Journal of Geographical Sciences ›› 2020, Vol. 30 ›› Issue (5): 843-864.doi: 10.1007/s11442-020-1758-z
• Research Articles • Previous Articles
SONG Xiaolong1,2, ZHONG Deyu1,*(), WANG Guangqian1
Received:
2019-02-28
Accepted:
2019-09-12
Online:
2020-05-25
Published:
2020-07-25
Contact:
ZHONG Deyu
E-mail:zhongdy@tsinghua.edu.cn
About author:
Song Xiaolong, e-mail: xlsong@tju.edu.cn
Supported by:
SONG Xiaolong, ZHONG Deyu, WANG Guangqian. Simulation on the stochastic evolution of hydraulic geometry relationships with the stochastic changing bankfull discharges in the Lower Yellow River[J].Journal of Geographical Sciences, 2020, 30(5): 843-864.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Flood season’s average discharge, suspended sediment concentration, and annual measured bankfull channel geometries along the Gaocun station downwards"
Year | Flood season’s average value (*) | Bankfull discharge Q (m3/s) | Slope S (‰) | Width B (m) | Depth D (m) | Velocity U (m/s) | ||
---|---|---|---|---|---|---|---|---|
Discharge Qf (m3/s) | IS coefficient $\xi_{f}$(kg·s/m6) | |||||||
1952 | 2417.073 | 0.0080 | 6700 | 0.120 | 750 | 1.48 | 1.57 | |
1953 | 2562.967 | 0.0153 | 5800 | 0.112 | 487.5 | 2.58 | 1.25 | |
1954 | 3531.862 | 0.0132 | 5500 | 0.104 | 450 | 3.17 | 1.13 | |
1955 | 3218.593 | 0.0095 | 5400 | 0.142 | 711.5 | 1.54 | 1.57 | |
1956 | 2673.740 | 0.0154 | 5420 | 0.121 | 652 | 2.19 | 0.96 | |
1957 | 1838.984 | 0.0197 | 5300 | 0.125 | 620.8 | 2.20 | 0.95 | |
1958 | 4190.626 | 0.0123 | 5500 | 0.124 | 719.5 | 1.32 | 1.07 | |
1959 | 2070.854 | 0.0356 | 6700 | 0.126 | 684 | 1.10 | 1.47 | |
1960 | 1092.754 | 0.0343 | 6500 | 0.121 | 325.5 | 1.02 | 0.90 | |
1961 | 2729.593 | 0.0061 | 7200 | 0.103 | 445 | 2.37 | 1.84 | |
1962 | 2232.033 | 0.0079 | 7800 | 0.114 | 581 | 1.78 | 1.20 | |
1963 | 2926.106 | 0.0065 | 8500 | 0.110 | 584 | 1.30 | 1.00 | |
1964 | 4969.268 | 0.0052 | 9500 | 0.113 | 1217.5 | 1.69 | 1.62 | |
1965 | 1534.878 | 0.0123 | 9800 | 0.128 | 614 | 1.24 | 1.69 | |
1966 | 2898.642 | 0.0176 | 8500 | 0.139 | 967 | 1.24 | 1.34 | |
1967 | 4232.683 | 0.0091 | 6000 | 0.125 | 957.5 | 1.80 | 1.80 | |
1968 | 3114.821 | 0.0110 | 6000 | 0.126 | 1618.8 | 1.16 | 1.63 | |
1969 | 1155.35 | 0.0378 | 5000 | 0.117 | 390 | 1.87 | 1.54 | |
1970 | 1675.976 | 0.0359 | 4300 | 0.124 | 1067 | 1.35 | 1.28 | |
1971 | 1385.22 | 0.0336 | 4300 | 0.123 | 922.5 | 1.21 | 1.36 | |
1972 | 1205.667 | 0.0223 | 3900 | 0.121 | 493.5 | 0.83 | 0.92 | |
1973 | 1938.841 | 0.0282 | 3500 | 0.121 | 566.6 | 1.09 | 0.47 | |
1974 | 1164.151 | 0.0271 | 3370 | 0.121 | 610.5 | 1.22 | 1.76 | |
1975 | 3035.675 | 0.0115 | 4710 | 0.118 | 553.5 | 1.68 | 1.31 | |
1976 | 3137.325 | 0.0088 | 6090 | 0.117 | 542 | 1.47 | 1.59 | |
1977 | 1627.472 | 0.0419 | 6500 | 0.121 | 366.1 | 1.32 | 1.15 | |
1978 | 1949.756 | 0.0262 | 5500 | 0.113 | 404.5 | 2.23 | 1.12 | |
1979 | 1945.122 | 0.0199 | 5200 | 0.108 | 312.1 | 3.09 | 1.38 | |
1980 | 1183.447 | 0.0225 | 4500 | 0.120 | 483.5 | 1.30 | 1.61 | |
1981 | 3011.618 | 0.0114 | 3900 | 0.114 | 412.7 | 2.25 | 1.39 | |
1982 | 2226.911 | 0.0094 | 5900 | 0.123 | 538 | 1.53 | 1.64 | |
1983 | 3310.407 | 0.0063 | 7300 | 0.117 | 583.7 | 2.27 | 1.58 | |
1984 | 3127.667 | 0.0070 | 7400 | 0.118 | 551.5 | 1.66 | 1.68 | |
1985 | 2298.691 | 0.0110 | 7600 | 0.113 | 527.5 | 2.92 | 1.54 | |
1986 | 1207.065 | 0.0138 | 7400 | 0.115 | 529.5 | 1.90 | 0.57 | |
1987 | 694.1382 | 0.0216 | 6800 | 0.114 | 233.1 | 1.78 | 0.89 | |
1988 | 1915.215 | 0.0244 | 6400 | 0.110 | 353.5 | 2.58 | 1.53 | |
1989 | 1796.545 | 0.0156 | 4600 | 0.111 | 376.5 | 2.15 | 1.49 | |
1990 | 1233.398 | 0.0217 | 4500 | 0.111 | 363.2 | 2.31 | 1.39 | |
1991 | 429.735 | 0.0523 | 4400 | 0.121 | 453.5 | 1.24 | 0.90 | |
1992 | 1168.78 | 0.0383 | 3200 | 0.121 | 465 | 1.03 | 1.07 | |
1993 | 1285.764 | 0.0207 | 3600 | 0.115 | 460 | 1.18 | 1.25 | |
1994 | 1221.439 | 0.0394 | 3700 | 0.119 | 469 | 1.20 | 1.22 | |
1995 | 1013.087 | 0.0465 | 3000 | 0.122 | 486 | 0.96 | 1.09 | |
1996 | 1357.556 | 0.0232 | 2800 | 0.119 | 537.5 | 1.27 | 1.48 | |
1997 | 299.5125 | 0.1589 | 2750 | 0.126 | 410.5 | 1.10 | 0.94 | |
1998 | 899 | 0.0366 | 2700 | 0.122 | 398 | 0.95 | 1.10 | |
1999 | 779.2927 | 0.0468 | 2800 | 0.121 | 474 | 1.07 | 1.13 | |
2000 | 443.1463 | 0.0161 | 2600 | 0.121 | 500.5 | 1.06 | 0.91 | |
2001 | 321.3228 | 0.0232 | 2400 | 0.121 | 486 | 1.01 | 1.26 | |
2002 | 714.4472 | 0.0148 | 2000 | 0.120 | 446 | 1.08 | 1.20 | |
2003 | 1300.414 | 0.0113 | 2300 | 0.118 | 448.5 | 1.26 | 0.84 | |
2004 | 818.2926 | 0.0239 | 3600 | 0.115 | 439 | 1.34 | 0.90 | |
2005 | 897.536 | 0.0104 | 4000 | 0.115 | 528 | 1.38 | 1.17 | |
2006 | 806.008 | 0.0079 | 4500 | 0.115 | 431.5 | 1.33 | 1.24 | |
2007 | 1140.674 | 0.0059 | 4700 | 0.112 | 491 | 1.62 | 1.24 | |
2008 | 625.040 | 0.0095 | 4800 | 0.113 | 347.5 | 1.55 | 1.40 | |
2009 | 646.455 | 0.0041 | 5000 | 0.116 | 515 | 1.21 | 1.03 | |
2010 | 1166.422 | 0.0045 | 5300 | 0.118 | 518.5 | 1.05 | 0.99 | |
2011 | 934.065 | 0.0051 | 5400 | 0.119 | 668 | 1.23 | 1.04 | |
2012 | 1438.495 | 0.0057 | 5400 | 0.120 | 648.5 | 1.24 | 1.04 | |
2013 | 1219.894 | 0.0076 | 5800 | 0.118 | 533.5 | 1.27 | 1.10 |
Table 4
The estimated results of the unknown parameters set for the jump-diffusion Eq. (10a)"
Estimate | K | b | c | $\beta $ | ${{\sigma }_{1}}$ | $\gamma $ | $\lambda _{u}^{[1]} $ | $\lambda _{d}^{[1]} $ | $1/\eta _{u}^{\left[ 1 \right]} $ | $1/\eta _{d}^{[1]} $ |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 23.818 | -0.505 | 0.432 | 0.312 | 0.118 | 0.494 | 0.030 | 0.020 | 0.215 | 0.573 |
SD | 4.795 | 0.025 | 0.018 | 0.002 | 0.003 | 0.003 | 0.001 | 0.004 | 0.016 | 0.047 |
Table 5
The estimated results of the unknown parameters set for the jump-diffusion Eq. (10b)"
Estimate | Slope (S) | Width (B) | Depth (D) | Velocity (U) | |
---|---|---|---|---|---|
m | Mean | -0.086 | 0.264 | 0.350 | 0.310 |
SD | 0.009 | 0.043 | 0.059 | 0.046 | |
${{\sigma }_{2}}$ | Mean | 0.075 | 0.301 | 0.300 | 0.160 |
SD | 0.014 | 0.065 | 0.065 | 0.055 | |
$\lambda _{u}^{[2]} $ | Mean | 0.180 | 0.300 | 0.311 | 0.394 |
SD | 0.001 | 0.014 | 0.029 | 0.065 | |
$\lambda _{d}^{[2]} $ | Mean | 0.180 | 0.300 | 0.327 | 0.426 |
SD | 0.004 | 0.026 | 0.054 | 0.025 | |
$1/\eta _{u}^{[2]} $ | Mean | 0.059 | 0.079 | 0.180 | 0.080 |
SD | 0.001 | 0.045 | 0.025 | 0.004 | |
$1/\eta _{d}^{[2]} $ | Mean | 0.030 | 0.109 | 0.175 | 0.177 |
SD | 0.009 | 0.068 | 0.027 | 0.062 |
Table 6
The estimated results of the unknown parameters set for the fractional jump-diffusion Eq. (13a)"
Estimate | K | b | c | $\beta $ | ${{\sigma }_{1}}$ | $\gamma $ | ${{H}^{[1]}} $ | $\lambda _{u}^{[1]} $ | $\lambda _{d}^{[1]} $ | $1/\eta _{u}^{\left[ 1 \right]} $ | $1/\eta _{d}^{[1]} $ |
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 25.14 | -0.52 | 0.42 | 0.29 | 0.11 | 0.23 | 0.55 | 0.09 | 0.06 | 0.04 | 0.15 |
SD | 3.27 | 0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.01 |
Table 7
The estimated results of the unknown parameters set for the fractional jump-diffusion Eq. (13b)"
Estimate | Slope (S) | Width (B) | Depth (D) | Velocity (U) | |
---|---|---|---|---|---|
m | Mean | -0.141 | 0.704 | 0.350 | 0.880 |
SD | 0.011 | 0.043 | 0.026 | 0.063 | |
${{\sigma }_{2}}$ | Mean | 0.090 | 0.500 | 0.640 | 0.260 |
SD | 0.015 | 0.035 | 0.055 | 0.017 | |
${{H}^{[2]}} $ | Mean | 0.471 | 0.349 | 0.471 | 0.301 |
SD | 0.054 | 0.013 | 0.026 | 0.063 | |
$\lambda _{u}^{[2]} $ | Mean | 0.374 | 0.410 | 0.361 | 0.554 |
SD | 0.072 | 0.075 | 0.026 | 0.064 | |
$\lambda _{d}^{[2]} $ | Mean | 0.380 | 0.410 | 0.367 | 0.556 |
SD | 0.095 | 0.075 | 0.023 | 0.052 | |
$1/\eta _{u}^{[2]} $ | Mean | 0.088 | 0.488 | 0.300 | 0.230 |
SD | 0.041 | 0.048 | 0.011 | 0.033 | |
$1/\eta _{d}^{[2]} $ | Mean | 0.087 | 0.453 | 0.105 | 0.170 |
SD | 0.025 | 0.064 | 0.023 | 0.028 |
[1] | Aït-Sahalia Y, Hansen L P , 2009. Handbook of Financial Econometrics: Tools and Techniques. Elsevier. |
[2] | Bauch G D, Hickin E J , 2011. Rate of floodplain reworking in response to increasing storm-induced floods, Squamish River, south-western British Columbia, Canada. Earth Surface Processes & Landforms, 36(7):872-884. |
[3] |
Black F, Scholes M , 1973. The pricing of options and corporate liabilities. Journal of Political Economy, 81(3):637-654.
pmid: 10180222 |
[4] | Bolla Pittaluga M, Nobile G, Seminara G , 2009. A nonlinear model for river meandering. Water Resources Research, 45:546-550. |
[5] | Bruti-Liberati N, Platen E , 2006. Approximation of jump diffusions in finance and economics. Research Paper, 29(3/4):283-312. |
[6] | Higham D, Chalmers G , 2017. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes. Discrete and Continuous Dynamical Systems: Series B (DCDS-B), 9(1):47-64. |
[7] |
Chan K, Karolyi G A, Longstaff F A et al., 1992. An empirical comparison of alternative models of the short-term interest rate. Journal of Finance, 47(3):1209-1227.
doi: 10.1111/j.1540-6261.1992.tb04011.x |
[8] |
Decreusefond L, Üstünel A S , 1999. Stochastic analysis of the Fractional Brownian Motion. Potential Analysis, 10(2):177-214.
doi: 10.1023/A:1008634027843 |
[9] | Deng A J, Guo Q C, Chen J G , 2015. Study on particularity of hump reach evolution in Lower Yellow River. Yellow River, 37(12):28-31. (in Chinese) |
[10] | Glasserman P , 2004. Monte Carlo Methods in Financial Engineering. Springer. |
[11] | Graf W L , 1979. Catastrophe theory as a model for change in fluvial systems. Adjustments of the Fluvial System, 13-32. |
[12] | Guo Q C, Huang L M, Chen J G et al., 2012. Formation and development of hump reach in Lower Yellow River. Journal of Sediment Research, ( 5):38-42. (in Chinese) |
[13] |
Hansen J, Sato M, Ruedy R et al., 2000. Global warming in the twenty-first century: An alternative scenario. Proceedings of the National Academy of Sciences of the United States of America, 97(18):9875-9880.
doi: 10.1073/pnas.170278997 pmid: 10944197 |
[14] | Harrison L R, Pike A, Boughton D A et al., 2017. Coupled geomorphic and habitat response to a flood pulse revealed by remote sensing. Ecohydrology, 10(5). |
[15] |
Huggett R , 2007. A history of the systems approach in geomorphology. Géomorphologie Relief Processus Environnement, 13(2):145-158.
doi: 10.4000/geomorphologie |
[16] | Kroese D P, Botev Z I , 2015. Spatial process simulation. In: Schmidt V (ed.), Stochastic Geometry, Spatial Statistics and Random Fields: Models and Algorithms. Springer International Publishing, Cham, 369-404. |
[17] |
Leland W E, Taqqu M S, Willinger W et al., 1995. On the self-similar nature of Ethernet traffic (extended version). Acm Sigcomm Computer Communication Review, 25(1):202-213.
doi: 10.1145/205447 |
[18] | Liu J M , 2009. Nonlinear forecasting using nonparametric transfer function models. Wseas Transactions on Business & Economics, 157(6):151-164. |
[19] | Luchi R, Pittaluga M B, Seminara G , 2012. Spatial width oscillations in meandering rivers at equilibrium. Water Resources Research, 48(5):375-390. |
[20] | Mandelbrot B B, Aizenman M , 1979. Fractals: Form, chance, and dimension. Leonardo, 32(5):65-66. |
[21] | Manfreda S, Fiorentino M , 2008. A stochastic approach for the description of the water balance dynamics in a river basin. Hydrology & Earth System Sciences, 12(5):1189-1200. |
[22] | Merton R C , 1976. Option pricing when underlying stock returns are discontinuous. Working Papers, 3(1):125-144. |
[23] | Muneepeerakul R, Rinaldo A, Rodrigueziturbe I , 2007. Effects of river flow scaling properties on riparian width and vegetation biomass. Water Resources Research, 43(12):W12406. |
[24] |
Navratil O, Albert M B , 2010. Non-linearity of reach hydraulic geometry relations. Journal of Hydrology, 388(3/4):280-290.
doi: 10.1016/j.jhydrol.2010.05.007 |
[25] | Pittaluga M B, Seminara G , 2011. Nonlinearity and unsteadiness in river meandering: A review of progress in theory and modelling. Earth Surface Processes & Landforms, 36(1):20-38. |
[26] |
Ramezani C A, Zeng Y , 2007. Maximum likelihood estimation of the double exponential jump-diffusion process. Annals of Finance, 3(4):487-507.
doi: 10.1007/s10436-006-0062-y |
[27] | Rong S , 2006. Theory of stochastic differential equations with jumps and applications: Mathematical and analytical techniques with applications to engineering. Springer Science &Business Media. |
[28] | Sørensen M , 1991. Likelihood methods for diffusions with jumps, Statistical inference in stochastic processes. Marcel Dekker Incorporated, 67-105. |
[29] |
Silverman B W , 1987. Density estimation for statistics and data analysis. Technometrics, 29(4):495.
doi: 10.1002/1097-4679(197310)29:4<495::aid-jclp2270290432>3.0.co;2-7 pmid: 4766726 |
[30] |
Stanton R , 1997. A nonparametric model of term structure dynamics and the market price of interest rate risk. Journal of Finance, 52(5):1973-2002.
doi: 10.1111/j.1540-6261.1997.tb02748.x |
[31] |
Tealdi S, Camporeale C, Ridolfi L , 2011. Modeling the impact of river damming on riparian vegetation. Journal of Hydrology, 396(3):302-312.
doi: 10.1016/j.jhydrol.2010.11.016 |
[32] | Tsai C W, Man C, Jungsun O H , 2014. Stochastic particle based models for suspended particle movement in surface flows. International Journal of Sediment Research, 29(2):195-207. |
[33] | Wang Z Y, Lee J H W, Melching C S , 2015. River Dynamics and Integrated River Management. Berlin Heidelberg:Springer. |
[34] |
Wasimi S A, Mondal M S , 2005. Periodic transfer function-noise model for forecasting. Journal of Hydrologic Engineering, 10(5):353-362.
doi: 10.1061/(ASCE)1084-0699(2005)10:5(353) |
[35] | Wolman M G, Ran G , 1978. Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surface Processes and Landforms, 3(2):189-208. |
[36] |
Wu B, Wang G, Xia J et al., 2008. Response of bankfull discharge to discharge and sediment load in the Lower Yellow River. Geomorphology, 100(3):366-376.
doi: 10.1016/j.geomorph.2008.01.007 |
[37] |
Xia J, Li X, Li T et al., 2014. Response of reach-scale bankfull channel geometry to the altered flow and sediment regime in the lower Yellow River. Geomorphology, 213:255-265.
doi: 10.1016/j.geomorph.2014.01.017 |
[38] |
Yang C T, Song C C S, Woldenberg M J , 1981. Hydraulic geometry and minimum rate of energy dissipation. Water Resources Research, 17(4):1014-1018.
doi: 10.1029/WR017i004p01014 |
[39] |
Yang T, Zhang Q, Chen Y D et al., 2010. A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower Yellow River, China. Hydrological Processes, 22(18):3829-3843.
doi: 10.1002/hyp.v22:18 |
[40] |
Yin Z M , 1996. New methods for simulation of fractional brownian motion. Journal of Computational Physics, 127(1):66-72.
doi: 10.1006/jcph.1996.0158 |
[41] | Zhang H , 1995. The study of the law of similarity for models of flood flows of the lower reach of the Yellow River [D]. Beijing: Tsinghua University. (in Chinese) |