Research Articles

A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. College of Resources Environment and Tourism, Anyang Normal University, Anyang 455000, Henan, China
Zhao Fang (1984-), PhD, specialized in GIS/RS application and mountain environment. E-mail:zhaofang@ lreis.ac.cn

Received date: 2013-07-10

  Revised date: 2013-08-12

  Online published: 2014-03-24

Supported by

National Natural Science Foundation of China, No.41030528; No.40971064

Abstract

Alpine timberline,as the "ecological transition zone," has long attracted the attention of scientists in many fields,especially in recent years. Many unitary and dibasic fitting models have been developed to explore the relationship between timberline elevation and latitude or temperature. However,these models are usually on regional scale and could not be applied to other regions;on the other hand,hemispherical-scale and continental-scale models are usually based on about 100 timberline data and are necessarily low in precision. The present article collects 516 data sites of timberline,and takes latitude,continentality and mass elevation effect (MEE) as independent variables and timberline elevation as dependent variable to develop a ternary linear regression model. Continentality is calculated using the meteorological data released by WorldClim and mountain base elevation (as a proxy of mass elevation effect) is extracted on the basis of SRTM 90-meter resolution elevation data. The results show that the coefficient of determination (R2) of the linear model is as high as 0.904,and that the contribution rate of latitude,continentality and MEE to timberline elevation is 45.02% (p=0.000),6.04% (p=0.000) and 48.94% (p=0.000),respectively. This means that MEE is simply the primary factor contributing to the elevation distribution of timberline on the continental and hemispherical scales. The contribution rate of MEE to timberline altitude differs in different regions,e.g.,50.49% (p=0.000) in North America,48.73% (p=0.000) in the eastern Eurasia,and 43.6% (p=0.000) in the western Eurasia,but it is usually very high.

Cite this article

ZHAO Fang, ZHANG Baiping, PANG Yu, YAO Yonghui . A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere[J]. Journal of Geographical Sciences, 2014 , 24(2) : 226 -236 . DOI: 10.1007/s11442-014-1084-4

References

Arno S F, Hammerly R P, 1984. Timberline: Mountain and Arctic Forest Frontiers. Seattle: The Mountaineers.
Atalay I, 2006. The effects of mountainous areas on biodiversity: A case study from the northern Anatolian mountains and the Taurus mountains. Grazer Schriften der Geographie und Raumforschung, 41: 17-26.
Bader M Y, van Geloof I, Rietkerk M, 2008. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol., 191: 33-45.
Barbour M G, Billings W D, 2000. North American Terrestrial Vegetation. Cambridge, U.K.: New York, NY: Cambridge University Press.
Brazel A J, Marcus M G, 1991. July temperatures in Kashmir and Ladakh, India: Comparisons of observations and general-circulation model simulations. Mountain Research and Development, 11(2): 75-86.
Chen L X, Reiter E R, Feng Z Q, 1985. The atmospheric heat-source over the Tibetan Plateau-May-August 1979. Monthly Weather Review, 113(10): 1771-1790.
Cogbill C V, White P S, 1991. The latitude-elevation relationship for spruce-fir forest line along the Appalachian mountain chain. Vegetation, 94: 153-175.
Cogbill C V, White P S, Wiser K S, 1997. Predicting treeline elevation in the Southern Appalachians. Castanea, 62(3): 137-146.
Daubenmire R, 1954. Alpine timberlines in the Americas and their interpretation. Butler University Botanical Studies, 11: 119-135.
Ding L, 1990. Chinese Gazetteer. Shanghai: Shanghai Lexicographical Publishing House. (in Chinese)
Dullinger S, Dirnbock T, Grabherr G, 2004. Modelling climate change-driven treeline shifts: Relative effects of temperature increase, dispersal and invasibility. Journal of Ecology, 92: 241-252.
Ellenberg H, 1966. Leben und kampf an den baumgrenzen der erde. Naturwiss. Rundschau, Stuttgart, 19: 133-139.
Fang J Y, 1992. Study on the geographic elements affecting temperature distribution in China. Acta Ecologica Sinica, 12(2): 97-104. (in Chinese)
Fang J Y, 1995. Three-dimension distribution of forest zones in East Asia. Acta Geographica Sinica, 50(2): 160-167. (in Chinese)
Flenley J, 2007. Ultraviolet insolation and the tropical rainforest: Altitudinal variations, Quaternary and recent change, extinctions, and biodiversity. In: Bush M B, Flenley J R. Tropical Rainforest Responses to Climatic Change. Chichester, UK.: Praxis, 219-235.
Gersmehl P, 1973. Pseudo-timberline: The Southern Appalachian grassy balds. Arctic and Alpine Research, 5(3): A137-A138.
Gorczyński L, 1920. Sur le calcul du degré du continentalisme et son application dans la climatologie. Geografiska Annaler, 2: 324-331.
Grace J, Allen N J, Wilson C, 1989. Climate and the meristem temperatures of plant communities near the tree-line. Oecologia, 79: 198-204.
Griggs R F, 1938. Timberlines in the northern Rocky Mountains. Ecology, 19(4): 548-564.
Grubb J P, 1971. Interpretation of massenerhebung effect on tropical mountains. Nature, 1971(229): 44-45.
Hall J B, 1984. Juniperus excelsa in Africa: A biogeographical study of an afromontane tree. Journal of Biogeography, 11(1): 47-61.
Han F, Yao Y H, Dai S B et al., 2012. Mass elevation effect and its forcing on timberline altitude. J. Geogr. Sci., 22(4): 609-616.
Han F, Zhang B P, Yao Y H et al., 2011. Mass elevation effect and its contribution to the altitude of snowline in the Tibetan Plateau and surrounding areas. Arctic, Antarctic, and Alpine Research, 43(2): 207-212.
Hastenrath S, 1968. Certain aspects of the three-dimensional distribution of climate and vegetation belts in the mountains of C. America and Sourthern Mexico. In: Troll C. Geo-ecology of the Mountainous Regions of the Tropical Americas. Bonn: Dümmler in Kommission, 122-130.
Hermes K, 1955. Die Lage der oberen Waldgrenze in den Gebirgen der Erde und ihr Abstrand zur Schneegrenze. Köln: Selbstverlag des Geographischen Instituts der Universität Köln.
Hijmans R J, Cameron S E, Parra J L et al., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965-1978.
Holtmeier F K, Broll G, 2005. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, 14(5): 395-410.
Jobbagy E G, Jackson R B, 2000. Global controls of forest line elevation in the northern and southern hemispheres. Global Ecology and Biogeography, 9(3): 253-268.
Körner C, 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115(4): 445-459.
Körner C, Paulsen J, 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31(5): 713-732.
Kutzbach J E, Prell W L, Ruddiman W F, 1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. The Journal of Geology, 101(2): 177-190.
Leuschner C, 1996. Timberline and alpine vegetation on the tropical and warm-temperate oceanic islands of the world: Elevation, structure and floristics. Vegetation, 123(2): 193-206.
Malanson G P, Resler L M, Bader M Y, 2011. Mountain treelines: A roadmap for research orientation. Arctic, Antarctic, and Alpine Research, 43(2): 167-177.
Malyshev L, 1993. Levels of the upper forest boundary in Northern Asia. Vegetation, 109(2): 175-186.
McCain C M, 2005. Elevational gradients in diversity of small mammals. Ecology, 86(2): 366-372.
Messerli B, Winiger M, 1992. Climate, environmental change, and resources of the African mountains from the Mediterranean to the Equator. Mountain Research and Development, 12(4): 315-336.
Miehe G, Miehe S, Vogel J et al., 2007. Highest treeline in the northern hemisphere found in southern Tibet. Mountain Research and Development, 27(2): 169-173.
Ohsawa M, 1990. An interpretation of latitudinal patterns of forest limits in South and East Asian Mountains. Journal of Ecology, 78(2): 326-339.
Peng B Z, 1986. Some problems of vertical zonation in Mt.Namjagbarwa area. Acta Geographica Sinica, 41(1): 51-58. (in Chinese)
Rao G V, Erdogan S, 1989. The atmospheric heat source over the Bolivian plateau for a mean January. Boundary-layer Meteorology, 46(1): 13-33.
Schickhoff U, 2005. The upper timberline in the Himalayas, Hindu Kush and Karakorum: A review of geographical and ecological aspects. In: Mountain Ecosystems, 275-354.
Schroeter C, 1908. Das pflanzenleben der Alpen: eine schilderung der hochgebrigsflora. Verlag von Albert Raustein, Zurich, Switzerland: Verlag von Albert Raustein.
Shreve F, 1922. Conditions indirectly affecting vertical distribution on desert mountains. Ecology, 3(4): 269-274.
Sjogren E, 1974. Local climatic conditions and zonation of vegetation on Madeira. Agronomia Lusitana, 36: 95-139.
Stanyukovich K V, 1973. Vegetation of the mountains of the USSR. Dushanbe: Donim Publishing House. (in Russian)
Stewart G R, 1970. American Place-names: A Concise and Selective Dictionary for the Continental United States of America. New York: Oxford University Press.
Szeicz J M, Macdonald G M, 1995. Recent white spruce dynamics at the Subarctic alpine treeline of north-western Canada. Journal of Ecology, 83(5): 873-885.
Tollner, 1949. Der Einfluß großer Massenerhebungen auf die Lufttemperatur und die Ursachen der Hebung der Vegetationsgrenzen in den inneren Ostalpen. Theoretical and Applied Climatology, 1: 347-372.
Whitmore T C, 1984. A vegetation map of Malesia at the scale of 1:5 million. J. Biogeogr., 11: 461-471.

Outlines

/