Journal of Geographical Sciences ›› 2022, Vol. 32 ›› Issue (10): 2013-2035.doi: 10.1007/s11442-022-2034-1
• Research Articles • Previous Articles Next Articles
HU Yong1(), DENG Jinyun1, LI Yitian1,*(
), LIU Congcong2, HE Zican1
Received:
2021-11-15
Accepted:
2022-03-09
Online:
2022-10-25
Published:
2022-12-25
Contact:
LI Yitian
E-mail:hooyong@whu.edu.cn;1017313529@qq.com
About author:
Hu Yong (1996-), PhD Candidate, E-mail: hooyong@whu.edu.cn
Supported by:
HU Yong, DENG Jinyun, LI Yitian, LIU Congcong, HE Zican. Flow resistance adjustments of channel and bars in the middle reaches of the Yangtze River in response to the operation of the Three Gorges Dam[J].Journal of Geographical Sciences, 2022, 32(10): 2013-2035.
Table 1
Essential information on 18 hydrometric stations, 16 bars and 9 sub-reaches in the middle reaches of the Yangtze River and three operation periods of the Three Gorges Dam
Station number | Station name | Bar number | Bar name | Channel number | Included reaches | Length | |
---|---|---|---|---|---|---|---|
1 | Yichang | 1 | Yanzhi | Sub-reach 1 | Yichang-Zhicheng | 60.8 km | |
2 | Yidu | 2 | Guan | Sub-reach 2 | Zhicheng-Majiadian | 34.8 km | |
3 | Zhicheng | 3 | Liutiao | Sub-reach 3 | Majiadian-Shashi | 47.9 km | |
4 | Xinjiangkou | 4 | Lalin | Sub-reach 4 | Shashi-Shishou | 88.3 km | |
5 | Shadaoguan | 5 | Tuqi | Sub-reach 5 | Shishou-Jianli | 76.8 km | |
6 | Majiadian | 6 | Ouchikou | Sub-reach 6 | Jianli-Chenglingji | 99.4 km | |
7 | Mituosi | 7 | Wugui | Sub-reach 7 | Chenglingji-Hankou | 251 km | |
8 | Shashi | 8 | Dama | Sub-reach 8 | Hankou-Jiujiang | 270 km | |
9 | Kangjiagang | 9 | Xiongjia | Sub-reach 9 | Jiujiang-Hukou | 25.4 km | |
10 | Guanjiapu | 10 | Zhong | ||||
11 | Shishou | 11 | Fuxing | ||||
12 | Jianli | 12 | Hankou | ||||
13 | Chenglingji | 13 | Tianxing | ||||
14 | Luoshan | 14 | Dongcao | ||||
15 | Xiantao | 15 | Daijia | Period number | Impounded water level (m) | Included years | |
16 | Hankou | 16 | Zhangjia | 1 | - | Before 2002 | |
17 | Jiujiang | 2 | 135.0-139.0 144.0-156.0 145.0-172.8 | 2003-2005 2006-2007 2008 | |||
18 | Hukou | 3 | 145.0-171.4 145.0-175.0 | 2009 2010-present |
Table 2
Sources of measurements
Data type | Number (station/bar/channel) | Period of record | Sources |
---|---|---|---|
Daily discharge | Stations 1-18 | 1991-2015 | CWRC |
Daily water level | Stations 1-18 | 1991-2015 | CWRC |
Daily sediment concentration | Stations 1-18 | 1991-2015 | CWRC |
Surveyed profiles | Sub-reaches 1-9 (450 cross-section profiles per year) | 2004, 2006, 2009, 2012, 2015 | CWRC |
Surveyed terrains | Sub-reaches 1-9 (two-dimensional terrain) | 2015 | CWRC |
Medium diameters of bed load | Stations 1, 3, 8, 12, 14, 16 | 2003-2019 | CWRC |
Landsat images | Bars 1-16 | 1993, 2002, 2006, 2009, 2015 | USGS |
Figure 3
The accumulative erosion volumes of the channel and bars (a), the variations of dune roughness heights in different reaches (b), variations of the dune resistance growth rate as a function of the dune roughness height growth rates (c), and the dune resistance growth rates for periods 2-3 in different sub-reaches (d)
Table 3
Comparison of calculated vegetated areas through Landsat-8 OLI and two-dimensional (2D) terrain in 2015
Bar number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Calculated vegetated areas through Landsat-8 OLI (km2) | 2.23 | 2.55 | 1.68 | 6.19 | 7.15 | 7.87 | 8.98 | 8.62 |
Calculated vegetated areas through 2D terrain (km2) | 2.15 | 2.31 | 1.81 | 5.88 | 6.96 | 7.93 | 9.05 | 8.51 |
Bar number | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
Calculated vegetated areas through Landsat-8 OLI (km2) | 8.45 | 10.55 | 10.17 | 9.89 | 16.83 | 19.95 | 17.41 | 80.13 |
Calculated vegetated areas through 2D terrain (km2) | 8.22 | 10.63 | 10.22 | 9.71 | 16.66 | 20.01 | 17.55 | 79.95 |
[1] | Aberle J, Nikora V, Henning M et al., 2010. Statistical characterization of bed roughness due to bed forms: A field study in the Elbe River at Aken, Germany. Water Resources Research, 46(3). |
[2] |
Afzalimehr H, Singh V P, Najafabadi E F, 2010. Determination of form friction factor. Journal of Hydrologic Engineering, 15(3): 237-243.
doi: 10.1061/(ASCE)HE.1943-5584.0000175 |
[3] |
Alam A M, Kennedy J F, 1969. Friction factors for flow in sand-bed channels. Journal of the Hydraulics Division, 95(6): 1973-1992.
doi: 10.1061/JYCEAJ.0002200 |
[4] |
Bormann H, Pinter N, Elfert S, 2011. Hydrological signatures of flood trends on German rivers: Flood frequencies, flood heights and specific stages. Journal of Hydrology, 404(1): 50-66.
doi: 10.1016/j.jhydrol.2011.04.019 |
[5] | Cao G J, Wang J, 2015. Measurements and Studies of Hydrological and Sediment Data in the Three Gorges Project. Beijing: Science Press. (in Chinese) |
[6] | Carle M V, Sasser C E, Roberts H H, 2015. Accretion and vegetation community change in the Wax Lake Delta following the historic 2011 Mississippi River flood. Journal of Coastal Research, 31(3): 569-587. |
[7] | Carling P A, Leyland J, Kleinhans M G et al., 2020. Quantifying fluid retention due to natural vegetation in a forest floodplain analogue using the aggregated dead zone (ADZ) dilution approach. Water Resources Research, 56(9): e2020WR027070. |
[8] |
Chai Y F, Yang Y P, Deng J Y et al., 2020. Evolution characteristics and drivers of the water level at an identical discharge in the Jingjiang reaches of the Yangtze River. Journal of Geographical Sciences, 30(10): 1633-1648.
doi: 10.1007/s11442-020-1804-x |
[9] |
Chang F F M, 1970. Ripple concentration and friction factor. Journal of the Hydraulics Division, 96(2): 417-430.
doi: 10.1061/JYCEAJ.0002329 |
[10] | Coon W F, 1998. Estimation of roughness coefficients for natural stream channels with vegetated banks. USA: US Geological Survey. |
[11] | CWRC, 2015. Analysis of channel degradation in the reach downstream of the Three Gorges Dam. Scientific Report. Wuhan: Changjiang Water Resources Commission. (in Chinese) |
[12] |
Darby S E, 1999. Effect of riparian vegetation on flow resistance and flood potential. Journal of Hydraulic Engineering, 125(5): 443-454.
doi: 10.1061/(ASCE)0733-9429(1999)125:5(443) |
[13] |
Day J W, Cable J E, Lane R R et al., 2016. Sediment deposition at the Caernarvon crevasse during the great Mississippi flood of 1927: implications for coastal restoration. Water, 8(2): 38.
doi: 10.3390/w8020038 |
[14] | De St Venant B, 1871. Theorie du mouvement non-permanent des eaux avec application aux crues des rivers et a l'introduntion des Marees dans leur lit. Academic de Sci. Comptes Redus, 73(99): 148-154. |
[15] |
Einstein H A, Barbarossa N L, 1952. River channel roughness. Transactions of the American Society of Civil Engineers, 117(1): 1121-1132.
doi: 10.1061/TACEAT.0006666 |
[16] |
Fang H W, Han D, He G J et al., 2012. Flood management selections for the Yangtze River midstream after the Three Gorges Project operation. Journal of Hydrology, 432/433: 1-11.
doi: 10.1016/j.jhydrol.2012.01.042 |
[17] |
Graf W L, 2006. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology, 79(3): 336-360.
doi: 10.1016/j.geomorph.2006.06.022 |
[18] |
Greene S L, Knox J C, 2014. Coupling legacy geomorphic surface facies to riparian vegetation: Assessing red cedar invasion along the Missouri River downstream of Gavins Point dam, South Dakota. Geomorphology, 204: 277-286.
doi: 10.1016/j.geomorph.2013.08.012 |
[19] |
Han J Q, Sun Z H, Li Y T et al., 2017. Combined effects of multiple large-scale hydraulic engineering on water stages in the middle Yangtze River. Geomorphology, 298: 31-40.
doi: 10.1016/j.geomorph.2017.09.034 |
[20] |
He Z, Sun Z, Li Y et al., 2021. Response of the gravel-sand transition in the Yangtze River to hydrological and sediment regime changes after upstream damming. Earth Surface Processes and Landforms, 47(2): 383-398.
doi: 10.1002/esp.5254 |
[21] | Huang C A, Zhao X D, Gong M F, 2004. Comparisons of flow resistance equations in movable bed. Journal of Sediment Research, (5): 1-7. |
[22] |
IAHR Working Group on Wave Generation and Analysis, 1989. List of sea-state parameters. Journal of Waterway, Port, Coastal, and Ocean Engineering, 115(6): 793-808.
doi: 10.1061/(ASCE)0733-950X(1989)115:6(793) |
[23] |
Jiang Y, Cheng H, Zhou Q et al., 2021. Influence of major water conservation projects on river channels and shorelines in the middle and lower reaches of the Yangtze River. Arabian Journal of Geosciences, 14(10): 1-12.
doi: 10.1007/s12517-020-06304-8 |
[24] |
Julien P Y, Klaassen G J, Ten Brinke W B M et al., 2002. Case study: Bed resistance of Rhine River during 1998 flood. Journal of Hydraulic Engineering, 128(12): 1042-1050.
doi: 10.1061/(ASCE)0733-9429(2002)128:12(1042) |
[25] |
Liu C, Chai Y, Zhu B et al., 2021. River regulation and resilience: An approach for the Yangtze watershed. Water Supply, 21(4): 1817-1833.
doi: 10.2166/ws.2021.035 |
[26] | Liu X, Xia J Q, Zhou M R et al., 2020. Formula of movable bed roughness for the Middle Yangtze River. Advances in Water Science, 31(4): 535-546. (in Chinese) |
[27] |
Lyu Y, Fagherazzi S, Zheng S et al., 2020. Enhanced hysteresis of suspended sediment transport in response to upstream damming: An example of the middle Yangtze River downstream of the Three Gorges Dam. Earth Surface Processes and Landforms, 45(8): 1846-1859.
doi: 10.1002/esp.4850 |
[28] |
Lyu Y W, Zheng S, Tan G M et al., 2019. Morphodynamic adjustments in the Yichang-Chenglingji Reach of the Middle Yangtze River since the operation of the Three Gorges Project. Catena, 172: 274-284.
doi: 10.1016/j.catena.2018.08.040 |
[29] |
Myneni R B, Hall F G, Sellers P J et al., 1995. The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33(2): 481-486.
doi: 10.1109/TGRS.1995.8746029 |
[30] |
Makaske B, Maathuis B H P, Padovani C R et al., 2012. Upstream and downstream controls of recent avulsions on the Taquari Megafan, Pantanal, south-western Brazil. Earth Surface Processes and Landforms, 37(12): 1313-1326.
doi: 10.1002/esp.3278 |
[31] |
Moshe L B, Haviv I, Enzel Y et al., 2008. Incision of alluvial channels in response to a continuous base level fall: Field characterization, modeling, and validation along the Dead Sea. Geomorphology, 93(3/4): 524-536.
doi: 10.1016/j.geomorph.2007.03.014 |
[32] |
Naden P, Rameshwaran P, Mountford O et al., 2006. The influence of macrophyte growth, typical of eutrophic conditions, on river flow velocities and turbulence production. Hydrological Processes: An International Journal, 20(18): 3915-3938.
doi: 10.1002/hyp.6165 |
[33] | Nikuradse J, 1933. Stromungsgesetze in rauhen Rohren. VDI-Forschungsheft, 361: 1. |
[34] |
O’Hare M T, McGahey C, Bissett N et al., 2010. Variability in roughness measurements for vegetated rivers near base flow, in England and Scotland. Journal of Hydrology, 385(1-4): 361-370.
doi: 10.1016/j.jhydrol.2010.02.036 |
[35] |
Peterson A W, Peterson A E, 1988. Mobile boundary flow: an assessment of velocity and sediment discharge relationships. Canadian Journal of Civil Engineering, 15(4): 539-546.
doi: 10.1139/l88-074 |
[36] |
Petryk S, Bosmajian III G, 1975. Analysis of flow through vegetation. Journal of the Hydraulics Division, 101(7): 871-884.
doi: 10.1061/JYCEAJ.0004397 |
[37] |
Pettorelli N, Vik J O, Mysterud A et al., 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9): 503-510.
doi: 10.1016/j.tree.2005.05.011 |
[38] |
Petts G E, Gurnell A M, 2005. Dams and geomorphology: Research progress and future directions. Geomorphology, 71(1): 27-47.
doi: 10.1016/j.geomorph.2004.02.015 |
[39] |
Pinter N, Heine R A, 2005. Hydrodynamic and morphodynamic response to river engineering documented by fixed-discharge analysis, Lower Missouri River, USA. Journal of Hydrology, 302(1-4): 70-91.
doi: 10.1016/j.jhydrol.2004.06.039 |
[40] |
Slater L J, 2016. To what extent have changes in channel capacity contributed to flood hazard trends in England and Wales? Earth Surface Processes and Landforms, 41(8): 1115-1128.
doi: 10.1002/esp.3927 |
[41] |
Sonnad J R, Goudar C T, 2006. Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook-White equation. Journal of Hydraulic Engineering, 132(8): 863-867.
doi: 10.1061/(ASCE)0733-9429(2006)132:8(863) |
[42] |
Surian N, Rinaldi M, 2003. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology, 50(4): 307-326.
doi: 10.1016/S0169-555X(02)00219-2 |
[43] |
Van Rijn L C, 1982. Equivalent roughness of alluvial bed. Journal of the Hydraulics Division, 108(10): 1215-1218.
doi: 10.1061/JYCEAJ.0005917 |
[44] |
Van Rijn L C, 1984. Sediment transport, part III: bed forms and alluvial roughness. Journal of Hydraulic Engineering, 110(12): 1733-1754.
doi: 10.1061/(ASCE)0733-9429(1984)110:12(1733) |
[45] |
Wang B, Xu Y J, 2018. Dynamics of 30 large channel bars in the Lower Mississippi River in response to river engineering from 1985 to 2015. Geomorphology, 300: 31-44.
doi: 10.1016/j.geomorph.2017.09.041 |
[46] | Wang Z, Chen Z Y, Shi Y F et al., 2007. The fluvial bedform and hydrodynamic controls along the middle and lower Yangtze River (from Wuhan to estuary). Science in China (Series D): Earth Science, 37: 1223-1234. |
[47] |
Wu B, Wang G, Xia J et al., 2008. Response of bankfull discharge to discharge and sediment load in the Lower Yellow River. Geomorphology, 100(3/4): 366-376.
doi: 10.1016/j.geomorph.2008.01.007 |
[48] |
Xia J, Deng S, Lu J et al., 2016. Dynamic channel adjustments in the Jingjiang Reach of the Middle Yangtze River. Scientific Reports, 6(1): 1-10.
doi: 10.1038/s41598-016-0001-8 |
[49] |
Xia J, Wu B, Wang G et al., 2010. Estimation of bankfull discharge in the Lower Yellow River using different approaches. Geomorphology, 117(1/2): 66-77.
doi: 10.1016/j.geomorph.2009.11.007 |
[50] |
Xia J, Zhou M, Lin F et al., 2017. Variation in reach-scale bankfull discharge of the Jingjiang Reach undergoing upstream and downstream boundary controls. Journal of Hydrology, 547: 534-543.
doi: 10.1016/j.jhydrol.2017.02.026 |
[51] |
Xiao M, Udall B, Lettenmaier D P, 2018. On the causes of declining Colorado River streamflows. Water Resources Research, 54(9): 6739-6756.
doi: 10.1029/2018WR023153 |
[52] |
Yan T, Yang Y, Li Y et al., 2019. Possibilities and challenges of expanding dimensions of waterway downstream of Three Gorges Dam. Water Science and Engineering, 12(2): 136-144.
doi: 10.1016/j.wse.2019.05.004 |
[53] | Yang Y, Liu W, Zhang J et al., 2022. Changes of divergence and confluence relationship between Dongting Lake and the Yangtze River after the operation of the Three Gorges Project and its impact on the waterway depth. Frontiers in Earth Science, 84. |
[54] |
Yang Y, Zheng J, Zhang M et al., 2021. Sandy riverbed shoal under anthropogenic activities: The sandy reach of the Yangtze River, China. Journal of Hydrology, 603: 126861.
doi: 10.1016/j.jhydrol.2021.126861 |
[55] | Yang Y P, Zhang M J, Sun Z H et al., 2017a. The relationship between water level change and river channel geometry adjustment in the downstream of the Three Gorges Dam (TGD). Acta Geographica Sinica, 72(5): 776-789. (in Chinese) |
[56] |
Yang Y P, Zhang M J, Zhu L L et al., 2017b. Influence of large reservoir operation on water-levels and flows in reaches below dam: Case study of the Three Gorges Reservoir. Scientific Reports, 7(1): 1-14.
doi: 10.1038/s41598-016-0028-x |
[57] |
Yen B C, 2002. Open channel flow resistance. Journal of hydraulic engineering, 128(1): 20-39.
doi: 10.1061/(ASCE)0733-9429(2002)128:1(20) |
[58] | Zhang W, Gao Y, Xu Q X et al., 2018. Changes in dominant discharge and their influential factors in the middle and lower reaches of Yangtze River after the Three Gorges Dam impoundment. Advances in Water Science, 29(3): 331-338. (in Chinese) |
[59] | Zhang W, Wu M Q, Li S X et al., 2020. Mechanism of adjustment of scouring and silting of Chenglingji-Jiujiang reach in the middle reaches of the Yangtze River after impoundment of the Three Gorges Dam. Advances in Water Science, 31(2): 162-171. (in Chinese) |
[60] |
Zheng S, 2016. Reflections on the Three Gorges Project since its operation. Engineering, 2(4): 389-397.
doi: 10.1016/J.ENG.2016.04.002 |
[61] |
Zhou Y J, Lu J Y, Chen L et al., 2018. Bed roughness adjustments determined from fractal measurements of river-bed morphology. Journal of Hydrodynamics, 30(5): 882-889.
doi: 10.1007/s42241-018-0101-y |
[1] | WANG Qing, ZHANG Ying, CHEN Shungang, GAO Yu, YANG Jishuai, RAN Jingkun, GU Zhengquan, YANG Xiaoyan. Human sedentism and use of animal resources on the prehistoric Tibetan Plateau [J]. Journal of Geographical Sciences, 2023, 33(9): 1851-1876. |
[2] | WANG Dandan, LIU Ying, ZHENG Lilin, LI Dahui. Growing impacts of low-flow events on vegetation dynamics in hydrologically connected wetlands downstream Yangtze River Basin after the operation of the Three Gorges Dam [J]. Journal of Geographical Sciences, 2023, 33(4): 885-904. |
[3] | LI Xin, REN Jinqiu, XU Quanxi, YUAN Jing, ZHANG Wei. Impact of cascade reservoirs on the delayed response behaviour of sedimentation in the Three Gorges Reservoir [J]. Journal of Geographical Sciences, 2023, 33(3): 576-598. |
[4] | WANG Hongyang, LU Yongjun, YAO Shiming, ZUO Liqin, LIU Huaixiang. Bank and point bar morphodynamics in the Lower Jingjiang Reach of the Yangtze River in response to the Three Gorges Project [J]. Journal of Geographical Sciences, 2022, 32(8): 1530-1556. |
[5] | AN Lesheng, LIAO Kaihua, ZHU Lei, ZHOU Baohua. Influence of river-lake isolation on the water level variations of Caizi Lake, lower reach of the Yangtze River [J]. Journal of Geographical Sciences, 2021, 31(4): 551-564. |
[6] | YANG Yunping, ZHENG Jinhai, ZHANG Wei, ZHU Yude, CHAI Yuanfang, WANG Jianjun, WEN Yuncheng. Quantitative relationship between channels and bars in a tidal reach of the lower Yangtze River: Implications for river management [J]. Journal of Geographical Sciences, 2021, 31(12): 1837-1851. |
[7] | HUANG Sheng, XIA Jun, ZENG Sidong, WANG Yueling, SHE Dunxian. Effect of Three Gorges Dam on Poyang Lake water level at daily scale based on machine learning [J]. Journal of Geographical Sciences, 2021, 31(11): 1598-1614. |
[8] | HE Ze, CHONG Zhaohui, YANG Yu, ZHOU Yannan, LIU Yi. Evolutionary investment network and the emerging energy power in Central Asia: From the perspective of cross-border mergers and acquisitions [J]. Journal of Geographical Sciences, 2020, 30(11): 1849-1870. |
[9] | CHAI Yuanfang, YANG Yunping, DENG Jinyun, SUN Zhaohua, LI Yitian, ZHU Lingling. Evolution characteristics and drivers of the water level at an identical discharge in the Jingjiang reaches of the Yangtze River [J]. Journal of Geographical Sciences, 2020, 30(10): 1633-1648. |
[10] | Yifan WU, Weilun FENG, Yang ZHOU. Practice of barren hilly land consolidation and its impact: A typical case study from Fuping County, Hebei Province of China [J]. Journal of Geographical Sciences, 2019, 29(5): 762-778. |
[11] | Jie WANG, , Xuefei MEI, Yaying LOU, Wen WEI, Zhenpeng GE. Immediately downstream effects of Three Gorges Dam on channel sandbars morphodynamics between Yichang-Chenglingji Reach of the Changjiang River, China [J]. Journal of Geographical Sciences, 2018, 28(5): 629-646. |
[12] | Yunping YANG, Mingjin ZHANG, Zhaohua SUN, Jianqiao HAN, Jianjun Wang. The relationship between water level change and river channel geometry adjustment in the downstream of the Three Gorges Dam [J]. Journal of Geographical Sciences, 2018, 28(12): 1975-1993. |
[13] | Dušan BARABAS, Ján BÓNA, Daniel KLEIN, Lenka BALÁŽOVIČOVÁ. Morphometric and geological conditions for sediment accumulation in the Udava River, Outer Carpathians, Slovakia [J]. Journal of Geographical Sciences, 2017, 27(8): 981-998. |
[14] | Yanhong WU, Xin ZHANG, Hongxing ZHENG, Junsheng *LI, Zhiying WANG. Investigating changes in lake systems in the south-central Tibetan Plateau with multi-source remote sensing [J]. Journal of Geographical Sciences, 2017, 27(3): 337-347. |
[15] | Xingying YOU, Jinwu TANG, Xiaofeng ZHANG, Weiguo HOU, Yunping YANG, Zhaohua SUN, Zhaohui WENG. The mechanism of barrier river reaches in the middle and lower Yangtze River [J]. Journal of Geographical Sciences, 2017, 27(10): 1249-1267. |
|