Home  About the Journal Subscription Advertisement Contact us   英文  
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited

ISSN 1009-637X
CN 11-4546/P
Started in 2001
  About the Journal
    » About Journal
    » Editorial Board
    » Indexed in
    » Rewarded
    » Online Submission
    » Guidelines for Authors
    » Templates
    » Copyright Agreement
    » Guidelines for Reviewers
    » Online Peer Review
    » Editor-in-chief
    » Office Work
    » Production Centre
  • Table of Content
      Sept. 2004, Volume 14 Issue 3 Previous Issue    Next Issue
    For Selected: View Abstracts Toggle Thumbnails
    Climate and Environmental Change
    A review of soil and water conservation in China
    ZHANG Xingchang, SHAO Mingan, LI Shiqing, PENG Keshan
    Journal of Geographical Sciences. 2004, 14 (3): 259-274.  
    Abstract   PDF (633KB) ( 0 )

    The preservation and sustainable development of soil and water resources is one of the basic principles for the development of China. Throughout the course of history, all the social improvement and economic development are deeply concerned with soil loss and ecological environmental protection. It is now a common sense that soil and water conservation is the safety insurance for national ecology and its development. For the past long period of time, soil and water loss has been recognized as "the No.1 killer" to the ecological environment. The nation is on the stage of the critical conditions for its development. China has massive mountain and upland area with complicated geological conditions and accelerated human destruction and serious soil and water loss. Based on rich historical documents, renovating experience and detailed analysis of the data collected in field experiments and field surveys for soil and water conservation, this paper aims to review the general characteristics of soil and water loss, to explore the relationship between soil and water conservation and sustainable economic development, and to provide relevant strategies for soil and water conservation in China.

    References | Related Articles | Metrics
    The extreme dry/wet events in northern China during recent 100 years
    MA Zhuguo, DAN Li, HU Yuewen
    Journal of Geographical Sciences. 2004, 14 (3): 275-281.  
    Abstract   PDF (510KB) ( 0 )

    Using monthly precipitation and monthly mean temperature, a surface humid index was proposed. According to the index, the distributed characteristics of extreme dryness has been fully analyzed. The results indicated that there is an obvious increasing trend of extreme dryness in the central part of northern China and northeastern China in the last 10 years, which shows a high frequency period of extreme dryness; while a low frequency period in the regions during the last 100 years. Compared with variation trend of the temperature in these regions, the region of high frequent extreme dryness is consistent with the warming trend in the same region.

    References | Related Articles | Metrics
    The climatic and environmental features on both sides of the Lambert Glacier Basin
    ZHANG Mingjun, XIAO Cunde, REN Jiawen, LI Zhongqin, QIN Dahe
    Journal of Geographical Sciences. 2004, 14 (3): 282-288.  
    Abstract   PDF (488KB) ( 0 )

    During the 1992-1993 joint Australian-Chinese over-snow traverse of the western Lambert Glacier Basin (LGB), two firn cores were drilled respectively at MGA and LGB16. During the 1996-1997 and 1997-1998 austral summers, two firn cores were drilled respectively at DT001 and DT085 on the eastern LGB. Based on the measurements made during the expeditions, the climatic and environmental features on both sides of the LGB have been studied. Results show that during the past 50 years, the trends of both air temperature and accumulation rate show a slight increase on the east side of the LGB, in contrast to the west side of the LGB. The spatial trends of the accumulation rate measured by accumulation canes at 2 km intervals along the nearly 500 km of the traverse lines on both sides of the LGB are different. Moreover, correlations of δ18O vs T10 along the two sides of the LGB are also different. In addition, the variations of sea salt ion concentrations show different trends in the past 50 years. All the evidence shows that the Lambert Glacier is a dividing region for the different climatic regimes over the East Antarctic ice sheet, which may be due to different moisture resources resulting from special local circumfluence such as cyclone activities, local terrain influences.

    References | Related Articles | Metrics
    A comparison of climate changes between Arctic and China in the last 600 years
    XU Juan
    Journal of Geographical Sciences. 2004, 14 (3): 289-295.  
    Abstract   PDF (269KB) ( 0 )

    A compilation of paleoclimate records from lake sediments, trees, ice cores, and historical documents provide a view of China and Arctic environmental changes in the last 600 years. Many of these changes have also been identified in sedimentary and geochemical signatures in deep-sea sediment cores from the North Atlantic Ocean, Arctic and Greenland and ice cores from the Qinghai-Tibet Plateau, confirming the linkage of environmental changes of different time scales between the Arctic and China. It is shown that the changes of precipitation, temperature and sea ice cover in Arctic were correlated with climate changes in China. This paper also developed a comparative research on the climate changes between Arctic and China both during the Little Ice Age (LIA) and the instrumental observation period. Cycles and trend of temperature variations during LIA and temperature and precipitation during the instrumental observation period are performed. We found some similarities and differences of environmental changes between Arctic and China.

    References | Related Articles | Metrics
    Remote sensing detection of glacier changes in Tianshan Mountains for the past 40 years
    LI Baolin, ZHANG Yichi, ZHOU Chenghu
    Journal of Geographical Sciences. 2004, 14 (3): 296-302.  
    Abstract   PDF (595KB) ( 0 )

    Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of eight glaciers advanced, two of them retreated and another two kept stable, the glacier advanced generally. From 1977 to 1986, four of eight glaciers retreated and the others kept stable, but the retreated glaciers were those which advanced from 1963 to 1977. From 1986 to 2000, seven of eight glaciers retreated and only one glacier kept stable, the retreating velocity was 10-15 m/a. Glacier recession in this period became very fast and universal. From 1963 to 2000, the area of glaciers decreased from 5479.0 ha to 4795.4 ha, up to 12.5%. It is alarming that most of glacier retreats happened from 1986 to 2000. This was very consistent with change process of summer mean temperature in this region and global warming beginning in the 1980s.

    References | Related Articles | Metrics
    Geographical distribution of ecological footprint and sustainability analysis for Liaoning Province
    WANG Qing, GU Xiaowei, LIU Jianxing, LI Guangjun, DING Yi, LIU Jingzhi
    Journal of Geographical Sciences. 2004, 14 (3): 303-312.  
    Abstract   PDF (391KB) ( 0 )

    This paper presents the detailed results and analyses on the ecological footprints and bio-capacities of the individual cities and the province as a whole for the year 2001, providing a clear picture of sustainability for the province. Results show that the ecological footprints of most cities in Liaoning exceeded their respective bio-capacities, incurring high ecological deficits. The ecological deficit of the province as a whole was 1.31 ha/cap. Those cities with resources extraction and/or primary material-making as their major industries constitute the "ecologically black band", whose ecological deficits ranged from 2.45 to 5.23 ha/cap, the highest of all cities in the province. Fossil energy consumption was the major source of footprint amounting to 1.63 ha/cap at the provincial level, taking up 67.3% of the total. For cropland, modest ecological surpluses occurred in Jinzhou, Tieling, Huludao, and Panjin while modest ecological deficits in Dalian, Benxi, Fushun, and Dandong, resulting in an overall surplus for the province. Liaoning had a certain level of surplus in fishing ground (water area), mainly distributed in the coastal cities of Dalian, Panjin, Huludao, Yingkou, Jinzhou, and Dandong. Most cities had a small ecological deficit in pasture and all had a small ecological surplus in forest. The eco-efficiency, expressed as GDP value per hectare of footprint, exhibits high variations among the cities, with the highest (Shenyang) more than 10 times the lowest (Fuxin). Cities with manufacture, high-tech, and better developed service industries had high eco-efficiency, while those with resources extraction, primary material-making, and less developed service industries had low eco-efficiency. Based on the components and geographical distribution of ecological footprint, strategic policy implications are outlined for Liaoning's development toward a sustainable future.

    References | Related Articles | Metrics
    Effects of grassland amelioration on terrestrial ecosystem nutrients:a case study in Jianou Niukenglong Grassland Ecosystem Experimental Station, Fujian Province
    ZHU Lianqi, XU Shuming, CHEN Peiyun
    Journal of Geographical Sciences. 2004, 14 (3): 313-322.  
    Abstract   PDF (436KB) ( 0 )

    This paper studies the effects of land cover changes on distributions and circulations of nutrients in a terrestrial ecosystem, taking Jianou Niukenglong Grassland Ecosystem Experimental Station as a case study. During a two year experiment from 1994 to 1996, the land cover types were changed from desert slopeland to grasslands, in particular, Chamaecrista rotundifolia(pers) green + Pasalum thunbergii and Glycine max var. + Pasalum thunbergii. In order to study land cover change effects on nutrients in the terrestrial ecosystem, we selected organic materials (OMs), nitrogen (N), phosphorus (P), potassium (K) and aluminum (Al) to study their changes in total soil nutrient concentrations, nutrient reserves in soil, distributions and reservations of nutrients in distinct grassland communities and overall nutrient contents reserved in terrestrial ecosystem, and their circulation with land cover change. The experimental results indicate that with the increase of vegetation coverage, the total concentrations of N, P and K grow rapidly in the soil, but that of Al decreases markedly. The increases of the total concentrations of N, P and K were mainly the consequences of changes of the factors that affect soil evolution, e.g., soil moisture, and changes of soil evolution processes, e.g., weathering rate and the decrease of soil erosion. These changes were caused by land coverage growth from desert slopeland to grassland. With the change of the land cover types and the increase of land coverage, the activity of Al accelerated as well, and the vertical penetration and lateral penetration of Al have been increased. Therefore, the loss of Al within the experimental terrestrial ecosystem was inevitable, and the total concentration and reserve of Al in soil have become smaller and smaller, in spite of the growth of grass absorbing some amounts of Al. The Al reserve has increased in vegetation, but it has declined in total terrestrial ecosystem. Land cover change also affects the circulations of nutrients in the terrestrial ecosystem and for the purpose of study on nutrient circulations, we choose to study plant absorption, litter and reservation of nutrients to establish an index to indicate the situations of nutrient circulations within terrestrial ecosystems. The results indicate that in the two land cover types (two grassland ecosystems), the sequence of nutrient circulation indices are N > K > P > Al in Chamaecrista rotundifolia(pers) green + Pasalum thunbergii and P > N > K > Al in Glycine max var. + Pasalum thunbergii. On the basis of the study, we can conclude that land cover change affects both distributions and circulations in the terrestrial ecosystem, and that different changes have distinct influences on distributions and circulations. Some nutrients were affected differently in some contents.

    References | Related Articles | Metrics
    Influence of groundwater level change on vegetation coverage and their spatial variation in arid regions
    SULTAN Danyar, SONG Yudong, MARINA Jumakeld
    Journal of Geographical Sciences. 2004, 14 (3): 323-329.  
    Abstract   PDF (490KB) ( 0 )

    Sampling and testing are conducted on groundwater depth and vegetation coverage in the 670 km2 of the Sangong River Basin and semi-variance function analysis is made afterwards on the data obtained by the application of geo-statistics. Results showed that the variance curve of the groundwater depth and vegetation coverage displays an exponential model. Analysis of sampling data in 2003 indicates that the groundwater depth and vegetation coverage change similarly in space in this area. The Sangong River Basin is composed of upper oasis, middle ecotone and lower sand dune. In oasis and ecotone, influenced by irrigation of the adjoining oasis, groundwater level has been raised and soil water content also increased compared with sand dune nearby, vegetation developed well. But in the lower reaches of the Sangong River Basin, because of descending of groundwater level, soil water content decreased and vegetation degenerated. From oasis to abandoned land and desert grassland, vegetation coverage and groundwater level changed greatly with significant difference respectively in spatial variation. Distinct but similar spatial variability exists among the groundwater depth and vegetation coverage in the study area, namely, the vegetation coverage decreasing (increasing) as the groundwater depth increases (decreases). This illustrates the great dependence of vegetation coverage on groundwater depth in arid regions and further implies that among the great number of factors affecting vegetation coverage in arid regions, groundwater depth turns out to be the most determinant one.

    References | Related Articles | Metrics
    Impact of land-cover and climate changes on runoff of the source regions of the Yellow River
    LI Daofeng, TIAN Ying, LIU Changming, HAO Fanghua
    Journal of Geographical Sciences. 2004, 14 (3): 330-338.  
    Abstract   PDF (723KB) ( 0 )

    After dividing the source regions of the Yellow River into 38 sub-basins, the paper made use of the SWAT model to simulate streamflow with validation and calibration of the observed yearly and monthly runoff data from the Tangnag hydrological station, and simulation results are satisfactory. Five land-cover scenario models and 24 sets of temperature and precipitation combinations were established to simulate annual runoff and runoff depth under different scenarios. The simulation shows that with the increasing of vegetation coverage annual runoff increases and evapotranspiration decreases in the basin. When temperature decreases by 2oC and precipitation increases by 20%, catchment runoff will increase by 39.69%, which is the largest situation among all scenarios.

    References | Related Articles | Metrics
    Impacts of human activity and natural change on the wetland landscape pattern along the Yellow River in Henan Province
    LIANG Guofu, DING Shengyan
    Journal of Geographical Sciences. 2004, 14 (3): 339-348.  
    Abstract   PDF (502KB) ( 0 )

    By using GIS and remote sensing techniques, the paper discusses how human activities have changed along the Yellow River in Henan province, China and how these altered activities have influenced the wetland landscape pattern change from 1987 to 2002. Results show that the total area of the wetland reduces dramatically compared to 1987, the total area of wetland reduces by 19.18%, the number of the patches in 2002 increases by 21.17%, the density increases by 50%, and the total perimeter increases by 1,290,491 m. Disturbed by human activities, landscape diversity index decreases from 1.1740 in 1987 to 0.9803 in 2002. During the last 20 years, the total area of the rice wetland increases, while the others decrease. Among those, the area of the bulrush wetland decreases most. In 1987, it takes 0.5% of the total area, but in 2002, it only takes 0.11%. The interpenetration of human influences on the wetland natural system has been long and close. The impacts of human activities on the spatial pattern of the wetland landscape along the Yellow River in Henan from 1987 to 2002 are great.

    References | Related Articles | Metrics
    Impacts of land use and climate change on regional net primary productivity
    GAO Zhiqiang, LIU Jiyuan, CAO Mingkui, LI Kerang, TAO Bo
    Journal of Geographical Sciences. 2004, 14 (3): 349-358.  
    Abstract   PDF (663KB) ( 0 )

    Combined with recent historical climate data and two periods of land use data sets from remote sensing data, we test the net primary productivity (NPP) data sets in North China modelled by the satellite data-driven Global Production Efficiency Model (GLO-PEM) for detecting the widespread spatial and temporal characteristics of the impacts of climate and land use change on the regional NPP. Our results show that over the past 20 years, the mean annual temperature in the study region has remarkably increased by more than 0.064 oC, but over the same period, there has been a 1.49 mm decrease in annual precipitation and decrease in NPP by an annual rate of 6.9 TgC. The NPP changes in the study region were greatly affected by the average temperature and precipitation by ten-day periods as well as the seasonal temperature and precipitation in the study region. The correlation between seasonal NPP and seasonal precipitation and temperature is highly consistent with land cover spatially, and the correlation coefficient changes with the changes of vegetation types. The analysis reveals that the related areas in land use change only take up 5.45% of the whole studied region, so the climate changes dominate the impacts on the NPP in the whole study region (90% of the total). However, land use plays an absolute dominative role in areas with land cover changes, accounting for 97% of the total. From 1981 to 2000, the NPP in the whole study region remarkably reduced due to obvious precipitation decrease and temperature rise. Between two periods of land use (about 10 years), the changes in climate are predicted to promote a decrease in NPP by 78 (±0.6) TgC, and integrated impacts of climate changes and land use to promote a decrease in NPP by 87(±0.8) TgC.

    References | Related Articles | Metrics
    Research on spatial calculating analysis model of landuse change
    ZHANG Xinchang, PAN Qiong, ZHAO Yuan
    Journal of Geographical Sciences. 2004, 14 (3): 359-365.  
    Abstract   PDF (504KB) ( 0 )

    The spatial calculating analysis model is based on GIS overlay. It will compartmentalize the land in research district into three spatial types: unchanged parts, converted parts and increased parts. By this method we can evaluate the numerical model and dynamic degree model for calculating land-use change rates. Furthermore, the paper raises the possibility of revising the calculating analysis model of spatial information in order to predicate more precisely the dynamic changing level of all types of land uses. In the most concrete terms, the model is used mainly to understand changed area and changed rates (increasing or decreasing) of different land types from microcosmic angle and establish spatial distribution and spatio-temporal principles of the changing urban lands. And we will try to find out why the situation can take place by combining social and economic situations. The result indicates the calculating analysis model of spatial information can derive more accurate procedure of spatial transference and increase of all kinds of land from microcosmic angle. By this model and technology we can conduct the research of land-use spatio-temporal structure evolution more systematically and more deeply, and can obtain a satisfactory result. The result will benefit the rational planning and management of urban land use of developed coastal areas in China in the future.

    References | Related Articles | Metrics
    Spatial-temporal changes of tidal flats in the Huanghe River Delta using Landsat TM/ETM+ images
    FAN Hui, HUANG Haijun
    Journal of Geographical Sciences. 2004, 14 (3): 366-374.  
    Abstract   PDF (763KB) ( 0 )

    Integrating remote sensing, geographic information system (GIS) and fractal theory, change characteristics of tidal flats and tidal creeks in the Huanghe (Yellow) River Delta over the period of 1986-2001 were discussed. The results show that evolutions of tidal flats throughout the Huanghe River Delta are influenced by various factors, and that progressive succession and regression of tidal flats concur in different coastal segments of the delta. Human activities have played an increasingly important role in the succession process of tidal flats. Due to land reclamation in coastal zones of the delta in the last 15 years, lots of tidal flats were occupied, the artificial coastline migrated seaward (the maximum change rate was 0.8 kmyr-1) and tidal creeks became sparser (the highest decreasing rate of length of tidal creeks was 14.9 kmyr-1). Except for two coastal segments from the Tiaohe Estuary to the 106 Station and from the south of the Huanghe River mouth to the north of the Xiaodao River Estuary, fractal dimension values of tidal creeks in the remaining coastal segments of the delta decreased. In addition, the time dimension, sediment fluxes into the sea, waves and tidal-currents have profound influences on the evolution process of tidal flats. Four types of tidal flats-river-dominated tidal flats, tide-dominated tidal flats, wave-dominated tidal flats and man-dominated tidal flats can be identified. Owing to the intensification of human activities in coastal zones of the delta, man-dominated tidal flats have become the main kind of tidal flats.

    References | Related Articles | Metrics
    The coast evolution and regulation in Wanquan River Estuary, Hainan Island
    GAO Jianhua, CHEN Guoqiang, OU Weixin, ZHU Dakui
    Journal of Geographical Sciences. 2004, 14 (3): 375-381.  
    Abstract   PDF (479KB) ( 0 )

    In this paper, sediment samples were collected along the Wanquan beaches and sieved in the laboratory in order to obtain the grain size distributions and associated parameters, i.e. mean grain size, sorting coefficient and skewness. Furthermore, we have calculated the longshore drift sediment transport rates and equilibrium cross-sectional areas of the entrance channel by using the method of sedimentary dynamics. The results indicate that the longshore drift sediment transport is dominated by waves with a direction from south to north, which result in rapid changes of the entrance channel. Therefore, some suggestions were proposed for improving the water quality and restoring the ecosystem of estuary. The engineering method includes increasing the sea-route of entrance channel, tidal prism and water exchanges in Shamei Lagoon.

    References | Related Articles | Metrics
  News More  
» News

  Links More  

Copyright © Journal of Geographical Sciences, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd