Journal of Geographical Sciences >
Impact of the producer services agglomeration on PM2.5: A case study of the Yellow River Basin, China
Liu Yan (1995-), PhD Candidate, specialized in economic geography and regional development. E-mail: sliucy@163.com |
Received date: 2022-11-27
Accepted date: 2023-07-20
Online published: 2023-11-15
Supported by
National Natural Science Foundation of China(41871121)
Key Research and Development Program of Shandong Province (Soft Science Major Project)(2022RZA01007)
Shandong Province Social Science Planning Research Project(22CJJJ06)
Regional and persistent PM2.5 pollution seriously undermines the development of urban ecological civilizations and the advancement of high-quality economies. The producer service sector, an example of a typical knowledge-intensive service industry, plays an important role in advancing the manufacturing industry and fostering economic growth while concurrently improving urban environmental conditions. Based on panel data of prefecture-level cities in the Yellow River Basin from 2006 to 2019, this study constructed a Spatial Durbin Model and a mediation effect model to comprehensively explore the impact of producer services agglomeration on PM2.5 pollution. The main conclusions are as follows: (1) From 2006 to 2019, PM2.5 pollution in the study area exhibited an initial rise followed by a subsequent decline, with notable spatial heterogeneity. PM2.5 pollution in the lower reaches of the Yellow River was significantly higher than in the middle and upper reaches. In addition, the spatial pattern of producer services agglomeration showed distinct “core-edge” characteristics. (2) The agglomeration of producer services had a significant negative impact on local and adjacent PM2.5 pollution, and there was a more pronounced haze reduction effect in the case of specialized agglomerations of producer services and low-end producer services. (3) The agglomeration of producer services indirectly improved PM2.5 pollution by promoting technological innovation and optimizing industrial structure, with the latter playing a greater mediating effect. This study not only helps expand the theoretical and empirical research on producer services agglomeration but also offers valuable insights for pursuing a green transformation of the Yellow River Basin by optimizing industrial patterns through the producer services sector. This approach represents a reference for curbing PM2.5 pollution and guiding the region toward a greener future.
LIU Yan , CHENG Yu , ZHENG Ruijing , ZHAO Huaxue , WANG Yaping . Impact of the producer services agglomeration on PM2.5: A case study of the Yellow River Basin, China[J]. Journal of Geographical Sciences, 2023 , 33(11) : 2295 -2320 . DOI: 10.1007/s11442-023-2177-8
Figure 1 Location of the study area (Yellow River Basin)(Upper reaches: 70 Haixi Mongolian and Tibetan Autonomous Prefecture, 69 Yushu Tibetan Autonomous Prefecture, 68 Guoluo Tibetan Autonomous Prefecture, 67 Hainan Tibetan Autonomous Prefecture, 66 Huangnan Tibetan Autonomous Prefecture, 65 Haibei Tibetan Autonomous Prefecture, 64 Haidong, 63 Xining, 62 Aba Tibetan and Qiang Autonomous Prefecture, 61 Gannan Tibetan Autonomous Prefecture, 60 Linxia Hui Autonomous Prefecture, 59 Longnan, 58 Dingxi, 55 Wuwei, 53 Baiyin, 52 Lanzhou, 51 Zhongwei, 50 Guyuan, 49 Wuzhong, 48 Shizuishan, 47 Yinchuan, 46 Alxa League, 45 Ulanqab, 44 Bayannur, 43 Ordos, 42 Wuhai, 41 Baotou, 40 Hohhot. Middle reaches: 57 Qingyang, 56 Pingliang, 54 Tianshui, 39 Shangluo, 38 Yulin, 37 Yan’an, 36 Weinan, 35 Xianyang, 34 Baoji, 33 Tongchuan, 32 Xi’an, 31 Lvliang, 30 Linfen, 29 Xinzhou, 28 Yuncheng, 27 Jinzhong, 26 Shuozhou, 25 Jincheng, 24 Changzhi, 23 Yangquan, 22 Datong, 21 Taiyuan, 20 Jiyuan, 19 Sanmenxia, 17 Jiaozuo, 13 Luoyang. Lower reaches: 18 Puyang, 16 Xinxiang, 15 Hebi, 14 Anyang, 12 Kaifeng, 11 Zhengzhou, 10 Heze, 9 Binzhou, 8 Liaocheng, 7 Dezhou, 6 Tai’an, 5 Jining, 4 Dongying, 3 Zibo, 2 Laiwu, 1 Jinan.) Note: City 2 was merged into 1 in 2019. The map was drawn according to the standard base map No. GS(2022)1873, and the boundary of the base map was not modified. |
Table 1 Descriptive statistics of variables |
Variable | Variable meaning | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
lnPM2.5 | Average annual PM2.5 concentration | 3.735 | 0.478 | 2.358 | 4.643 |
AGG | Agglomeration of producer services | 0.833 | 0.289 | 0.372 | 2.423 |
lnGpat | Number of green patent applications | 4.109 | 1.841 | 0 | 9.010 |
lnIndu | Secondary industry added value/tertiary industry added value | 4.348 | 0.532 | 2.698 | 6.262 |
lnTemp | Average annual temperature | 2.346 | 0.314 | 0.165 | 2.762 |
lnRain | Average annual precipitation | 6.144 | 0.452 | 4.307 | 7.020 |
lnTerr | Relief of city | -0.464 | 1.547 | -6.907 | 1.298 |
lnWind | Average annual wind speed | 0.801 | 0.124 | 0.326 | 1.131 |
lnPress | Annual pressure | 6.816 | 0.073 | 6.413 | 6.921 |
lnPgdp | Per capital GDP | 10.313 | 0.787 | 7.638 | 12.456 |
lnEnerg | Total electricity consumption | 14.119 | 0.933 | 10.012 | 16.355 |
lnEnv | Comprehensive utilization rate of industrial solid waste measures the level of environmental regulation | 4.196 | 0.571 | 0.615 | 4.757 |
lnDens | Population density | 5.485 | 0.965 | 2.788 | 7.717 |
Figure 2 Box plot and kernel density estimation of PM2.5 and producer services agglomeration |
Figure 3 Spatial and temporal patterns of PM2.5 and producer services agglomeration in the Yellow River Basin |
Table 2 Moran’s I of PM2.5 from 2006 to 2019 |
Year | Moran’s I | Z | Years | Moran’s I | Z |
---|---|---|---|---|---|
2006 | 0.753*** | 10.634 | 2013 | 0.824*** | 11.722 |
2007 | 0.802*** | 11.032 | 2014 | 0.842*** | 11.463 |
2008 | 0.832*** | 11.188 | 2015 | 0.851*** | 11.728 |
2009 | 0.820*** | 10.910 | 2016 | 0.807*** | 11.214 |
2010 | 0.797*** | 10.602 | 2017 | 0.801*** | 10.910 |
2011 | 0.788*** | 11.784 | 2018 | 0.780*** | 10.936 |
2012 | 0.810*** | 11.546 | 2019 | 0.810*** | 11.397 |
Note: *** p < 0.01. |
Table 3 Spatial econometric model selection tests |
Test | Statistic | p-value |
---|---|---|
LM (lag) test | 98.850*** | 0.001 |
Robust LM (lag) test | 88.889*** | 0.000 |
LM (error) test | 37.949*** | 0.001 |
Robust LM (error) test | 27.989*** | 0.000 |
Wald (SLM) | 31.14*** | 0.000 |
Wald (SEM) | 34.60*** | 0.001 |
LR_spatial_lag | 22.92*** | 0.011 |
LR_spatial_error | 46.82*** | 0.001 |
Note: *** p < 0.01. |
Table 4 Benchmark regression results |
Variable | SLM | SEM | SDM | |||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
L.lnPM2.5 | 0.2956*** | |||||||
(8.89) | ||||||||
AGG | -0.0574** | -0.0630** | -0.0539** | -0.0549** | -0.0558** | -0.0691** | -0.0350** | -0.0305 |
(-2.12) | (-2.35) | (-1.98) | (-2.06) | (-2.06) | (-2.55) | (-2.35) | (-0.35) | |
AGG2 | -0.0213 | |||||||
(-0.56) | ||||||||
lnTemp | 0.0784** | 0.1143*** | 0.1251*** | 0.0961*** | 0.1286*** | |||
(2.25) | (2.58) | (2.62) | (3.22) | (2.71) | ||||
lnRain | -0.0005 | 0.0174 | 0.0237 | 0.0172 | 0.0267 | |||
(-0.04) | (0.99) | (1.25) | (1.04) | (1.42) | ||||
lnTerr | -0.0234 | -0.0201 | -0.0744*** | -0.0117 | -0.0766*** | |||
(-0.38) | (-0.35) | (-2.76) | (-0.20) | (-2.81) | ||||
lnWind | 0.0155 | 0.1060 | 0.0747 | 0.0803 | 0.0858 | |||
(0.28) | (1.49) | (0.98) | (1.18) | (1.12) | ||||
lnPress | -0.1023 | -0.2987 | -0.2789 | -0.1121 | -0.3085 | |||
(-0.49) | (-1.28) | (-1.13) | (-0.52) | (-1.25) | ||||
lnPgdp | -0.0108 | -0.0102 | -0.0174 | -0.0049 | -0.0162 | |||
(-1.47) | (-0.72) | (-1.22) | (-0.38) | (-1.14) | ||||
lnEnerg | -0.0047 | 0.0118 | 0.0144 | 0.0277 | 0.0150 | |||
(-0.30) | (0.67) | (0.90) | (1.58) | (0.93) | ||||
lnEnv | 0.0233** | 0.0216* | 0.0289** | 0.0182 | 0.0301** | |||
(1.97) | (1.82) | (2.38) | (1.57) | (2.47) | ||||
lnDens | -0.0035 | 0.0005 | 0.0444** | -0.0115 | 0.0430** | |||
(-0.22) | (0.03) | (2.51) | (-0.67) | (2.40) | ||||
W*AGG | -0.1012 | -0.4624** | -0.1346 | 0.9349** | ||||
(-0.70) | (-2.53) | (-0.74) | (2.18) | |||||
Cons | 0.2083*** | 3.7791*** | 0.2862** | -0.9622 | 1.2110 | |||
(3.23) | (43.53) | (2.23) | (-0.10) | (0.12) | ||||
rho | 0.9483*** | 0.9451*** | 0.9509*** | 0.9218*** | 0.9206*** | 0.9156*** | ||
(82.49) | (76.25) | (81.62) | (50.59) | (46.67) | (47.36) | |||
lambda | 0.9454*** | 0.9466*** | ||||||
(79.50) | (82.42) | |||||||
Obs | 798 | 798 | 798 | 798 | 798 | 798 | 798 | 798 |
R-squared | 0.379 | 0.270 | 0.031 | 0.510 | 0.019 | 0.673 | 0.281 | 0.678 |
N | 57 | 57 | 57 | 57 | 57 | 57 | 57 | 57 |
Note: Z value in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01. |
Table 5 Effect decomposition of SDM |
Variable | Direct | Indirect | Total |
---|---|---|---|
AGG | -0.1694*** | -6.0805** | -6.2500** |
(-2.65) | (-2.06) | (-2.08) | |
lnTemp | 0.1404*** | 3.1113 | 3.2518 |
(2.90) | (1.48) | (1.54) | |
lnRain | -0.0104 | -2.3977** | -2.4082** |
(-0.44) | (-2.07) | (-2.05) | |
lnTerr | -0.0720 | -1.8483 | -1.9203 |
(-0.45) | (-0.29) | (-0.30) | |
lnWind | 0.0193 | -3.4313 | -3.4120 |
(0.19) | (-0.86) | (-0.84) | |
lnPress | 0.2714 | 17.3018 | 17.5732 |
(0.58) | (0.75) | (0.75) | |
lnPgdp | -0.0098 | -0.0296 | -0.0394 |
(-0.41) | (-0.30) | (-0.04) | |
lnEnerg | 0.0687* | 2.3632 | 2.4319 |
(1.75) | (1.30) | (1.31) | |
lnEnv | 0.0870** | 3.0372* | 3.1242* |
(2.37) | (1.70) | (1.72) | |
lnDens | -0.1236** | -5.3538* | -5.4774* |
(-1.96) | (-1.86) | (-1.86) |
Note: Z value in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01. |
Table 6 Robustness tests |
Variable | Spatial weight matrix replacement | Use of one-period lagged AGG | ||||
---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | |
AGG | -0.0856** | -1.0412** | -1.1268** | |||
(-2.45) | (-2.06) | (-2.12) | ||||
L.AGG | -0.1979*** | -7.1020** | -7.3000** | |||
(-2.81) | (-2.09) | (-2.10) | ||||
Control variable | Yes | Yes | Yes | Yes | Yes | Yes |
Note: Z value in parentheses; ** p < 0.05, *** p < 0.01. |
Table 7 Effect decomposition of agglomeration externalities |
Variable | Specialized agglomeration | Diversified agglomeration | ||||
---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | |
AGG | -0.0396*** | -1.4028** | -1.4424** | 0.0042*** | 0.1402*** | 0.1444*** |
(-2.60) | (-2.02) | (-2.04) | (3.39) | (2.76) | (2.79) | |
lnTemp | 0.1421*** | 0.9600 | 1.1021 | 0.1327*** | 1.0295 | 1.1622 |
(3.06) | (0.83) | (0.94) | (2.89) | (1.01) | (1.13) | |
lnRain | 0.0013 | -1.3645* | -1.3631* | 0.0052 | -1.2448* | -1.2396* |
(0.06) | (-1.72) | (-1.69) | (0.26) | (-1.72) | (-1.69) | |
lnTerr | -0.1022*** | -1.2058 | -1.3081 | -0.1102*** | -1.6814 | -1.7917 |
(-3.39) | (-0.92) | (-0.99) | (-3.55) | (-1.29) | (-1.36) | |
lnWind | 0.0785 | -0.5667 | -0.4882 | 0.1386* | 1.0298 | 1.1684 |
(0.97) | (-0.32) | (-0.27) | (1.75) | (0.61) | (0.69) | |
lnPress | -0.2368 | 2.7128 | 2.4760 | -0.4453 | -9.0747 | -9.5199 |
(-0.60) | (0.15) | (0.14) | (-1.20) | (-0.56) | (-0.58) | |
lnPgdp | -0.0167 | 0.0444 | 0.0277 | -0.0128 | 0.0987 | 0.0859 |
(-1.09) | (0.25) | (0.15) | (-0.83) | (0.61) | (0.52) | |
lnEnerg | -0.0179 | -1.6060** | -1.6240** | 0.0008 | -0.6613 | -0.6605 |
(-0.84) | (-2.20) | (-2.19) | (0.03) | (-0.95) | (-0.93) | |
lnEnv | 0.0519** | 1.2762 | 1.3282 | 0.0431** | 0.9199 | 0.9630 |
(2.55) | (1.44) | (1.47) | (2.28) | (1.18) | (1.21) | |
lnDens | 0.0880* | 2.4639 | 2.5520 | 0.0782* | 2.1112 | 2.1894 |
(1.95) | (1.28) | (1.30) | (1.69) | (1.10) | (1.12) |
Note: Z value in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01. |
Table 8 Industry heterogeneity analysis |
Variable | High-end producer services | Low-end producer services cluster | ||||
---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | |
AGG | -0.0251 | -0.5223 | -0.5475 | -0.1643*** | -5.8379** | -6.0022** |
(-0.43) | (-0.25) | (-0.26) | (-2.62) | (-2.07) | (-2.08) | |
lnTemp | 0.1520*** | 1.4349 | 1.5869 | 0.1658*** | 2.7695* | 2.9352* |
(3.18) | (1.04) | (1.14) | (3.42) | (1.83) | (1.92) | |
lnRain | 0.0046 | -1.2237 | -1.2190 | -0.0032 | -1.7434* | -1.7467* |
(0.21) | (-1.43) | (-1.41) | (-0.14) | (-1.79) | (-1.77) | |
lnTerr | -0.1041*** | -1.4215 | -1.5256 | -0.1102*** | -1.9024 | -2.0126 |
(-3.30) | (-1.01) | (-1.07) | (-3.26) | (-1.19) | (-1.24) | |
lnWind | 0.1159 | 0.1566 | 0.2725 | 0.1090 | 0.1435 | 0.2526 |
(1.41) | (0.08) | (0.14) | (1.34) | (0.07) | (0.12) | |
lnPress | -0.3553 | -3.3393 | -3.6946 | -0.4207 | -8.4506 | -8.8712 |
(-0.87) | (-0.18) | (-0.19) | (-0.99) | (-0.42) | (-0.44) | |
lnPgdp | -0.0179 | -0.0329 | -0.0508 | -0.0160 | -0.0283 | -0.0443 |
(-1.16) | (-0.17) | (-0.27) | (-1.04) | (-0.14) | (-0.22) | |
lnEnerg | -0.0146 | -1.5368** | -1.5514** | -0.0156 | -1.5493* | -1.5650* |
(-0.66) | (-2.00) | (-1.98) | (-0.70) | (-1.91) | (-1.89) | |
lnEnv | 0.0538** | 1.4997 | 1.5536 | 0.0544** | 1.5155 | 1.5700 |
(2.54) | (1.61) | (1.63) | (2.47) | (1.52) | (1.55) | |
lnDens | 0.0908* | 2.6439 | 2.7348 | 0.1023* | 3.1780 | 3.2803 |
(1.85) | (1.23) | (1.25) | (1.92) | (1.34) | (1.35) |
Note: Z value in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01. |
Table 9 Regional heterogeneity analysis |
Variable | Middle and upper reaches | Lower reaches | ||||
---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | |
Specialized AGG | -0.0709*** | -2.0780** | -2.1489** | -0.0236*** | -0.2477* | -0.2713* |
(-2.78) | (-2.30) | (-2.32) | (-2.11) | (-1.94) | (-1.96) | |
Control variable | yes | yes | yes | yes | yes | yes |
Diversified AGG | 0.0048*** | 0.1177*** | 0.1226*** | -0.0002 | 0.0020 | 0.0018 |
(3.34) | (2.90) | (2.94) | (-0.12) | (0.10) | (0.08) | |
Control variable | yes | yes | yes | yes | yes | yes |
High-end AGG | -0.0393 | -1.1590 | -1.1983 | 0.0595** | 0.6552*** | 0.7147*** |
(-0.48) | (-0.55) | (-0.55) | (2.11) | (4.02) | (4.06) | |
Control variable | yes | yes | yes | yes | yes | yes |
Low-end AGG | -0.1738** | -4.7891** | -4.9630** | 0.0642 | 1.1306** | 1.1949** |
(-2.43) | (-2.20) | (-2.22) | (1.42) | (2.13) | (2.09) | |
Control variable | yes | yes | yes | yes | yes | yes |
Note: Z value in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01. |
Table 10 Mediating effect analysis |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Explained variable | lnPM2.5 | lnGpat | lnPM2.5 | lnPM2.5 | lnIndu | lnPM2.5 |
AGG | -0.1267*** | 0.6744*** | -0.0266*** | -0.1267*** | 0.5160*** | -0.0761** |
(-3.63) | (4.47) | (-3.24) | (-3.63) | (8.42) | (-2.12) | |
lnGpat | -0.1088*** | |||||
(-3.09) | ||||||
lnIndu | -0.0980*** | |||||
(-4.90) | ||||||
Control variable | yes | yes | yes | yes | yes | yes |
Sobel test | Z=-2.625, P-value=0.008 | Z=-4.233, P-value=0.000 | ||||
Proportion of total effect that is mediated | 14.161% | 39.922% |
Note: Z value in parentheses; ** p < 0.05, *** p < 0.01. |
Figure 4 The influence path of AGG on PM2.5 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
/
〈 | 〉 |