Table of Content

    25 June 2005, Volume 15 Issue 2 Previous Issue    Next Issue
    Climate and Environmental Change
    Monitoring and simulation of water, heat, and CO2 fluxes in terrestrial ecosystems based on the APEIS-FLUX system
    WATANABE Masataka, WANG Qinxue, HAYASHI Seiji, MURAKAMI ShogoLIU Jiyuan, OUYANG Zhu, LI Yan, LI Yingnian, WANG Kelin
    2005, 15 (2):  131-141.  doi: 10.1360/gs050201
    Abstract ( )   PDF (1135KB) ( )   Save

    The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System- (EOS-) Terra/Aqua satellite, as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water, heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.

    References | Related Articles | Metrics
    Findings through the AsiaFlux network and a view toward the future
    2005, 15 (2):  142-148.  doi: 10.1360/gs050203
    Abstract ( )   PDF (386KB) ( )   Save

    The preliminary results of long-term CO2 flux measurements at forest sites in East Asia are explained and compared with each other. The features of seasonal variation of CO2 fluxes are different among deciduous-broadleaf, evergreen-coniferous, deciduous-coniferous and tropical forests in East Asia, and the causes of difference are discussed. The integrated yearly NEP (net ecosystem production) estimated from the CO2 flux by eddy covariance method in various forests of East Asia has a notable difference in the range of 2 to 8 tC ha-1 yr-1. The main factors of this difference are the annual mean temperature and tree species. Furthermore, the remaining issues are discussed, such as the quantitative estimation of the CO2 flux by the eddy covariance method and the synthetic analysis of the carbon budget under collaborations with biological survey.

    References | Related Articles | Metrics
    Carbon fluxes in soil: long-term sequestration in deeper soil horizons
    John F. MCCARTHY
    2005, 15 (2):  149-154.  doi: 10.1360/gs050204
    Abstract ( )   PDF (259KB) ( )   Save

    Terrestrial ecosystems represent the second largest carbon reservoir, and the C balance in terrestrial ecosystems can be directly impacted by human activities such as agricultural management practices and land-use changes. This paper focuses on the C-sequestration in soil. Although many studies showed that the concentration of SOC is much higher in the shallow soils (0-30 cm), the deeper horizons represent a much greater mass of soil and represent a huge C-storage pool. The process of preferential retention of more strongly adsorbing components, along with competitive displacement of weakly binding components are the key processes that enhance the movement of organic carbon to deeper soil horizons. DOC represents the most dynamic part of organic carbon in soils, and thus can be used as a timely indicator of the short-term change of C-sequestration. Long-term experiments have demonstrated that higher SOC levels in shallow soils would lead to increased fluxes of DOC to deeper horizons, but more data on a wider range of soils and treatment strategies are needed to fully evaluate the linkages between changes in SOC in shallow soil, vertical fluxes of DOC to deeper soil horizons, and enhanced C-inventories in deeper, slow-turnover SOC pools.

    References | Related Articles | Metrics
    The application of Yangtze Estuary Tidal Wetlands Geographic Information System
    WANG Jun, CHEN Zhenlou, XU Shiyuan, WANG Dongqi, LIU Jie
    2005, 15 (2):  155-166.  doi: 10.1360/gs050202
    Abstract ( )   PDF (614KB) ( )   Save

    Yangtze Estuary Tidal Wetlands Geographic Information System (YETWGIS) is a comprehensive software system for environmental management and decision of Yangtze estuary tidal wetlands. Based on MapObjects components technology, Data Mining technology, mathematical modeling method and Visual Basic language, this software system has many functions such as displaying, editing, querying and searching, spatial statistics and analysis, thematic map compiling, and environmental quality evaluation. This paper firstly outlined the system structure, key techniques, and achieving methods of YETWGIS, and then, described the core modules (the thematic map compiling module and environmental quality evaluation model module) in detail. In addition, based on information entropy model, it thoroughly discussed the methods of environmental quality evaluation and indicators' weight calculation. Finally, by using YETWGIS, this paper analyzed the spatial distribution characteristics of Heavy Metal and Persistent Organic Pollutants (POPs) of the Yangtze estuary tidal wetlands in 2002, and evaluated the environmental quality of the Yangtze estuary tidal wetlands in 2003.

    References | Related Articles | Metrics
    A review of soil erodibility in water and wind erosion research
    SONG Yang, LIU Lianyou, YAN Ping, CAO Tong
    2005, 15 (2):  167-176.  doi: 10.1360/gs050205
    Abstract ( )   PDF (354KB) ( )   Save

    Soil erodibility is an important index to evaluate the soil sensitivity to erosion. The research on soil erodibility is a crucial tache in understanding the mechanism of soil erosion. Soil erodibility can be evaluated by measuring soil physiochemical properties, scouring experiment, simulated rainfall experiment, plot experiment and wind tunnel experiment. We can use soil erosion model and nomogram to calculate soil erodibility. Many soil erodibility indices and formulae have been put forward. Soil erodibility is a complex concept, it is influenced by many factors, such as soil properties and human activities. Several obstacles restrict the research of soil erodibility. Firstly, the research on soil erodibility is mainly focused on farmland; Secondly, soil erodibility in different areas cannot be compared sufficiently; and thirdly, the research on soil erodibility in water-wind erosion is very scarce. In the prospective research, we should improve method to measure and calculate soil erodibility, strengthen the research on the mechanism of soil erodibility, and conduct research on soil erodibility by both water and wind agents.

    References | Related Articles | Metrics
    Modelling scenarios of land use change in northern China in the next 50 years
    HE Chunyang, LI Jinggang, SHI Peijun, CHEN Jin, PAN Yaozhong, LI Xiaobing
    2005, 15 (2):  177-186.  doi: 10.1360/gs050206
    Abstract ( )   PDF (326KB) ( )   Save

    Modelling scenarios of land use change and their impacts in typical regions are helpful to investigate the mechanism between land use and ecological systems and process the land use allocation under the ecological security. A system dynamics (SD) model with the aim to modelling scenarios of land use change and assessing ecological impact in northern China in the next 50 years is developed here. The accuracy assessment with the historic data from 1990 to 2001 indicated the SD model is robust. After the different "what-if" scenarios controlled by GDP, population, market, and technology advancement were built, the different scenarios of land use change in northern China from 2000 to 2050 were simulated with their ecological impact assessed. The result suggested that such factors as GDP, population, market and technology have a strong relationship with land use structural change in northern China. It also indicated that such measures as strict controlling of population increase, importing some food to keep the supply-demand balance in the region, and improving agricultural technology will be the guarantee of regional sustainable development with fast economic growth and the obvious land use structural improvement at the same time.

    References | Related Articles | Metrics
    Geomorphology of the Boao coastal system and potential effects of human activities - Hainan Island, South China
    ZHU Dakui, YIN Yong, I. Peter MARTINI
    2005, 15 (2):  187-198.  doi: 10.1360/gs050207
    Abstract ( )   PDF (844KB) ( )   Save

    The Boao coastal system along the eastern coast of Hainan Island is a dynamic delta-tidal inlet-barrier formed during the late Holocene. The delta developed inside a shallow lagoon barred by a sandy barrier with a narrow, shallow tidal inlet opening. Two major distributary channels separated by small islands characterize the delta. The lagoon is silting up receiving and trapping sediments from both the river and, in minor measure during storms, through the tidal inlet opening and barrier washovers. The barrier at the tidal inlet is highly dynamic and changes its form, accreting (migrating spit) against the inlet during fair-weather conditions and being eroded during storms and river floods. The delta has almost completely filled the lagoon and major concerns exist on the effect that ongoing large development plans may have on the environment. These concerns include the effect on floods and rate of siltation once banks of the islands have been stabilized and floodwater and sediment load are impeded from spreading over the lowlands, and the effect of increasing pollutant loads from the new facilities on the ecosystems of the increasingly restricting lagoon water and on the seashores.

    References | Related Articles | Metrics
    Sedimentation rates in the Wanggang salt marshes, Jiangsu
    WANG Aijun, GAO Shu, JIA Jianjun, PAN Shaoming
    2005, 15 (2):  199-209.  doi: 10.1360/gs050208
    Abstract ( )   PDF (649KB) ( )   Save

    Coastal salt-marshes represent an important coastal wetland system. The total area of coastal wetlands exceeds 5000 km2 in Jiangsu Province, China, but it is decreasing rapidly in response to the intense reclamation activities and coastal erosion along a part of the coastline. Hence, two types of plants, Spartina angelica and Spartina alterniflora, were introduced successively into the Jiangsu coastal areas, in order to protect the coastline from erosion and to increase the accumulation rate. Pb-210 and Cs-137 analyses were carried out for sediment samples from the salt-marshes of Wanggang to determine the sedimentation rate, on the basis of an evaluation of the background activity values and the factors affecting the enrichment of Pb-210. Analysis of a typical sediment column of the tidal flat shows that there is weak absorption of Pb-210 in the silt-dominated sediment. Because of the influences of factors such as storm events, bioturbation, material sources and analytical error, some abnormal data points appear in the Pb-210 record. After ignoring these data the calculated sedimentation rate was 3.3 cm yr-1 on average. Based upon analysis of the Cs-137 dating, the rate since 1963 was 3.1 cm yr-1 on average, similar to the data by Pb-210 dating and the previous studies. The dating results show that there were three stages of sedimentation, with the most rapid accretion being taking place after Spartina angelica was introduced into the area. The study also shows that at the stage of Spartina alterniflora growth, the accretion rate was higher than on the flat surface with the same elevation without the cover of this plant.

    References | Related Articles | Metrics
    Paleoenvironmental significance investigation of loess magnetic fabric in a semiarid region
    WANG Yong, PAN Baotian, GUAN Qingyu, GAO Hongshan, ZHANG Hui, LI Qiong, LIU Xiaofeng
    2005, 15 (2):  210-216.  doi: 10.1360/gs050209
    Abstract ( )   PDF (489KB) ( )   Save

    Here we report our recent magnetic fabric investigation of loess deposition in Shagou section, located at the northeastern Qilian Mountains, the northeastern rim of the Tibetan Plateau. On the basis of environmental magnetism data, we indicate that the variation of anisotropy of magnetic susceptibility (AMS) parameters, especially the foliation (F) and degree of anisotropy (P), might be more sensitive to the environmental change in the arid and semiarid regions than the magnetic susceptibility fluctuation. During the investigated interval, from 0.83 to 0.128 Ma, most of the middle to late Pleistocene significant climate change can be unraveled by the AMS parameters, such as the strengthening of cold/dry climate, the step drying event occurred nearly 250 ka, and the severe environmental change in MIS16. Our results also suggest that there is strong correlation between median diameter (Md) of grain size, F, and P. We propose that the AMS parameters can act as an important paleoenvironmental change indicator in the arid and semiarid regions.

    References | Related Articles | Metrics
    Observed climatic changes in Shanghai during 1873-2002
    ZHANG Qiang, CHEN Jiaqi, ZHANG Zengxin
    2005, 15 (2):  217-222.  doi: 10.1360/gs050210
    Abstract ( )   PDF (506KB) ( )   Save

    Variation characteristics of temperature and precipitation in January and July and annual mean temperature and annual precipitation are analyzed with the help of cumulative anomalies, Mann-Kendall analysis and wavelet analysis. The research results indicate that January precipitation presents an increasing trend after 1990, wavelet analysis result suggests that this increasing trend will continue in the near future. The changes of July precipitation present different features. During 1900-1960, July precipitation is in a rising trend, but is in a declining trend after 1960. Wavelet analysis shows that this declining trend will go on in the near future. Temperature variations in Shanghai are in fluctuations with 2 to 3 temperature rising periods. Mann-Kendall analysis indicates that temperature variations have the obvious abrupt change time when compared with precipitation changes in Shanghai during the past 100 years. The abrupt change time of January temperature lies in 1985, and that of July temperature lies in 1931-1933 and annual mean temperature has the abrupt change time in 1923-1930. Except July precipitation, the precipitation in January, temperature in January, July and annual mean temperature, and annual precipitation are also in a rising trend in the near future. The research results in this paper may be meaningful for future further climatic changes of Shanghai and social mitigation of climatic disasters in the future.

    References | Related Articles | Metrics
    The SIA method for spatial analysis of precipitation in the upper-middle reaches of the Yangtze River
    ZHOU Suoquan, XUE Genyuan, GONG Peng, CHEN Jingming,ZHANG Hongping, ZHOU Zhijiang, FAN Xiong, DENG Xiaochun,WU Zhanping
    2005, 15 (2):  223-238.  doi: 10.1360/gs050211
    Abstract ( )   PDF (1150KB) ( )   Save

    Using geographic information system (GIS) techniques and the newest seasonal and annual average precipitation data of 679 meteorological stations from 1971 to 2000, the multiple regressions equations of the precipitation and topographical variables are established to extract the effect of topography on the annual and seasonal precipitation in the upper-middle reaches of the Yangtze River. Then, this paper uses a successive interpolation approach (SIA), which combines GIS techniques with the multiple regressions, to improve the accuracy of the spatial interpolation of annual and seasonal rainfall. The results are very satisfactory in the case of seasonal rainfall, with the relative error of 6.86%, the absolute error of 13.07 mm, the average coefficient of variation of 0.070, and the correlation coefficient of 0.9675; in the case of annual precipitation, with the relative error of 7.34%, the absolute error of 72.1 mm, the average coefficient of variation of 0.092, and the correlation coefficient of 0.9605. The analyses of annual mean precipitation show that the SIA calculation of 3-5 steps considerably improves the interpolation accuracy, decreasing the absolute error from 211.0 mm to 62.4 mm, the relative error from 20.74% to 5.97%, the coefficient of variation from 0.2312 to 0.0761, and increasing the correlation coefficient from 0.5467 to 0.9619. The SIA iterative results after 50 steps identically converge to the observed precipitation.

    References | Related Articles | Metrics
    Forest phenological patterns of Northeast China inferred from MODIS data
    YU Xinfang, ZHUANG Dafang, HOU Xiyong, CHEN Hua
    2005, 15 (2):  239-246.  doi: 10.1360/gs050212
    Abstract ( )   PDF (502KB) ( )   Save

    The role of remote sensing in phenological studies is increasingly regarded as a key to understand large area seasonal phenomena. This paper describes the application of Moderate Resolution Imaging Spectroradiometer (MODIS) time series data for forest phenological patterns. The forest phenological phase of Northeast China (NE China) and its spatial characteristics were inferred using 1-km 10-day MODIS normalized difference vegetation index (NDVI) datasets of 2002. The threshold-based method was used to estimate three key forest phenological variables, which are the start of growing season (SOS), the end of growing season (EOS) and growing season length (GSL). Then the spatial patterns of forest phenological variables of NE China were mapped and analyzed. The derived phenological variables were validated by the field observed data from published papers in the same study area. Results indicate that forest phenological phase from MODIS data is comparable with the observed data. As the derived forest phenological pattern is related to forest type distribution, it is helpful to discriminate between forest types.

    References | Related Articles | Metrics
    Leaf area index retrieval based on canopy reflectance and vegetation index in eastern China
    JIANG Jianjun, CHEN Suozhong, CAO Shunxian, WU Hongan, ZHANG Li, ZHANG Hailong
    2005, 15 (2):  247-254.  doi: 10.1360/gs050213
    Abstract ( )   PDF (143KB) ( )   Save

    The aim of this paper is to investigate the feasibility of using Landsat TM data to retrieve leaf area index (LAI). To get a LAI retrieval model based ground reflectance and vegetation index, detailed field data were collected in the study area of eastern China, dominated by bamboo, tea plant and greengage. Plant canopy reflectance of Landsat TM wavelength bands has been inversed using software of 6S. LAI is an important ecological parameter. In this paper, atmospheric corrected Landsat TM imagery was utilized to calculate different vegetation indices (VI), such as simple ratio vegetation index (SR), shortwave infrared modified simple ratio (MSR), and normalized difference vegetation index (NDVI). Data of 53 samples of LAI were measured by LAI-2000 (LI-COR) in the study area. LAI was modeled based on different reflectances of bands and different vegetation indices from Landsat TM and LAI samples data. There are certainly correlations between LAI and the reflectance of Tm3, TM4, TM5 and TM7. The best model through analyzing the results is LAI = 1.2097*MSR + 0.4741 using the method of regression analysis. The result shows that the correlation coefficient R2 is 0.5157, and average accuracy is 85.75%. However, whether the model of this paper is suitable for application in subtropics needs to be verified in the future.

    References | Related Articles | Metrics