Journal of Geographical Sciences >
Holocene aeolian activities linked to Indian summer monsoon in the middle reaches of the Yarlung Zangbo River
Li Tuoyu (1985-), Associate Professor, specialized in environmental archaeology and aeolian research. E-mail: lituoyu@cnu.edu.cn |
Received date: 2020-03-20
Accepted date: 2020-10-15
Online published: 2021-02-25
Supported by
National Natural Science Foundation of China(41601191)
National Natural Science Foundation of China(41871070)
National Natural Science Foundation of China(41877460)
National Basic Research Program of China(2013CB956001)
Special Researcher Project of Henan Province
Copyright
Widespread aeolian deposits on the Tibetan Plateau (TP) have provided valuable palaeoclimatic information. However, the primary factors (e.g., climate factors, human activity, and vegetation cover) controlling aeolian deposition remain elusive. In this paper, we use a dataset that comprises new and published ages of Holocene aeolian sand and loess in the middle reaches of the Yarlung Zangbo River to identify the primary controlling factors and palaeoclimatic implications of aeolian deposition. Several intervals of enhanced aeolian accumulation centered at 8.5-7.8, 6.4-5.8, 4.5-4.0, 3.1-1.8, and 0.9 ka are identified, generally consistent with regional low rainfall events and weak Indian summer monsoon (ISM). This suggests that regional wetness, dominated by the ISM, may play a key role in modulating dust emissions and aeolian deposition on centennial timescales. Our results show that on centennial- to millennial-scales, ISM activity can be reconstructed by non-continuous aeolian deposits in the monsoon dominated TP.
Key words: Holocene; aeolian activity; dust; Indian summer monsoon; Tibetan Plateau
LI Tuoyu , ZHANG Jifeng , WU Yongqiu , DU Shisong , MO Duowen , LIAO Yinan , CHEN Zhitong , LIU Jianbao , LI Qing . Holocene aeolian activities linked to Indian summer monsoon in the middle reaches of the Yarlung Zangbo River[J]. Journal of Geographical Sciences, 2020 , 30(12) : 2002 -2014 . DOI: 10.1007/s11442-020-1824-6
Figure 1 Location of the study area (a) and distribution of aeolian sediment profiles in the middle reaches of the YZR (b). The boundary of westerlies and the ISM (dashed line; Chen et al., 2010) are also shown. |
Figure 2 Sediment logs and ages of aeolian sand and loess in the middle reaches of the YZR |
Table 1 OSL dating results of aeolian sediments in the YZR basin |
Sample | Depth (cm) | U (ppm) | Th (ppm) | K (%) | Dose rate (Gy•ka‒1) | De/Gy | OSL age (ka) |
---|---|---|---|---|---|---|---|
DRX-OSL | 68-72 | 1.56±0.3 | 13.95±0.7 | 2.41±0.04 | 3.73±0.27 | 2.93±0.30 | 0.79±0.10 |
RM-OSL-1 | 28-32 | 2.64±0.039 | 17.8±0.025 | 2.46±0.026 | 4.36±0.32 | 7.99±0.40 | 1.83±0.29 |
RM-OSL-3 | 208-212 | 3.09±0.038 | 19.2±0.024 | 2.06±0.030 | 4.17±0.31 | 19.35±0.98 | 4.64±0.36 |
DPZ-OSL-3 | 436-440 | 4.16±0.034 | 18.2±0.025 | 2.36±0.028 | 4.76±0.35 | 8.37±0.42 | 1.76±0.18 |
Table 2 Radiocarbon dating results of aeolian sediments in the YZR basin |
Sample | Depth/cm | Dating material | Conventional 14C age (BP, 2σ) | Calibrated14C age (BP, 2σ) |
---|---|---|---|---|
SK-14C-1 | 435-439 | Charcoal | 2880±25 | 3005±37 |
WL-14C-1 | 50-55 | Total organic matter | 710±20 | 670±6 |
Table 3 A dataset of synthesized ages of Holocene aeolian sediments in the middle reaches of the YZR |
Section | Depth (cm) | Dating method | Dating material | Age (ka/cal ka BP) | Latitude (°N) | Longitude (°E) | Altitude (m asl) | Source |
---|---|---|---|---|---|---|---|---|
TB1 | 350 | OSL | Aeolian loess | 2.70±0.20 | 29.3167 | 89.5500 | 3800 | Sun et al., 2007 |
TB7 | 380 | OSL | Aeolian loess | 11.00±1.20 | 29.3167 | 88.9167 | 3920 | Sun et al., 2007 |
DAR1 | 300-325 | 14C | Charcoal | 3.15±0.08 | — | — | — | Kaiser et al., 2009 |
STA1 | 50 | OSL | Aeolian sand | 2.90±0.20 | 29.6331 | 91.0978 | 3660 | Kaiser et al., 2009 |
STA1 | 180 | OSL | Aeolian sand | 4.10±0.40 | 29.6331 | 91.0978 | 3667 | Kaiser et al., 2009 |
STA1 | 280 | OSL | Aeolian sand | 6.70±0.50 | 29.6331 | 91.0978 | 3667 | Kaiser et al., 2009 |
QUX 1 | 280 | OSL | Aeolian sand | 8.50±0.70 | 29.3553 | 90.7234 | 3603 | Kaiser et al., 2009 |
QUX 2 | 325-330 | 14C | Charcoal | 7.78±0.07 | 29.3659 | 90.7556 | 3536 | Kaiser et al., 2009 |
Section 48 | 67-73 | OSL | Aeolian loess | 8.80±3.90 | 29.7333 | 89.8167 | 4571 | Lehmkuhl et al., 2000 |
Section 49 | 47-53 | OSL | Aeolian loess | 7.80±1.20 | 29.7667 | 89.8500 | 4835 | Lehmkuhl et al., 2000 |
LXD | 170 | OSL | Aeolian loess | 7.90±0.90 | 29.3275 | 89.5386 | 3797 | Hu et al., 2018 |
LXD | 98 | OSL | Aeolian loess | 3.20±0.30 | 29.3275 | 89.5386 | 3797 | Hu et al., 2018 |
Xigaze | — | 14C | Organic matter | 0.92±0.02 | 29.3057 | 88.8688 | 3811 | Hu et al., 2018 |
TDD | 87 | OSL | Aeolian loess | 2.60±0.30 | 29.3372 | 90.3236 | 3687 | Hu et al., 2018 |
TDD | 195 | OSL | Aeolian loess | 2.90±0.30 | 29.3372 | 90.3236 | 3687 | Hu et al., 2018 |
TDD | 285 | OSL | Aeolian loess | 5.00±0.50 | 29.3372 | 90.3236 | 3687 | Hu et al., 2018 |
JB | 260 | TL | Aeolian sand | 8.56±0.65 | 29.3969 | 89.3500 | 3890 | Li et al., 2010 |
QS | 430 | TL | Aeolian loess | 8.85±0.53 | 29.3900 | 90.7578 | 4000 | Li et al., 2010 |
GM | 340 | 14C | Organic matter | 6.20±0.31 | — | — | — | Li et al., 2010 |
GM | 531 | TL | Aeolian sand | 8.30±0.30 | — | — | — | Li et al., 2010 |
Cha'er | 65 | 14C | Organic mattera | 2.23±0.10 | 29.3895 | 89.2823 | 3856 | Zheng et al., 2009 |
Cha'er | 235 | TL | Aeolian sand | 8.56±0.65 | 29.3895 | 89.2823 | 3856 | Zheng et al., 2009 |
ZD | 158 | OSL | Aeolian loess | 5.90±0.20 | 29.2466 | 91.7120 | 3561 | Zheng, 2009 |
ZD | 628 | OSL | Aeolian sand | 8.50±0.60 | 29.2466 | 91.7120 | 3561 | Zheng, 2009 |
CGG | 168 | OSL | Aeolian sand | 1.82±0.16 | 29.3653 | 91.1491 | 3652 | Li et al., 2020 |
CGG | 287 | OSL | Aeolian sand | 8.43±0.66 | 29.3653 | 91.1491 | 3652 | Li et al., 2020 |
YJP1 | 0.4 | OSL | Sandy loess | 1.90±0.10 | 29.4556 | 94.4693 | 2943 | Ling et al., 2020 |
YJP1 | 0.9 | OSL | Sandy loess | 3.90±0.30 | 29.4556 | 94.4693 | 2943 | Ling et al., 2020 |
YJP1 | 1.4 | OSL | Sandy loess | 4.40±0.30 | 29.4556 | 94.4693 | 2943 | Ling et al., 2020 |
YJP1 | 1.9 | OSL | Sandy loess | 4.30±0.30 | 29.4556 | 94.4693 | 2943 | Ling et al., 2020 |
YJP1 | 2.5 | OSL | Sandy loess | 5.10±0.40 | 29.4556 | 94.4693 | 2943 | Ling et al., 2020 |
YJP1 | 3 | OSL | Sandy loess | 3.20±0.20 | 29.4556 | 94.4693 | 2943 | Ling et al., 2020 |
YJP1 | 3.6 | OSL | Sandy loess | 8.30±0.60 | 29.4556 | 94.4693 | 2943 | Ling et al., 2020 |
YJP2 | 1.7 | OSL | Sandy loess | 110±0.90 | 29.4556 | 94.4693 | 2943 | Ling et al., 2020 |
MLP | 6.5 | OSL | Aeolian sand | 4.50±0.30 | 29.1189 | 93.7781 | 3004 | Ling et al., 2020 |
MLP | 10 | OSL | Aeolian sand | 6.20±0.50 | 29.1189 | 93.7781 | 3004 | Ling et al., 2020 |
LXP | 1.3 | OSL | Sandy loess | 4.90±0.40 | 29.0668 | 92.7993 | 3172 | Ling et al., 2020 |
LXP | 2 | OSL | Sandy loess | 6.50±0.50 | 29.0668 | 92.7993 | 3172 | Ling et al., 2020 |
SRP | 0.7 | OSL | Aeolian sand | 0.40±0.10 | 29.2617 | 91.9873 | 3553 | Ling et al., 2020 |
Section | Depth (cm) | Dating method | Dating material | Age (ka/cal ka BP) | Latitude (°N) | Longitude (°E) | Altitude (m asl) | Source |
SRP | 1.4 | OSL | Aeolian sand | 0.80±0.10 | 29.2617 | 91.9873 | 3553 | Ling et al., 2020 |
SRP | 2.1 | OSL | Aeolian sand | 1.00±0.10 | 29.2617 | 91.9873 | 3553 | Ling et al., 2020 |
SRP | 2.8 | OSL | Aeolian sand | 1.10±0.10 | 29.2617 | 91.9873 | 3553 | Ling et al., 2020 |
SRP | 3.5 | OSL | Aeolian sand | 1.00±0.10 | 29.2617 | 91.9873 | 3553 | Ling et al., 2020 |
SRP | 4.2 | OSL | Aeolian sand | 1.20±0.10 | 29.2617 | 91.9873 | 3553 | Ling et al., 2020 |
SRP | 4.9 | OSL | Aeolian sand | 4.10±0.40 | 29.2617 | 91.9873 | 3553 | Ling et al., 2020 |
LCP | 2.9 | OSL | Sandy loess | 9.20±0.80 | 29.3872 | 89.3254 | 3815 | Ling et al., 2020 |
DRX | 70 | OSL | Aeolian sand | 0.79±0.10 | 29.3664 | 91.1494 | 3656 | This study |
RM | 30 | OSL | Aeolian loess | 1.83±0.29 | 29.3528 | 88.4615 | 3876 | This study |
RM | 210 | OSL | Aeolian loess | 4.64±0.36 | 29.3528 | 88.4615 | 3876 | This study |
WL | 52 | 14C | Organic matter | 0.67±0.01 | 29.1445 | 93.6766 | 3092 | This study |
SK | 437 | 14C | Charcoal | 3.01±0.04 | 29.2995 | 91.4115 | 3557 | This study |
DPZ | 438 | OSL | Aeolian sand | 1.76±0.18 | 29.2835 | 91.6485 | 3584 | This study |
Figure 3 Comparison of the probability density curve for Holocene aeolian sediment ages in the middle reaches of the YZR (a) with other palaeoclimatic records: (b) summer insolation at 30°N (Berger and Loutre, 1991); (c) a lake-level record reconstructed by the PC1 grain size of the Lake Paru Co (Bird et al., 2014); (d) isotopic divergence between C23 and C31 n-alkanes (ΔδD) in Hongyuan peat (Seki et al., 2011); (e) a stalagmite δ18O record from southern Oman (Fleitmann et al., 2003). |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
/
〈 | 〉 |