jp/naid/10013252397
doi: 10.1175/1520-0450(1983)0222.0.CO;2
32 Mitrakis N E, Mallinis G, Koutsias Net al., 2011. Burned area mapping in Mediterranean environment using medium-resolution multi-spectral data and a neuro-fuzzy classifier.International Journal of Image and Data Fusion, 1-20.http://www.tandfonline.com/doi/abs/10.1080/19479832.2011.635604
doi: 10.1080/19479832.2011.635604
33 Molden D, 1997. Accounting for water use and productivity. SWIM paper 1. Colombo, Srilanka./s?wd=paperuri%3A%28f58ba211945cf98274b126d5e23221ad%29&filter=sc_long_sign&sc_ks_para=q%3DAccounting%20for%20water%20use%20and%20productivity.%20SWIM%20Paper%201&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
34 Morton D C, DeFries R S, Shimabukuro Y Eet al., 2006. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon.Proceedings of the National Academy of Sciences of the United States of America, 103(39): 14637-14641.http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM16973742
doi: 10.1073/pnas.0606377103 pmid: 16973742
35 Niu Z, Zhang H, Wang Xet al., 2012. Mapping wetland changes in China between 1978 and 2008.Chinese Science Bulletin, 57(22): 2813-2823. doi: 10.1007/s11434-012-5093-3.http://www.cnki.com.cn/Article/CJFDTotal-JXTW201222003.htm
doi: 10.1007/s11434-012-5093-3
36 Osborne P, Alonso J, Bryant R, 2001. Modelling landscape-scale habitat use using GIS and remote sensing: A case study with great bustards.Journal of Applied Ecology, 38: 458-471.http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2664.2001.00604.x/pdf
doi: 10.1046/j.1365-2664.2001.00604.x
37 Oslon J S, 1994. Global ecosystem framework definitions. USGS EROS Data Center Internal Report, Sioux Falls, SD, 37p.http://www.researchgate.net/publication/200033351_Global_Ecosystem_Framework-Definitions
38 Peng D, Huete A R, Huang Jet al., 2011. Detection and estimation of mixed paddy rice cropping patterns with MODIS data.International Journal of Applied Earth Observation and Geoinformation, 13: 13-23.http://www.sciencedirect.com/science/article/pii/S0303243410000656
doi: 10.1016/j.jag.2010.06.001
39 Pettorelli N, 2013. The Normalized Difference Vegetation Index. Oxford: Oxford University Press./s?wd=paperuri%3A%28a4818eaa0e43c37780a7d4c40a012af3%29&filter=sc_long_sign&sc_ks_para=q%3DThe%20Normalized%20Difference%20Vegetation%20Index&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
40 Portmann F T, Siebert S, D?ll P, 2010. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24: GB1011.
41 Prakasam C, 2010. Land use and land cover change detection through remote sensing approach: A case study of Kodaikanal taluk, Tamil nadu.International Journal of Geomatics and Geosciences, 1(2): 150-158.http://www.cabdirect.org/abstracts/20113059611.html
42 Reed B C, Brown J F, VanderZee Det al., 1994. Measuring phenological variability from satellite imagery.Journal of Vegetation Science, 5: 703-714.http://onlinelibrary.wiley.com/doi/10.2307/3235884/full
doi: 10.2307/3235884
43 Reis S, 2008. Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey.Sensors, 8(10): 6188-6202. doi: 10.3390/s8106188.http://europepmc.org/abstract/PMC/PMC3707445
doi: 10.3390/s8106188
44 Schilling K E, Jha M K, Zhang Y et al., 2008. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resources Research, 44(7): 1-12. Available at: [Accessed October 8, 2014].http://doi.wiley.com/10.1029/2007WR006644
45 Shao Y, Fan X, Liu Het al., 2001. Rice monitoring and production estimation using multitemporal RADARSAT.Remote Sensing of Environment, 76(3): 310-325. doi: 10.1016/S0034-4257(00)00212-1.http://www.sciencedirect.com/science/article/pii/S0034425700002121
doi: 10.1016/S0034-4257(00)00212-1
46 Shi J, Huang J, Zhang F, 2013. Multi-year monitoring of paddy rice planting area in Northeast China using MODIS time series data. Journal of Zhejiang University (Science B), 14(10) (October): 934-946. doi: 10.1631/jzus.B1200352.http://d.wanfangdata.com.cn/Periodical_zjdxxbb-e201310008.aspx
doi: 10.1631/jzus.B1200352 pmid: 24101210
47 Thi T, Nguyen H, De-Bie C A J Met al., 2012. Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis.International Journal of Remote Sensing, 33(2): 415-434.http://www.tandfonline.com/doi/pdf/10.1080/01431161.2010.532826
doi: 10.1080/01431161.2010.532826
48 Tou J T, Gonzalez R C, 1974. Pattern Recognition Principles. London: Addison-Wesley, 1974.
49 Tucker C J, 1979. Red and photographic infrared linear combinations for monitoring vegetation.Remote Sensing of Environment, 8: 127-150.http://www.sciencedirect.com/science/article/pii/0034425779900130
doi: 10.1016/0034-4257(79)90013-0
50 Tucker C J, Vanpraet C L, Sharman M Jet al., 1985. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980-1984.Remote Sensing of Environment, 17: 233-249.http://www.sciencedirect.com/science/article/pii/0034425785900975
doi: 10.1016/0034-4257(85)90097-5
51 Usman M, Liedl R, Awan U K, 2015a. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan.J. Hydrol. doi: 10.1016/j.jhydrol.2015.03.031.
52 Usman M, Liedl R, Kavousi A, 2015b. Estimation of distributed seasonal net recharge by modern satellite data in irrigated agricultural regions of Pakistan.Environ. Earth Sciences. doi: 10.1007/s12665-015-4139-7.http://link.springer.com/10.1007/s12665-015-4139-7
doi: 10.1007/s12665-015-4139-7
53 Usman M, Liedl R, Shahid M A M, 2014. Managing irrigation water by yield and water productivity assessment of a rice-wheat system using remote sensing.Journal of Irrigation and Drainage Engineering. doi: 10.1061/(ASCE)IR.1943-4774.0000732.http://www.researchgate.net/publication/261324408_Managing_Irrigation_Water_by_Yield_and_Water_Productivity_Assessment_of_a_Rice-Wheat_System_Using_Remote_Sensing
doi: 10.1061/(ASCE)IR.1943-4774.0000732
54 Wajid A, Ahmad A, Khaliq Tet al., 2010. Quantification of growth, yield and radiation use efficiency of promising cotton cultivars at varying nitrogen levels.Pakistan Journal of Botany, 42(3): 1703-1711.http://www.cabdirect.org/abstracts/20103262719.html
doi: 10.3417/2008072
55 Wajid A, Hussain K, Maqsood Met al., 2007. Simulation modeling of growth, development and grain yield of wheat under semi arid conditions of Pakistan.Pakistan Journal of Agricultural Sciences, 44(2): 194-199.
56 Wardlow B D, Egbert S L, Kastens J H, .http://digitalcommons.unl.edu/droughtfacpub/2
57 Wegehenkel M, 2009. Modeling of vegetation dynamics in hydrological models for the assessment of the effects of climate change on evapotranspiration and groundwater recharge.Adv. Geosci., 21: 109-115. doi: 10.5194/adgeo-21-109-2009.http://www.oalib.com/paper/1367879
doi: 10.5194/adgeo-21-109-2009
58 Wilson M, Henderson-Sellers A, 1985. A global archive of land cover and soils data for use in general circulation models.Journal of Climatology, 5: 119-143.http://citeseer.ist.psu.edu/showciting?cid=1698521
59 Xiao X, Boles S, Frolking S et al., 2006. Mapping paddy rice agriculture in South and South-east Asia using multi-temporal MODIS images. Remote Sensing of Environment, 100: 95-113 ..http://dx.doi.org/10.1016/ j.rse.2005.10.004
60 Yu L, Wang J, Gong P, 2013. Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: A segmentation-based approach.International Journal of Remote Sensing, 34(16): 5851-5867. doi: 10.1080/01431161.2013.798055.http://dl.acm.org/citation.cfm?id=2492467
doi: 10.1080/01431161.2013.798055
61 Zhao L, Xia J, Xu Cet al., 2013. Evapotranspiration estimation methods in hydrological models.J. Geogr. Sciences, 23(2): 359-369. doi: 10.1007/s11442-013-1015-9.http://d.wanfangdata.com.cn/Periodical_dlxb-e201302013.aspx
doi: 10.1007/s11442-013-1015-9
62 Zheng P Q, Baetz B W, 1999. GIS-based analysis of development options from a hydrology perspective.Journal of Urban Planning and Development, 125: 164-180.http://www.researchgate.net/publication/238179735_GIS-Based_Analysis_of_Development_Options_from_a_Hydrology_Perspective
doi: 10.1061/(ASCE)0733-9488(1999)125:4(164)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《地理学报(英文版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn