Please wait a minute...
 Home  About the Journal Subscription Advertisement Contact us   英文  
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited
地理学报(英文版)  2015, Vol. 25 Issue (12): 1411-1422    DOI: 10.1007/s11442-015-1242-3
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
The implication of mass elevation effect of the Tibetan Plateau for altitudinal belts
YAO Yonghui1,XU Mei2,*,ZHANG Baiping1,3()
1. State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2. China Institute of Water Resources and Hydropower Research, Beijing 100044, China
3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
全文: PDF(1621 KB)  
输出: BibTeX | EndNote (RIS)      
E-mail Alert

The heating effect (or mass elevation effect, MEE) of the Tibetan Plateau (TP) is intense due to its massive body. Some studies have been undertaken on its role as the heat source in summer and its implications for Asian climate, but little has been known of the implications of its MEE for the distribution of mountain altitudinal belts (MABs). Using air temperature data observed and remotely sensed data, MAB/treeline data, and ASTER GDEM data, this paper compares the height of MABs and alpine treelines in the main TP and the surrounding mountains/lowland and explains the difference from the point of view of MEE. The results demonstrate: 1) at same elevation, air temperature and the length of growing season gradually increase from the eastern edge to the interior TP, e.g., at 4500 m (corresponding to the mean altitude of the TP), the monthly mean temperature is 3.58°C higher (April) to 6.63°C higher (June) in the interior plateau than in the Sichuan Basin; the 10°C isotherm for the warmest month goes upward from the edge to the interior of the plateau, at 4000 m in the Qilian Mts. and the eastern edges of the plateau, and up to 4600-5000 m in Lhasa and Zuogong; the warmth index at an altitude of 4500 m can be up to 15°C·month in the interior TP, but much lower at the eastern edges. 2) MABs and treeline follow a similar trend of rising inwards: dark-coniferous forest is 1000-1500 m higher and alpine steppe is about 700-900 m higher in the interior TP than at the eastern edges.

Key wordsTibetan Plateau    mass elevation effect    mountain altitudinal belt    treeline    the warmth index    the 10℃ isotherm in the warmest month
收稿日期: 2015-04-30      出版日期: 2016-01-05
. [J]. 地理学报(英文版), 2015, 25(12): 1411-1422.
YAO Yonghui,XU Mei,ZHANG Baiping. The implication of mass elevation effect of the Tibetan Plateau for altitudinal belts. Journal of Geographical Sciences, 2015, 25(12): 1411-1422.
链接本文:      或
Figure 1  
Figure 2  
Table 1  
Table 2  
Table 3  
Table 4  
Figure 3  
1 Barry R G, 2008. Mountain Weather and Climate. Boulder, USA: Cambridge University Press.
doi: 10.2307/633166
2 Chen Longxun, Reiter E R, Feng Zhiqiang, 1985. The atmospheric heat-source over the Tibetan Plateau: May-August 1979.Monthly Weather Review, 113: 1771-1790.
doi: 10.1175/1520-0493(1985)113<1771:TAHSOT>2.0.CO;2
3 De Quervain A, 1904. Die Hebung der atmosph?rischen Isothermen in den Schweizer Alpen und ihre Beziehung zu den H?hengrenzen.Gerlands Beitr?ge zur Geophysik, 6: 481-533
4 Flenley J R, 1995. Cloud forest, the Massenerhebung effect, and ultraviolet insolation.Ecological Studies, 110: 150-155.
doi: 10.1007/978-1-4612-2500-3_9
5 Flohn H, 1951. Some remarks on the annual trend of weather in the Scottish highlands.Quarterly Journal of the Royal Meteorological Society, 77(334): 674-675.
doi: 10.1002/qj.49707733413
6 Flohn H, 1957. Large-scale aspects of the “summer monsoon” in South and East Asia.Journal of the Meteorological Society of Japan, 75: 180-186.
7 Grubb P J, 1971. Interpretation of Massenerhebung effect on tropical mountains.Nature, 229(5279): 44-45.
doi: 10.1038/229044a0 pmid: 16059069
8 Han Fang, Yao Yonghui, Dai Shibaoet al., 2012. Mass elevation effect and its forcing on timberline altitude.Journal of Geographical Sciences, 22(4): 609-616.
doi: 10.1007/s11442-012-0950-1
9 Hastenrath S, 1968. Certain aspects of the three-dimensional distribution of climate and vegetation belts in the mountains of Central America and southern Mexico.Colloquium Geography, 9: 122-130.
10 Hoch G, K?rner C, 2005. Growth, demography and carbon relations of Polylepis trees at the world's highest treeline.Function of Ecology, 19(6): 941-951.
doi: 10.1111/j.1365-2435.2005.01040.x
11 Holtmeier F K, 2003. Mountain Timberlines: Ecology, Patchiness, and Dynamics. Dordrecht, Boston: Kluwer Academic Publishers.
12 Hou Xueyu, 1982. China Vegetation Geography and Dominant Plant Composition. Beijing: Science Press. (in Chinese)
13 Li Qiaoyuan, Xie Zichu, 2006. Analyses on the characteristics of the vertical lapse rates of temperature: Take Tibetan Plateau and its adjacent area as an example. Journal of Shihezi University (Natural Science), 24(6): 719-723. (in Chinese)
14 Liao Ke, 1990. The Atlas of the Tibetan Plateau. Beijing: Science Press. (in Chinese)
15 Liu Dongshen, Sun Honglie, Zheng Du, 2003. The Tibet Plateau research’s scientific paradigm, effect and its spiritual connotation. http: (in Chinese)
16 Liu Kaifa, 1992. Climate of the Emei Shan.Journal of Mianyang Agricultural College, 9(3): 44-48. (in Chinese)
17 Miehe G, Miehe S, Vogel Jet al., 2007. Highest treeline in the Northern Hemisphere found in southern Tibet.Mountain Research and Development, 27(2): 169-173.
doi: 10.1659/mrd.0792
18 Ohsawa M, 1990. An interpretation of latitudinal patterns of forest limits in South and East Asian mountains.Journal of Ecology, 78(2): 326-339.
doi: 10.2307/2261115
19 Shi Yafeng, Zheng Benxing, Li Shijie, 1992. Last Glaciation and Maximum Glaciation in the Qinghai-Xizang (Tibet) Plateau: A controversy to M. Kuhle's ice sheet hypothesis.Chinese Geographical Science, 2(4): 293-311.
20 Sun Ranhao, Zhang Baiping, 2008. Exploring the method of digital identification of mountain altitudinal belts.Geo-information Science, 10(6): 690-696. (in Chinese)
21 Sun Ranhao, Zhang Baiping, Tan Jing, 2008. A multivariate regression model for predicting precipitation in the Daqing Mountains.Mountain Research and Development, 28(3): 318-325.
doi: 10.1659/mrd.0944
22 Tollner H, 1949. Der Einflu? gro?er Massenerhebungen auf die Lufttemperatur und die Ursachen der Hebung der Vegetationsgrenzen in den inneren Ostalpen.Theoretical and Applied Climatology, 1(3): 347-372.
23 Troll C, 1973. The upper timberlines in different climatic zones.Arctic and Alpine Research, 5(3): 3-18.
24 Wang Chuanhui, Zhou Shunwu, Tang Xiaopinget al., 2011. Temporal and spatial distribution of heavy precipitation over Tibetan Plateau in recent 48 years.Scientia Geographica Sinica, 31(4): 470-477. (in Chinese)
doi: 10.3724/SP.J.1146.2006.01085
25 Wu Guoxiong, Liu Yiming, Liu Xinet al., 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer.Chinese Journal of Atmospheric Sciences, 29(1): 47-57. (in Chinese)
doi: 10.3878/j.issn.1006-9895.2005.01.06
26 Wu Zhangwen, 1996. Local climate measurement of Qingcheng Shan.Journal of Sichuan Forestry Science and Technology, 17(1): 74-76. (in Chinese)
27 Yao Yonghui, Zhang Baiping, 2013a. A preliminary study of the heating effect of the Tibetan Plateau.PLOS One. doi: 10.1371/journal.pone.0068750.
doi: 10.1371/journal.pone.0068750 pmid: 23935886
28 Yao Yonghui, Zhang Baiping, 2013b. MODIS-based estimation of air temperature of the Tibetan Plateau.Journal of Geographical Sciences, 23(4): 627-640.
doi: 10.1007/s11442-013-1033-7
29 Yao Yonghui, Zhang Baiping, 2013c. MODIS-based estimation of air temperature and heating effect of the Tibetan Plateau.Acta Geographica Sinica, 68(1): 93-104. (in Chinese)
doi: 10.11821/xb201301011
30 Yao Yonghui, Zhang Baiping, 2014. The mass elevation effect of the Tibetan Plateau and its implications for Alpine treelines.International Journal of Climatology. doi: 10.1002/joc.4123.
doi: 10.1002/joc.4123
31 Ye Duzheng, 1982. Some aspects of the thermal influences of Qinghai-Tibetan Plateau on the atmospheric circulation.Archives for Meteorology, Geophysics, and Bioclimatology, 31(3): 205-225.
doi: 10.1007/BF02258032
32 Ye Duzheng, Luo Siwei, Zhu Baozhen, 1957. The flow pattern and heat budget in the troposphere over the Tibetan Plateau and surrounding area.Acta Meteorologica Sinica, 28(2): 108-121. (in Chinese)
33 Zhang Baiping, 2008. Progress in the study on digital mountain altitudinal belts.Journal of Mountain Science, 26(1): 12-14. (in Chinese)
34 Zhang Baiping, Chen Xiaodong, Li Baolinet al., 2002. Biodiversity and conservation in the Tibetan Plateau.Journal of Geographical Sciences, 12(2): 135-143.
doi: 10.1007/BF02837467
35 Zhang Baiping, Tan Jing, Yao Yonghui, 2009. Digital Information and Patterns of Mountain Altitudinal Belts. Beijing: China Environmental Sciences Press. (in Chinese)
36 Zhao Fang, Zhang Baiping, Tan Jinget al., 2011. Structure and function of the digital integrated system for the Eurasian mountain altitudinal belt.Journal of Geo-information Science, 13(3): 346-355. (in Chinese)
doi: 10.3724/SP.J.1047.2011.00346
37 Zhao Y, Li H J, Huang A Net al., 2013. Relationship between thermal anomalies in Tibetan Plateau and summer dust storm frequency over Tarim Basin, China.Journal of Arid Land, 5(1): 25-31.
doi: 10.1007/s40333-013-0138-2
38 Zheng Du, Li Bingyuan, 1990. Evolution and differentiation of the natural environment of the Qinghai-Tibet Plateau.Geographical Research, 9(2): 1-10. (in Chinese)
39 Zheng Yuanchang, Gao Shenghuai, Chai Zongxin, 1986. A preliminary study on the vertical natural zones in the Hengduan Mountainous region.Mountain Research, 4(1): 75-83. (in Chinese)
No related articles found!
Full text



版权所有 © 《地理学报(英文版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持