Archive

  • Select all
    |
    Research Articles
  • Research Articles
    Ying WANG, Qigen LIN, Peijun SHI
    Download PDF ( ) HTML ( )   Knowledge map   Save

    Analysis of casualties due to landslides from 2000 to 2012 revealed that their spatial pattern was affected by terrain and other natural environmental factors, which resulted in a higher distribution of landslide casualty events in southern China than in northern China. Hotspots of landslide-generated casualties were in the western Sichuan mountainous area and Yunnan-Guizhou Plateau region, southeast hilly area, northern part of the loess hilly area, and Tianshan and Qilian Mountains. However, local distribution patterns indicated that landslide casualty events were also influenced by economic activity factors. To quantitatively analyse the influence of natural environment and human-economic activity factors, the Probability Model for Landslide Casualty Events in China (LCEC) was built based on logistic regression analysis. The results showed that relative relief, GDP growth rate, mean annual precipitation, fault zones, and population density were positively correlated with casualties caused by landslides. Notably, GDP growth rate ranked only second to relative relief as the primary factors in the probability of casualties due to landslides. The occurrence probability of a landslide casualty event increased 2.706 times with a GDP growth rate increase of 2.72%. In contrast, vegetation coverage was negatively correlated with casualties caused by landslides. The LCEC model was then applied to calculate the occurrence probability of landslide casualty events for each county in China. The results showed that there are 27 counties with high occurrence probability but zero casualty events. The 27 counties were divided into three categories: poverty-stricken counties, mineral-rich counties, and real-estate overexploited counties; these are key areas that should be emphasized in reducing landslide risk.

  • Research Articles
    Zhi XIAO, Xianjin HUANG, Zheng ZANG, Hong YANG
    Download PDF ( ) HTML ( )   Knowledge map   Save

    As a daily necessity and an important cash crop in China and many other countries, tea has received increasing attention. Using production concentration index model and industry’ s barycenter theory, we analyzed the spatio-temporal distribution of tea production and barycenter movement trajectory of tea plantations and production in China between 1986 and 2015. Driving forces of the movement were also analyzed. From 1986 to 2000, tea production in China’s Mainland of grew slowly (by 210×103 t). The continuous increase in tea yield per unit area was the primary contributor (more than 60%) to the growth in tea production during this period. Since China joined the World Trade Organization (WTO) in 2001, tea production has grown rapidly, by 1.59×106 t between 2001 and 2015. The increase in the tea plantations area is the main contributor. Over the last 30 years, the barycenters of tea production in China have moved westward from the Dongting Lake Plain to the eastern fringe of the Yunnan-Guizhou Plateau. Guizhou, Guangxi, and Sichuan in southwestern China have gradually become regions of new concentrated tea plantations and main tea production provinces. Lower cost of land and labor in southwestern China are the main drivers of the westward movement of China’s tea industry. In addition, supportive policies and the favorable natural geographical environment contribute to the westward movement of tea industry. Our research highlights the spatio-temporal variation of China’s tea production in the last three decades. The result indicates importance to make appropriate policies to promote the development of tea industry in China.

  • Research Articles
    Wenyue WANG, Junjue ZHANG, Fenzhen SU
    Download PDF ( ) HTML ( )   Knowledge map   Save

    Coastal zones play a major role in the conservation of marine ecosystems and the sustainable use of resources not only because of their special geographical environment but also because of their high temporal and spatial variability. With the development of urbanization, the exploitation and utilization of coasts have become important issues in the debate. To evaluate variations in the intensity of the land resource exploitation of coastal zones, an index-based model has been proposed in this paper, and coastal Vietnam has been established as the study area. The model is based on four normalized indexes to realize rapid evaluation of the spatial distribution of the exploitative intensity after zoning. The model was established to characterize the different exploitative intensities in different segments of the coast and to graphically present a sequence of decision choices for decision-makers. The results are as follows. (1) The simplicity and rapidity of the index operations can address the fast-changing characteristics of coastal exploitation and meet the desired precision. (2) The choices of the landward buffers fit well with the banded characteristics of the coastal zone. The buffers are horizontally divided into equidistant subregions, which can quantify the spatial differentiation of the exploitative intensity along the coast and perpendicular to the coast. (3) The average exploitative intensity is low, and the proportion of area that is to be exploited accounts for approximately 50%.Considering its spatial variation from north to south, the land exploitative intensity in the north is higher than that in the south. Compared to the intensity of land resource exploitation in the 20 km and 10 km buffers, the land exploitative intensity in the 5 km buffer is higher. The state of the intensity of land resource exploitation and how it can be used by stakeholders to manage coastal resources are then discussed.

  • Research Articles
    Shisong CAO, Deyong HU, Zhuowei HU, Wenji ZHAO, Shanshan CHEN, Chen YU
    Download PDF ( ) HTML ( )   Knowledge map   Save

    Under the background of China’s rapid urbanization, study on comparative analysis of the spatial structure of urban agglomerations between China and the US can provide the policy proposals of space optimization for the Chinese government. Taking the Beijing-Tianjin-Hebei (BTH) and Boswash as study area, we mapped the subpixel-level impervious surface coverage of the BTH and Boswash, respectively, from 1972 to 2011. Further, landscape metrics, gravitational model and spatial analysis were used to analyze the differences of the spatial structures between the BTH and Boswash. The results showed that (1) the area of the impervious surface increased rapidly in the BTH, while those remained stable in the Boswash. (2) The spatial structure of the BTH experienced different periods including isolated cities stage, dual-core cities stage, group cities stage and network-style cities stage, while those of the Boswash was more stable, and its spatial pattern showed a “point-axis” structure. (3) The spatial pattern of high-high assembling regions of the impervious surface exhibited a “standing pancake” feature in the BTH, while those showed a “multi-center, local aggregation and global discrete” feature in the Boswash. (4) All the percentages of the impervious surface of ecological, living, and production land of the BTH were higher than those of the Boswash. At last, from the perspective of space optimization of urban agglomeration, the development proposals for the BTH were proposed.

  • Research Articles
    Miao LI, Shuying ZANG, Changshan WU, Xiaodong NA
    Download PDF ( ) HTML ( )   Knowledge map   Save

    Associated with the rapid economic development of China, the level of urbanization is becoming a serious concern. Harbin, the capital city of Heilongjiang Province, China and one of the political, economic, cultural, and transportation centers of the northeastern region of China, has experienced rapid urbanization recently. To examine the spatial patterns of long-term urbanization and explore its driving forces, we employed the impervious surface fraction derived from remote sensing image as a primary indicator. Specifically, urban impervious surface information for the central city of Harbin in 1984, 1993, 2002, and 2010 was extracted from Landsat Thematic Mapper image using a Linear Spectral Mixture Analysis (LMSA). Then, the spatial and temporal variation characteristics and the driving factors of percent impervious surface area (ISA) changes were analyzed throughout this 26-year period (1984 to 2010). Analysis of results suggests that: (1) ISAs in the central city of Harbin constantly increased, particularly from 1993 to 2010, a rapid urbanization period; (2) the gravity center of impervious surface area in the central city was located in Nangang District in 1984, moving southeast from 1984 to 1993, northwest from 1993 to 2002, and continuing toward the southeast from 2002 to 2010; and (3) the urban growth of the central city can be characterized as edge-type growth.

  • Research Articles
    Honglian WAN, Hailong SONG, Chanchan ZHU, Beibei ZHANG, Mi ZHANG
    Download PDF ( ) HTML ( )   Knowledge map   Save

    Based on the collation and statistical analysis of flood and drought information in Baoji area from 1368 to 1911, and in the context of climate change, we investigated the spatio-temporal evolution characteristics of drought and flood disaster chains in this area during the Ming and Qing dynasties using the methods of moving average, cumulative anomaly and wavelet analysis. The results are as follows: (1) We found a total of 297 drought and flood events from 1368 to 1911 in Baoji. Among these events, droughts and floods occurred separately 191 and 106 times, which accounted for 64.31% and 35.69% of the total events, respectively. (2) We observed distinct characteristics of flood and drought events in Baoji in different phases. The climate was relatively dry from 1368 to 1644. A fluctuant climate phase with both floods and droughts occurred from 1645 to 1804. The climate was relatively wet from 1805 to 1911. Moreover, we observed a pattern of alternating dry and wet periods from 1368 to 1911. In addition, 3 oscillation periods of drought and flood events occurred around 70 a, 110 a and 170 a, which corresponded to sunspot cycles. (3) We also observed an obvious spatial difference in drought and flood events in Baoji. The northern and eastern parts of Weihe River basin were regions with both frequent droughts and floods. (4) The sequential appearance of drought and flood disaster chains in Baoji from 1368 to 1911 was in response to global climate change. Since the 1760s, global climatic deterioration has frequently led to extreme drought and flood events.

  • Research Articles
    Hao HU, Shufang WANG, Yuejing GE
    Download PDF ( ) HTML ( )   Knowledge map   Save

    As the improvement of international status and the implementation of China’s neighboring diplomacy, the development of border regions and the security of border cities, as well as their spatial structure and regional differences are gaining more attention from academic circle. Based on the interdisciplinary perspectives of urban geography, regional economics and geopolitics, this paper explores the regional differences of border geo-cities in China and the surrounding countries with the help of remote sensing information acquisition and ArcGIS spatial analysis. Three primary results are found as follows: (1) The border geo-cities in China and surrounding countries are divided into five geographical regions: geo-cities in South China Sea, geo-cities in Southeast Asia, geo-cities in South Asia, geo-cities in Central Asia and geo-cities in Northeast Asia. (2) In the spatial structure system of China’s border geo-cities, the importance of geo-cities in five major regions is fairly different. In terms of the security and economic development, the rank of priority is geo-cities in Northeast Asia, geo-cities in South China Sea, geo-cities in Central Asia, geo-cities in South Asia, geo-cities in Southeast Asia. (3) Considering China’s geo-setting for the development of border geo-cities, the east region is significantly better than the west, and the north region is slightly better than the south.

  • Review Article
  • Review Article
    Dajing LI, Duanyang XU, Ziyu WANG, Xue DING, Alin SONG
    Download PDF ( ) HTML ( )   Knowledge map   Save

    Desertification control is a crucial way to enhancing the ecological conditions of arid and semi-arid regions, and maintaining sustainable development globally. Designing and improving an ecological compensation mechanism for desertification control has great significance related to achieving balance amongst the needs of different economic subjects and the assurance of a sustained and stable supply of desert ecosystem services. In this paper, (1) the theoretical bases of ecological compensation for desertification control were re-analyzed; (2) the research status and challenges of three important topics related to ecological compensation for desertification control were systemically discussed, including compensation standards, ecosystem service supply-consumption process and multi-scale effects, and resource-environment basis and policy orientation; (3) a research framework of ecological compensation for desertification control based on the process of desert ecosystem service supply-flow-consumption was proposed; (4) and finally, seven priority research issues were discussed, which aimed to support ecological compensation policy-making and ecological engineering implementation for desertification control.