Journal of Geographical Sciences >
A study of provincial differences in China’s eco-compensation framework
Author: Liu Chunla, PhD, specialized in economic geography and regional development. E-mail: liuchunla111@163.com
*Corresponding author: Chen Mingxing, PhD and Associate Professor, E-mail: chenmx@igsnrr.ac.cn
Received date: 2016-08-02
Accepted date: 2016-09-29
Online published: 2017-04-10
Supported by
National Natural Science Foundation of China, No.41601143, No.41671125, No.41125005
The Foundation of Humanities and Social Sciences of the Ministry of Education, No.16YJC840012
The Philosophy and Social Science Foundation of Hunan Province, No.15YBA273
The Science and Technology Planning Project of Hunan Province, No.2016SK2019
Copyright
In this study, we developed a theoretical framework to analyze the provincial differences in eco-compensation and selected appropriate measurement methods to investigate these differences in the operation of the eco-compensation framework. Via the use of the coefficient of variation, Atkinson index, and Gini coefficient, we investigated the overall differences in Chinese provincial eco-compensation time series data from 2004 to 2014 and studied the driving mechanism underlying these differences. The results showed that: (1) The provincial eco-compensation standard has geographical features. For example, the provinces crossed by the “HU Huanyong Line”, or located to its northwestern side, have obtained extensive eco-compensation. (2) There was a trend for differences in eco-compensation to increase over time, but with some fluctuations in 2006, 2009, and 2014 as shown by the coefficient of variation, in 2005, 2007, 2011, 2013, and 2014 as shown by the Gini coefficient, and in 2007, 2008, 2011, and 2012 as shown by the Atkinson index. (3) Time series curves indicated that while the signals from the three metrics (coefficient of variation, Atkinson index, and Gini coefficient) differ in a short-term analysis, they show the same tendency in the longer term. The results indicate that it is necessary to evaluate the differences in eco-compensation at the provincial level over a long period of time. (4) Via the calculation of the virtual Gini coefficient, we found that among the factors that influence provincial differences in eco-compensation, the economic value of eco-resources played the decisive role, explaining more than 73% of the difference. The cost of environmental pollution abatement was the second most important factor, accounting for more than 19% of the difference. The input to environmental pollution abatement had the least influence, accounting for less than 8% of the difference. The results agreed with those obtained from other studies, and could be used as a reference by policy makers.
Key words: provincial eco-compensation; difference; measure; China
LIU Chunla , LIU Weidong , LU Dadao , CHEN Mingxing , XU Mei . A study of provincial differences in China’s eco-compensation framework[J]. Journal of Geographical Sciences, 2017 , 27(2) : 240 -256 . DOI: 10.1007/s11442-017-1374-8
Figure 1 Logical framework of provincial eco-compensation and an analysis of its differences |
Figure 2 The value of the eco-compensation standard of each province in China from 2004 to 2014 |
Table 1 The eco-compensation standard as a proportion (%) of GDP for each province in China from 2004 to 2014 |
Province | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.39 | 0.24 | 0.23 | 0.23 | 0.23 | 0.27 | 0.25 | 0.25 | 0.31 | 0.19 | 0.22 |
Tianjin | 0.31 | 0.06 | 0.12 | 0.10 | 0.08 | 0.02 | 0.09 | 0.08 | 0.07 | 0.20 | 0.02 |
Hebei | 0.57 | 0.64 | 0.51 | 0.48 | 0.46 | 0.41 | 0.33 | 0.36 | 0.32 | 0.39 | 0.50 |
Shanxi | 0.99 | 0.96 | 1.17 | 1.12 | 1.11 | 0.94 | 0.61 | 0.54 | 0.55 | 0.65 | 0.45 |
Inner Mongolia | 11.49 | 9.64 | 8.03 | 6.62 | 6.04 | 5.28 | 4.46 | 4.15 | 3.88 | 4.00 | 3.80 |
Liaoning | 0.78 | 0.86 | 0.92 | 0.54 | 0.49 | 0.45 | 0.35 | 0.30 | 0.26 | 0.33 | 0.35 |
Jilin | 2.02 | 1.90 | 1.61 | 1.48 | 1.47 | 1.27 | 1.06 | 0.97 | 0.91 | 0.83 | 0.81 |
Heilongjiang | 2.91 | 2.74 | 2.49 | 2.44 | 2.52 | 2.49 | 2.04 | 1.87 | 1.72 | 1.87 | 1.82 |
Shanghai | 1.34 | 1.02 | 1.04 | 0.83 | 0.81 | 0.71 | 0.71 | 0.57 | 0.37 | 0.21 | 0.17 |
Jiangsu | 0.21 | 0.10 | 0.13 | 0.00 | 0.04 | 0.05 | 0.09 | 0.06 | 0.10 | 0.03 | 0.00 |
Zhejiang | 0.09 | 0.15 | 0.14 | 0.11 | 0.09 | 0.12 | 0.05 | 0.07 | 0.05 | 0.11 | 0.12 |
Anhui | 0.60 | 0.56 | 0.50 | 0.53 | 0.53 | 0.47 | 0.34 | 0.30 | 0.28 | 0.43 | 0.26 |
Fujian | 0.94 | 1.10 | 0.76 | 0.59 | 0.61 | 0.51 | 0.45 | 0.39 | 0.40 | 0.48 | 0.43 |
Jiangxi | 1.79 | 1.72 | 1.44 | 1.31 | 1.27 | 1.15 | 0.96 | 0.84 | 0.81 | 0.79 | 0.70 |
Shandong | 0.17 | 0.26 | 0.20 | 0.19 | 0.21 | 0.11 | 0.05 | 0.08 | 0.12 | 0.14 | 0.22 |
Henan | 0.30 | 0.33 | 0.30 | 0.32 | 0.25 | 0.20 | 0.14 | 0.17 | 0.10 | 0.18 | 0.20 |
Hubei | 0.72 | 0.77 | 0.67 | 0.63 | 0.59 | 0.64 | 0.52 | 0.36 | 0.43 | 0.47 | 0.41 |
Hunan | 1.01 | 1.07 | 0.99 | 0.82 | 0.83 | 0.75 | 0.62 | 0.54 | 0.60 | 0.56 | 0.49 |
Guangdong | 0.04 | 0.02 | 0.04 | 0.00 | 0.02 | 0.00 | 0.01 | 0.04 | 0.02 | 0.02 | 0.02 |
Guangxi | 2.03 | 1.99 | 1.68 | 1.61 | 1.53 | 1.53 | 1.24 | 1.16 | 1.07 | 1.13 | 0.95 |
Hainan | 0.05 | 0.14 | 0.31 | 0.19 | 0.30 | 0.34 | 0.28 | 0.40 | 0.51 | 0.30 | 0.38 |
Chongqing | 0.13 | 0.06 | 0.07 | 0.15 | 0.14 | 0.19 | 0.20 | 0.15 | 0.15 | 0.20 | 0.13 |
Sichuan | 1.78 | 1.64 | 1.45 | 1.29 | 1.31 | 1.18 | 0.98 | 0.93 | 0.95 | 0.96 | 0.86 |
Guizhou | 1.87 | 1.84 | 1.76 | 1.34 | 1.49 | 1.47 | 1.20 | 1.16 | 1.20 | 1.24 | 1.03 |
Yunnan | 3.83 | 3.77 | 3.37 | 3.01 | 3.06 | 2.96 | 2.61 | 2.33 | 2.18 | 2.11 | 1.84 |
Tibet | 147.62 | 140.27 | 122.96 | 112.86 | 117.39 | 103.26 | 92.37 | 86.18 | 78.54 | 75.70 | 65.81 |
Shaanxi | 1.74 | 1.67 | 1.25 | 1.06 | 1.02 | 1.08 | 1.01 | 0.80 | 0.76 | 0.80 | 0.67 |
Gansu | 4.77 | 4.56 | 4.23 | 3.87 | 3.79 | 3.75 | 3.21 | 2.81 | 2.74 | 2.46 | 2.13 |
Qinghai | 33.65 | 31.28 | 26.66 | 23.34 | 22.01 | 20.45 | 16.68 | 15.10 | 14.02 | 16.20 | 14.89 |
Ningxia | 3.09 | 2.09 | 2.17 | 1.83 | 2.03 | 1.47 | 1.18 | 1.05 | 1.08 | 1.32 | 1.46 |
Xinjiang | 9.02 | 8.36 | 7.35 | 6.90 | 7.02 | 7.05 | 5.54 | 5.13 | 4.62 | 4.60 | 4.19 |
Table 2 The per capita eco-compensation standard for each province in China from 2004 to 2014 (yuan) |
Province | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | -158.20 | -110.27 | -117.86 | -133.00 | -142.24 | -179.19 | -182.87 | -199.46 | -265.78 | -179.53 | -213.76 |
Tianjin | -93.07 | -19.94 | -50.70 | -45.56 | -47.79 | -10.42 | -61.20 | -65.39 | -60.74 | -191.86 | 20.69 |
Hebei | 71.39 | 94.67 | 85.45 | 93.49 | 105.75 | 100.10 | 94.80 | 121.93 | 116.62 | 152.27 | 200.63 |
Shanxi | 106.27 | 120.75 | 168.53 | 199.68 | 238.70 | 200.79 | 157.44 | 168.19 | 185.00 | 227.01 | 157.11 |
Inner Mongolia | 1459.67 | 1566.38 | 1643.48 | 1750.93 | 2100.86 | 2090.76 | 2108.05 | 2402.22 | 2472.26 | 2695.39 | 2692.56 |
Liaoning | 123.78 | 163.52 | 199.84 | 139.16 | 155.85 | 157.29 | 146.58 | 152.45 | 148.16 | 202.41 | 225.64 |
Jilin | 232.41 | 253.17 | 252.59 | 286.41 | 344.77 | 336.46 | 335.78 | 374.57 | 393.13 | 391.56 | 405.06 |
Heilongjiang | 361.75 | 396.07 | 405.47 | 453.92 | 546.90 | 557.97 | 552.70 | 614.50 | 614.48 | 702.84 | 712.29 |
Shanghai | -543.32 | -500.63 | -560.69 | -502.81 | -529.61 | -484.25 | -526.53 | -462.42 | -313.08 | -191.09 | -167.17 |
Jiangsu | -42.71 | -24.88 | -37.66 | -1.49 | -17.29 | -22.93 | -46.16 | -36.32 | -70.40 | 19.48 | 1.13 |
Zhejiang | 20.89 | 39.05 | 44.85 | 39.50 | 37.26 | 52.58 | 26.47 | 39.78 | 32.44 | 77.65 | 85.50 |
Anhui | 46.53 | 49.28 | 50.47 | 63.26 | 76.97 | 77.30 | 71.51 | 77.75 | 80.62 | 136.45 | 87.95 |
Fujian | 161.07 | 202.61 | 160.64 | 151.25 | 182.14 | 171.63 | 180.07 | 183.98 | 209.71 | 274.42 | 269.20 |
Jiangxi | 146.20 | 161.96 | 160.08 | 173.37 | 201.59 | 198.78 | 204.03 | 219.92 | 232.88 | 251.61 | 242.95 |
Shandong | 29.35 | 53.04 | 47.70 | 51.02 | 70.05 | 38.93 | 19.24 | 38.55 | 64.30 | 76.00 | 135.63 |
Henan | 26.04 | 37.00 | 40.24 | 50.64 | 47.10 | 40.52 | 34.56 | 47.46 | 31.74 | 53.51 | 64.48 |
Hubei | 71.15 | 88.53 | 90.04 | 102.86 | 116.56 | 145.28 | 144.45 | 122.46 | 164.38 | 199.16 | 194.08 |
Hunan | 85.37 | 111.08 | 119.77 | 121.13 | 149.50 | 153.22 | 150.96 | 160.51 | 199.77 | 205.66 | 196.89 |
Guangdong | -8.10 | -4.51 | -12.14 | -0.37 | 5.61 | -0.41 | -2.80 | -20.63 | -13.25 | -12.49 | 12.45 |
Guangxi | 142.65 | 173.71 | 171.60 | 197.02 | 222.36 | 244.38 | 257.07 | 292.03 | 299.19 | 306.83 | 312.17 |
Hainan | 4.40 | 15.70 | 39.00 | 28.52 | 52.81 | 64.70 | 65.36 | 115.85 | 165.13 | 106.52 | 147.27 |
Chongqing | -13.00 | -6.86 | -9.79 | 25.64 | 28.39 | 44.28 | 54.97 | 52.00 | 58.74 | 84.54 | 56.47 |
Sichuan | 140.62 | 147.86 | 154.25 | 168.01 | 203.59 | 204.13 | 209.72 | 243.49 | 279.53 | 310.87 | 302.16 |
Guizhou | 80.48 | 98.87 | 111.25 | 106.17 | 147.61 | 162.68 | 159.36 | 190.98 | 235.80 | 283.05 | 272.47 |
Yunnan | 267.59 | 293.87 | 300.98 | 318.54 | 382.85 | 400.13 | 409.28 | 447.31 | 482.06 | 527.07 | 500.30 |
Tibet | 11784.78 | 12584.29 | 12555.44 | 13333.22 | 15873.63 | 15396.28 | 15624.33 | 17231.68 | 17877.36 | 19594.46 | 19055.43 |
Shaanxi | 136.10 | 166.42 | 152.85 | 165.26 | 199.70 | 236.71 | 272.64 | 267.81 | 292.16 | 340.13 | 313.91 |
Gansu | 316.77 | 346.88 | 378.29 | 409.97 | 470.56 | 497.10 | 516.09 | 549.26 | 600.26 | 597.50 | 560.77 |
Qinghai | 2910.02 | 3129.65 | 3154.38 | 3371.92 | 4047.11 | 3968.94 | 4000.71 | 4441.20 | 4633.86 | 5890.33 | 5877.77 |
Ningxia | 281.97 | 214.93 | 261.26 | 275.41 | 394.66 | 317.60 | 315.17 | 346.48 | 389.62 | 515.76 | 608.41 |
Xinjiang | 1033.77 | 1097.51 | 1092.24 | 1159.62 | 1377.57 | 1397.13 | 1377.89 | 1535.90 | 1553.15 | 1699.85 | 1689.18 |
Figure 3 Spatial distribution of the provincial eco-compensation standard in China from 2004 to 2014 |
Figure 4 The coefficient of variation of provincial eco-compensation in China from 2004 to 2014 |
Figure 5 Atkinson index values of provincial differences in eco-compensation in China from 2004 to 2014 |
Table 3 Factors affecting the provincial differences in eco-compensation in China in 2014 |
Factor of influence | G* (virtual) | G (total) | S (factor contribution) |
---|---|---|---|
Eco-resources value | 0.018 | 0.029 | 0.733 |
Economic input of pollution abatement | 0.017 | 0.077 | |
Cost of pollution abatement | 0.018 | 0.190 |
Figure 6 The Gini coefficient of provincial differences in eco-compensation in China from 2004 to 2014 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
Sustainable Development Strategy Research Group in the Administrative Center for China’s Agenda 21 (SDSRG, ACCA), 2007. Ecological compensation: International Experiences and Chinese Practice . Beijing: Social Sciences Academic Press, 2-58. (in Chinese)
|
[48] |
Task Force on Eco-compensation Mechanisms and Policies (TFEMP), CCICED, 2007. Eco-compensation Mechanisms and Policies in China. Beijing: Science Press, 15-97. (in Chinese)
|
[49] |
The Administrative Center for China’s Agenda 21 (ACCA), 2012 Agenda 21 (ACCA), 2012.International Comparison of Ecological Compensation: Pattern & Mechanism. Beijing: Social Sciences Academic Press, 10-65. (in Chinese)
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
/
〈 | 〉 |