Journal of Geographical Sciences >
Rivers increasingly warmer: Prediction of changes in the thermal regime of rivers in Poland
Received date: 2024-03-20
Accepted date: 2024-09-30
Online published: 2025-01-15
Emphasis on future environmental changes grows due to climate change, with simulations predicting rising river temperatures globally. For Poland, which has a long history of thermal studies of rivers, such an approach has not been implemented to date. This study used 9 Global Climate Models and tested three machine-learning techniques to predict river temperature changes. Random Forest performed best, with R2=0.88 and lowest error (RMSE: 2.25, MAE:1.72). The range of future water temperature changes by the end of the 21st century was based on the Shared Socioeconomic Pathway scenarios SSP2-4.5 and SSP5-8.5. It was determined that by the end of the 21st century, the average temperature will increase by 2.1°C (SSP2-4.5) and 3.7°C (SSP5-8.5). A more detailed analysis, divided by two major basins Vistula and Odra, covered about 90% of Poland’s territory. The average temperature increase, according to scenarios SSP2-4.5 and SSP5-8.5 for the Odra basin rivers, is 1.6°C and 3.2°C and for the Vistula basin rivers 2.3°C and 3.8°C, respectively. The Vistula basin’s higher warming is due to less groundwater input and continental climate influence. These findings provide a crucial basis for water management to mitigate warming effects in Poland.
Key words: global warming; forecasting; water temperature; Poland
Mariusz PTAK , Teerachai AMNUAYLOJAROEN , Mariusz SOJKA . Rivers increasingly warmer: Prediction of changes in the thermal regime of rivers in Poland[J]. Journal of Geographical Sciences, 2025 , 35(1) : 139 -172 . DOI: 10.1007/s11442-025-2316-5
Figure 1 Location of studied rivers in Poland |
Table 1 GCMs and respective institutions used in this study |
GCM | GCM institutions |
---|---|
NorESM2-MM | Norwegian Climate Centre (NCC)—Norway |
MPI-ESM1-2-HR | Max Planck Institute for Meteorology (MPI-M)—Germany |
EC-Earth3 | EC-Earth-Consortium |
AWI-CM-1-1-MR | Alfred Wegener Institut (AWI)—Germany |
BCC-CSM2-MR | Beijing Climate Center (BCC)—China |
MRI-ESM2-0 | Meteorological Research Institute (MRI)—Japan |
GFDL-ESM4 | Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration (NOAA)—USA |
CESM2-WACCM* | National Center for Atmospheric Research (NCAR)—USA |
CMCC-CM2-SR5* | Euro-Mediterranean Centre on Climate Change (CMCC) Foundation—Italy |
Figure 2 Comparative analysis of three machine learning models: Random Forest, Gradient Boosting, and Decision Tree for predicted water temperature |
Table 2 Performance metrics of three different machine learning models: Random forest, gradient boosting machine and decision tree |
Model | Mean R2 | SD R2 | Mean MAE | SD MAE | Mean RMSE | SD RMSE |
---|---|---|---|---|---|---|
Random Forest | 0.88 | 0.007 | -1.72 | 0.022 | -2.25 | 0.02 |
Gradient Boosting Machine | 0.85 | 0.021 | -2.12 | 0.103 | -2.73 | 0.15 |
Decision Tree | 0.84 | 0.021 | -2.16 | 0.102 | -2.78 | 0.15 |
Figure 3 Variability of mean annual river water temperature (a) and air temperature (b) between 1985 and 2014 |
Figure 4 Projected water temperature changes from 1985 to 2100 at Odra basin (a) and Vistula basin (b), in comparison of historical data with future scenarios of SSP2-4.5 and SSP5-8.5 |
Figure 5 Comparative analysis of water temperature distribution for the Odra basin (a) and Vistula basin (b) from 1985-2100 and future projections under SSP2-4.5 and SSP5-8.5 scenarios |
Figure 6 Wavelet power spectrum of water temperature under SSP2-4.5 (a) and SSP5-8.5 (b) at Vistula River |
Figure 7 Wavelet power spectrum of water temperature under SSP2-4.5 (a) and SSP5-8.5 (b) at Odra River |
Figure 8 Correlation between TN10p under SSP2-4.5 (a), TN10p SSP5-8.5 (b), TN90 under SSP2-4.5 (c), TN90p under SSP5-8.5 (d), TX90p under SSP2-4.5 (e), TX90p under SSP5-8.5 (f), TX10p under SSP2-4.5 (g), TX10p under SSP5-8.5 (h), and water temperature at Odra basin |
Figure 9 Correlation between TN10p under SSP2-4.5 (a), TN10p SSP5-8.5 (b), TN90 under SSP2-4.5 (c), TN90p under SSP5-8.5 (d), TX90p under SSP2-4.5 (e), TX90p under SSP5-8.5 (f), TX10p under SSP2-4.5 (g), TX10p under SSP5-8.5 (h), and water temperature at Vistula basin |
Table 3 Regression analysis results analyzing the correlation between climatic indices including TX10p, TX90p, TN90p, TN10p and water temperatures under SSP2-4.5 and SSP5-8.5 at Odra basin |
Index | Scenario | R2 | F-statistic | Coef. of climate index | Std. error of Coef. | t-statistic of Coef. | p-value of Coef. | 95% CI of Coef. |
---|---|---|---|---|---|---|---|---|
TX10p | SSP2-4.5 | 0.695 | 241.6 | ‒0.42 | 0.028 | -15.54 | < 0.001 | (-0.48, -0.37) |
SSP5-8.5 | 0.800 | 424.8 | ‒0.52 | 0.025 | -20.61 | < 0.001 | (-0.57, -0.47) | |
TX90p | SSP2-4.5 | 0.734 | 292.7 | 0.21 | 0.013 | 17.10 | < 0.001 | (0.19, 0.24) |
SSP5-8.5 | 0.908 | 1052. | 0.15 | 0.005 | 32.43 | < 0.001 | (0.14, 0.16) | |
TN90p | SSP2-4.5 | 0.763 | 341.2 | 0.20 | 0.011 | 18.47 | < 0.001 | (0.18, 0.23) |
SSP5-8.5 | 0.887 | 825.8 | 0.12 | 0.004 | 28.73 | < 0.001 | (0.11, 0.13) | |
TN10p | SSP2-4.5 | 0.763 | 341.2 | 0.20 | 0.011 | 18.47 | < 0.001 | (0.18, 0.23) |
SSP5-8.5 | 0.887 | 825.8 | 0.12 | 0.004 | 28.73 | < 0.001 | (0.11, 0.13) |
Table 4 Regression analysis results analyzing the correlation between climatic indices including TX10p, TX90p, TN90p, TN10p and water temperatures under SSP2-4.5 and SSP5-8.5 at Vistula basin |
Index | Scenario | R2 | F-statistic | Prob (F statistic) | Std. error of Coef. | t-statistic of Coef. | p-value of Coef. | 95% CI of Coef. |
---|---|---|---|---|---|---|---|---|
TX10p | SSP2-4.5 | 0.641 | 203.8 | 3.85×1027 | 0.015 | ‒14.27 | <0.001 | (-0.24, -0.18) |
SSP5-8.5 | 0.643 | 205.7 | 2.77×1027 | 0.021 | ‒14.34 | <0.001 | (-0.33, -0.25) | |
TX90p | SSP2-4.5 | 0.654 | 215.3 | 5.02×1028 | 0.008 | 14.67 | <0.001 | (0.10, 0.13) |
SSP5-8.5 | 0.908 | 1121.0 | 8.05×1061 | 0.004 | 33.48 | <0.001 | (0.11, 0.12) | |
TN90p | SSP2-4.5 | 0.715 | 285.8 | 7.63×1033 | 0.007 | 16.90 | <0.001 | (0.10, 0.13) |
SSP5-8.5 | 0.913 | 1204.0 | 2.00×1062 | 0.003 | 34.69 | <0.001 | (0.09, 0.10) | |
TN10p | SSP2-4.5 | 0.666 | 227.1 | 6.68×1029 | 0.014 | ‒15.07 | <0.001 | (-0.23, -0.18) |
SSP5-8.5 | 0.652 | 213.5 | 6.95×1028 | 0.020 | ‒14.61 | <0.001 | (-0.32, -0.25) |
Table S1 Location of hydrological stations |
No | River | Station | Longitude (°) | Latitude (°) |
---|---|---|---|---|
1 | Odra | Ścinawa | 16.44 | 51.41 |
2 | Odra | Połęcko | 14.89 | 52.05 |
3 | Odra | Gozdowice | 14.32 | 52.76 |
4 | Biała Lądecka | Żelazno | 16.67 | 50.37 |
5 | Ścinawka | Tłumaczów | 16.44 | 50.55 |
6 | Oława | Oława | 17.29 | 50.95 |
7 | Bystrzyca | Krasków | 16.58 | 50.92 |
8 | Bóbr | Dąbrowa Bolesławiecka | 15.57 | 51.33 |
9 | Bóbr | Żagań | 15.32 | 51.62 |
10 | Warta | Bobry | 19.41 | 51.03 |
11 | Warta | Sieradz | 18.74 | 51.60 |
12 | Warta | Śrem | 17.02 | 52.09 |
13 | Ner | Dąbie | 18.82 | 52.08 |
14 | Prosna | Bogusław | 17.95 | 51.90 |
15 | Noteć | Pakość | 18.09 | 52.80 |
16 | Noteć | Nowe Drezdenko | 15.84 | 52.85 |
17 | Gwda | Piła | 16.74 | 53.15 |
18 | Rega | Trzebiatów | 15.26 | 54.06 |
19 | Parsęta | Białogard | 15.98 | 54.00 |
20 | Wieprza | Kwisno | 17.13 | 54.09 |
21 | Grabowa | Grabowo | 16.44 | 54.30 |
22 | Łupawa | Smołdzino | 17.21 | 54.66 |
23 | Łeba | Lębork 2 | 17.75 | 54.54 |
24 | Wisła | Skoczów | 18.79 | 49.80 |
25 | Wisła | Kępa Polska | 19.96 | 52.43 |
26 | Wisła | Gdańsk-Świbno | 18.94 | 54.33 |
27 | Brynica | Brynica | 19.00 | 50.47 |
28 | Soła | Oświęcim | 19.22 | 50.04 |
29 | Skawa | Wadowice | 19.51 | 49.88 |
30 | Raba | Stróża | 19.92 | 49.80 |
31 | Dunajec | Żabno | 20.86 | 50.13 |
32 | Poprad | Stary Sącz | 20.66 | 49.57 |
33 | Nida | Pińczów | 20.52 | 50.51 |
34 | San | Radomyśl | 21.93 | 50.67 |
35 | Tanew | Harasiuki | 22.47 | 50.48 |
36 | Wieprz | Kośmin | 22.00 | 51.57 |
37 | Narew | Narew | 23.52 | 52.92 |
38 | Narew | Nowogród | 21.87 | 53.23 |
39 | Narew | Zambski Kościelne | 21.21 | 52.76 |
40 | Biebrza | Burzyn | 22.46 | 53.27 |
41 | Omulew | Białobrzeg Bliższy | 21.48 | 53.11 |
42 | Orzyc | Maków Mazowiecki | 21.11 | 52.86 |
43 | Bug | Strzyżów | 24.04 | 50.84 |
44 | Bug | Wyszków | 21.45 | 52.59 |
45 | Krzna | Malowa Góra | 23.47 | 52.10 |
46 | Drwęca | Brodnica | 19.40 | 53.26 |
47 | Wda | Czarna Woda | 18.09 | 53.84 |
48 | Osa | Rogóźno 2 | 18.95 | 53.52 |
49 | Wierzyca | Brody Pomorskie | 18.76 | 53.86 |
50 | Pasłęka | Łozy | 19.95 | 54.19 |
51 | Łyna | Sępopol | 21.01 | 54.27 |
52 | Węgorapa | Mieduniszki | 21.98 | 54.33 |
Table S2 Location of meteorological stations |
No | Station | Longitude (°) | Latitude (°) |
---|---|---|---|
I | Kłodzko | 16.61 | 50.44 |
II | Wrocław | 16.90 | 51.10 |
III | Legnica | 16.21 | 51.19 |
IV | Leszno | 16.53 | 51.84 |
V | Zielona Góra | 15.52 | 51.93 |
VI | Wieluń | 18.56 | 51.21 |
VII | Łódź | 19.39 | 51.72 |
VIII | Kalisz | 18.08 | 51.78 |
IX | Piła | 16.75 | 53.13 |
X | Gorzów Wielkopolski | 15.28 | 52.74 |
XI | Bielsko-Biała | 19.00 | 49.81 |
XII | Katowice | 19.03 | 50.24 |
XIII | Kraków-Balice | 19.79 | 50.08 |
XIV | Nowy Sącz | 20.69 | 49.63 |
XV | Tarnów | 20.98 | 50.03 |
XVI | Kielce-Suków | 20.69 | 50.81 |
XVII | Sandomierz | 21.72 | 50.70 |
XVIII | Lublin-Radawiec | 22.39 | 51.22 |
XIX | Warszawa | 20.96 | 52.16 |
XX | Białystok | 23.16 | 53.11 |
XXI | Włodawa | 23.53 | 51.55 |
XXII | Mława | 20.36 | 53.10 |
XXIII | Płock | 19.73 | 52.59 |
XXIV | Toruń | 18.60 | 53.04 |
XXV | Chojnice | 17.53 | 53.72 |
XXVI | Kołobrzeg | 15.58 | 54.18 |
XXVII | Koszalin | 16.16 | 54.20 |
XXVIII | Łeba | 17.53 | 54.75 |
XXIX | Hel | 18.81 | 54.60 |
XXX | Elbląg | 19.43 | 54.16 |
XXXI | Kętrzyn | 21.37 | 54.07 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
HELCOM, 2015. Updated fifth Baltic Sea pollution load compilation (PLC-5.5). Baltic Sea Environment Proceedings, 145.
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
/
〈 |
|
〉 |