Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (11): 1876-1894.doi: 10.1007/s11442-019-1994-y
• Research Articles • Previous Articles Next Articles
TIAN Yuan1,2, YU Chengqun1,*(), ZHA Xinjie2,3, GAO Xing3, DAI Erfu1
Received:
2019-01-30
Accepted:
2019-03-20
Online:
2019-11-25
Published:
2019-12-05
Contact:
Chengqun YU
E-mail:yucq@igsnrr.ac.cn
About author:
Tian Yuan (1991?), PhD, specialized in Tibet water environment and health. E-mail: tiany.13s@igsnrr.ac.cn
Supported by:
TIAN Yuan, YU Chengqun, ZHA Xinjie, GAO Xing, DAI Erfu. Hydrochemical characteristics and controlling factors of natural water in the border areas of the Qinghai-Tibet Plateau[J].Journal of Geographical Sciences, 2019, 29(11): 1876-1894.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Sampling points of water samples in the border areas of the Qinghai-Tibet Plateau"
No. | Type | Town, County | Latitude (°) | Longitude (°) | Elevation (m) | No. | Type | Town, County | Latitude (°) | Longitude (°) | Elevation (m) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Well (14 m) | Zhaxigang, Gaer | 32.3722 | 79.7976 | 4262 | 45 | Stream | Yalai, Nyalam | 28.4159 | 86.1307 | 4426 |
2 | Stream | Zhaxigang, Gaer | 32.6942 | 79.4597 | 4271 | 46 | Stream | Borong, Nyalam | 28.7547 | 85.5842 | 4643 |
3 | Well (14 m) | Rituzong, Ritu | 33.3922 | 79.7046 | 4264 | 47 | Stream | Gyirong, Gyirong | 28.3950 | 85.3294 | 2815 |
4 | Well (15 m) | Risong, Ritu | 33.3682 | 79.6971 | 4281 | 48 | Stream | Gyirong, Gyirong | 28.3952 | 85.3525 | 2731 |
5 | Stream | Risong, Ritu | 33.1262 | 79.8355 | 4359 | 49 | Stream | Gyirong, Gyirong | 28.4812 | 85.2251 | 3171 |
6 | Stream | Kunsha, Gaer | 32.1069 | 80.0823 | 4293 | 50 | Stream | Gyirong, Gyirong | 28.5006 | 85.2215 | 3261 |
7 | Well (10 m) | Tuolin, Zhada | 31.4778 | 79.8051 | 3712 | 51 | Stream | Gyirong, Gyirong | 28.5346 | 85.2195 | 3409 |
8 | Well (8 m) | Tuolin, Zhada | 31.4757 | 79.6732 | 3621 | 52 | Stream | Gyirong, Gyirong | 28.5418 | 85.2285 | 3510 |
9 | Stream | Daba, Zhada | 31.5879 | 79.9703 | 4582 | 53 | Stream | Zongga, Gyirong | 28.5635 | 85.2462 | 3632 |
10 | Stream | Daba, Zhada | 31.5314 | 79.9843 | 4493 | 54 | Stream | Zongga, Gyirong | 28.6056 | 85.2599 | 3760 |
11 | Stream | Daba, Zhada | 31.4484 | 80.1229 | 4693 | 55 | Stream | Zongga, Gyirong | 28.6301 | 85.2691 | 3736 |
12 | Stream | Menshi, Gaer | 31.1789 | 80.7601 | 4450 | 56 | Stream | Zongga, Gyirong | 28.6533 | 85.2781 | 3785 |
13 | Stream | Menshi, Gaer | 31.1426 | 80.9014 | 4636 | 57 | Stream | Zongga, Gyirong | 28.7397 | 85.2965 | 3955 |
14 | Well (10 m) | Pulan, Pulan | 30.2945 | 81.1759 | 3905 | 58 | Stream | Zongga, Gyirong | 28.8557 | 85.2968 | 4145 |
15 | Well (5 m) | Kejia, Pulan | 30.1927 | 81.2707 | 3734 | 59 | Stream | Zheba, Gyirong | 29.0409 | 85.4394 | 4733 |
16 | Stream | Kejia, Pulan | 30.2633 | 81.1870 | 3891 | 60 | Stream | Zheba, Gyirong | 29.2074 | 85.3636 | 4527 |
17 | Stream | Namumani, Pulan | 30.5157 | 81.2018 | 4521 | 61 | Stream | Zhangmu, Nyalam | 27.9887 | 85.9828 | 2277 |
18 | Stream | Huoer, Pulan | 30.6872 | 81.8323 | 4752 | 62 | Stream | Zhangmu, Nyalam | 27.9903 | 85.9829 | 2263 |
19 | Stream | Longzi, Longzi | 28.4081 | 92.4628 | 3881 | 63 | Stream | Yalai, Nyalam | 28.3828 | 86.1070 | 4373 |
20 | Stream | Ridang, Longzi | 28.6125 | 92.2153 | 4998 | 64 | Stream | Nierudui, Kangma | 28.4865 | 89.9269 | 4569 |
21 | Stream | Zhaxiraodeng, Milin | 29.2319 | 94.0680 | 2993 | 65 | Stream | Nierudui, Kangma | 28.4894 | 89.9265 | 4584 |
22 | Stream | Wolong, Milin | 29.1447 | 93.6939 | 3032 | 66 | Stream | Nierumai, Kangma | 28.6419 | 89.8728 | 4389 |
23 | Stream | Nanyi, Milin | 29.1849 | 94.1883 | 2938 | 67 | Stream | Zhangxiong, Kangma | 28.6183 | 89.3708 | 4489 |
24 | Stream | Nanyi, Milin | 29.1279 | 94.2226 | 3009 | 68 | Stream | Samada, Kangma | 28.3495 | 89.5377 | 4447 |
25 | Stream | Nanyi, Milin | 29.0417 | 94.2321 | 3147 | 69 | Stream | Samada, Kangma | 28.2517 | 89.6455 | 4573 |
No. | Type | Town, County | Latitude (°) | Longitude (°) | Elevation (m) | No. | Type | Town, County | Latitude (°) | Longitude (°) | Elevation (m) |
26 | Stream | Danniang, Milin | 29.4613 | 94.7849 | 2945 | 70 | Stream | Gala, Kangma | 28.2388 | 89.1817 | 4474 |
27 | Stream | Pai, Milin | 29.5174 | 94.8811 | 2931 | 71 | Stream | Kangma, Kangma | 28.5587 | 89.6807 | 4298 |
28 | Stream | Pai, Milin | 29.6977 | 94.8978 | 2821 | 72 | Stream | Labuleng, Xiahe | 35.1936 | 102.5151 | 2942 |
29 | Stream | Jiayu, Longzi | 28.2941 | 92.7492 | 3380 | 73 | Stream | Sangke, Xiahe | 35.0651 | 102.4624 | 3207 |
30 | Stream | Liemai, Longzi | 28.4247 | 92.5742 | 3851 | 74 | Stream | Sangke, Xiahe | 35.0126 | 102.5232 | 3399 |
31 | Stream | Ridang, Longzi | 28.3930 | 92.1056 | 4253 | 75 | Stream | Sangke, Xiahe | 34.9377 | 102.6594 | 3249 |
32 | Stream | Ridang, Longzi | 28.4883 | 92.2845 | 4119 | 76 | Stream | Maai, Luqu | 34.5901 | 102.4854 | 3112 |
33 | Stream | Xuesha, Longzi | 28.6346 | 92.5459 | 4245 | 77 | Stream | Gahai, Luqu | 34.4331 | 102.2976 | 3432 |
34 | Stream | Xuesha, Longzi | 28.6337 | 92.5489 | 4175 | 78 | Stream | Gahai, Luqu | 34.2006 | 102.4419 | 3491 |
35 | Stream | Xuesha, Longzi | 28.6038 | 92.5566 | 3905 | 79 | Stream | Benzilan, Luqu | 34.1269 | 102.6116 | 3358 |
36 | Stream | Rerong, Longzi | 28.4856 | 92.1489 | 4064 | 80 | Stream | Langmu, Luqu | 34.0949 | 102.6318 | 3393 |
37 | Well (8 m) | Menbu, Nyalam | 28.7857 | 86.2255 | 4452 | 81 | Stream | Hongxing, Nuoergai | 34.0959 | 102.7545 | 3161 |
38 | Stream | Menbu, Nyalam | 28.5812 | 86.1501 | 4857 | 82 | Stream | Zhagana, Diebu | 34.2394 | 103.1792 | 2974 |
39 | Stream | Yalai, Nyalam | 28.4565 | 86.1650 | 4560 | 83 | Stream | Zhagana, Diebu | 34.2374 | 103.2025 | 2978 |
40 | Stream | Nyalam, Nyalam | 28.1598 | 85.9805 | 3771 | 84 | Stream | Zhagana, Diebu | 34.2370 | 103.1979 | 2939 |
41 | Stream | Nyalam, Nyalam | 28.1634 | 85.9768 | 3788 | 85 | Stream | Dianga, Diebu | 34.0558 | 103.2373 | 2355 |
42 | Stream | Yalai, Nyalam | 28.2928 | 86.0248 | 4104 | 86 | Stream | Wangzang, Diebu | 33.9520 | 103.6059 | 2007 |
43 | Stream | Yalai, Nyalam | 28.3273 | 86.0474 | 4259 | 87 | Stream | Huayuan, Diebu | 33.9885 | 103.9207 | 1733 |
44 | Stream | Yalai, Nyalam | 28.3828 | 86.1070 | 4373 | 88 | Stream | Sigou, Minxian | 34.2426 | 103.9113 | 2948 |
Table 2
Parameters and elements concentration statistical summary of the water samples of the Qinghai-Tibet Plateau border areas"
Parameters | pH | TDS | TH | Ca2+ | K+ | Mg2+ | Na+ | HCO3- | Cl- | SO42- | NO3- | Si | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | mg/L | mmol/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | ||
All | Min | 6.52 | 6.11 | 3.69 | 1.10 | 0.00 | 0.19 | 0.19 | 2.95 | 0.00 | 1.29 | 0.00 | 2.08 |
Max | 8.88 | 583 | 512 | 149 | 8.43 | 71.0 | 32.8 | 305 | 21.7 | 356 | 32.2 | 20.7 | |
Mean | 7.75 | 180 | 168 | 44.7 | 1.03 | 13.5 | 6.06 | 127 | 2.33 | 59.2 | 2.60 | 8.77 | |
Median | 7.75 | 171 | 143 | 42.3 | 0.87 | 9.02 | 3.75 | 109 | 0.68 | 28.7 | 1.15 | 7.64 | |
SD | 0.50 | 130 | 127 | 30.9 | 1.06 | 14.6 | 6.30 | 95.8 | 3.98 | 80.8 | 4.48 | 4.10 | |
Skewness | -0.04 | 1.13 | 0.88 | 0.77 | 3.89 | 1.75 | 1.66 | 0.37 | 2.94 | 2.03 | 4.33 | 0.85 | |
West | Min | 6.99 | 32.9 | 27.6 | 9.38 | 0.00 | 0.99 | 0.19 | 16.4 | 0.00 | 3.48 | 0.00 | 4.85 |
Max | 8.88 | 391 | 394 | 69.3 | 8.43 | 52.9 | 32.8 | 302 | 21.7 | 199 | 32.2 | 20.7 | |
Mean | 8.38 | 142 | 122 | 31.0 | 1.44 | 10.6 | 10.8 | 106 | 5.62 | 46.9 | 3.41 | 10.2 | |
Median | 7.74 | 171 | 146 | 42.4 | 0.86 | 9.09 | 3.54 | 108 | 0.67 | 29.6 | 1.17 | 7.50 | |
SD | 0.44 | 79.1 | 82.8 | 17.4 | 1.77 | 11.1 | 8.37 | 70.1 | 6.79 | 45.0 | 7.42 | 4.96 | |
Skewness | -1.97 | 1.45 | 1.76 | 0.54 | 3.37 | 2.95 | 0.74 | 0.92 | 1.08 | 2.13 | 3.23 | 0.75 | |
South | Min | 6.52 | 6.11 | 3.69 | 1.10 | 0.00 | 0.19 | 0.38 | 2.95 | 0.31 | 1.29 | 0.40 | 2.08 |
Max | 8.07 | 583 | 512 | 149 | 2.72 | 58.7 | 23.7 | 305 | 9.84 | 356 | 19.2 | 18.3 | |
Mean | 7.57 | 187 | 163 | 44.5 | 0.77 | 12.5 | 4.32 | 98.6 | 0.96 | 74.4 | 1.74 | 8.46 | |
Median | 7.66 | 131 | 128 | 38.4 | 0.64 | 5.30 | 3.02 | 74.3 | 0.57 | 38.3 | 1.04 | 6.95 | |
SD | 0.36 | 156 | 146 | 36.0 | 0.68 | 15.2 | 4.68 | 90.6 | 1.68 | 95.7 | 2.71 | 4.04 | |
Skewness | -1.11 | 0.92 | 0.90 | 0.85 | 0.76 | 1.44 | 1.92 | 0.93 | 4.47 | 1.51 | 5.30 | 0.68 | |
Northeast | Min | 6.87 | 119 | 148 | 40.6 | 0.34 | 4.44 | 0.99 | 162 | 0.97 | 3.35 | 0.92 | 3.51 |
Max | 8.14 | 330 | 462 | 81.9 | 2.87 | 71.0 | 20.6 | 298 | 12.4 | 139 | 16.3 | 14.0 | |
Mean | 7.66 | 198 | 231 | 59.9 | 1.40 | 19.5 | 6.50 | 238 | 3.11 | 24.5 | 4.38 | 8.22 | |
Median | 7.77 | 198 | 224 | 58.1 | 1.00 | 17.1 | 4.34 | 250 | 2.54 | 15.7 | 2.09 | 8.04 | |
SD | 0.40 | 47.7 | 66.8 | 12.0 | 0.76 | 14.4 | 5.48 | 37.2 | 2.58 | 31.2 | 3.96 | 2.64 | |
Skewness | -0.68 | 0.91 | 2.27 | 0.14 | 0.47 | 2.54 | 1.55 | -0.28 | 2.70 | 2.90 | 1.59 | 0.34 |
Table 3
Distribution of water samples exceeding the drinking water standards in border areas of the Qinghai-Tibet Plateau"
Parameters | GB | WHO | Number of exceeding the drinking water standards | ||
---|---|---|---|---|---|
(MH 2007) | (WHO 2008) | West | South | Northeast | |
pH | 6.5-8.5 | 6.5-9.5 | 9 (50%) | 0 | 0 |
TDS | 1000 | 1000 | 0 | 0 | 0 |
TH | 450 | 500 | 0 | 4 (7.5%) | 1 (5.9%) |
Ca2+ | - | 300 | 0 | 0 | 0 |
Mg2+ | - | 300 | 0 | 0 | 0 |
Na+ | 200 | 200 | 0 | 0 | 0 |
Cl- | 250 | 250 | 0 | 0 | 0 |
SO42- | 250 | 250 | 0 | 6 (11%) | 0 |
NO3- | 44 | 50 | 0 | 0 | 0 |
Figure 6
Scatter diagrams of (a) Cl-+SO42- and HCO3-, (b) Ca2++Mg2+ and HCO3-, (c) Ca2++Mg2+ and SO42-, (d) Ca2++Mg2+ and HCO3-+SO42-, (e) Ca2 +/SO42- and Mg2+/SO42-, (f) Na+ and HCO3-, (g) Na+ and SO42-, (h) Na+ and Cl-, (i) Na++K+ and Cl-, (j) Ca2++Mg2+ and Na++K+ for the water samples in different border area of the Qinghai-Tibet Plateau"
Table 4
Values of anthropogenic input geochemical variables in water compared with GB and WHO drinking water standards"
Parameter | Border area of QT | GB | WHO | ||
---|---|---|---|---|---|
Western | Southern | Northeastern | (MH 2007) | (WHO 2008) | |
NO2- (mg/L) | n.a. | 0.02 | 0.08 | - | 3 |
NO3- (mg/L) | 3.41 | 1.71 | 4.38 | 44 | 50 |
SO42- (mg/L) | 46.91 | 74.45 | 24.53 | 250 | 250 |
PO43- (mg/L) | n.a. | n.a. | n.a. | - | - |
Table 5
Results of the PCA vectors, eigenvalues and % of variance"
No. | West | South | Northeast | |||
---|---|---|---|---|---|---|
Eigenvalue | % of variance | Eigenvalue | % of variance | Eigenvalue | % of variance | |
1 | 7.3178 | 52.2703 | 6.9330 | 49.5215 | 6.9762 | 49.8304 |
2 | 3.4631 | 24.7362 | 2.1551 | 15.3934 | 2.3914 | 17.0814 |
3 | 1.1666 | 8.3326 | 1.4682 | 10.4873 | 1.9171 | 13.6934 |
4 | 0.6698 | 4.7843 | 0.9467 | 6.7622 | 1.1243 | 8.0310 |
5 | 0.4954 | 3.5387 | 0.7184 | 5.1313 | 0.7262 | 5.1872 |
6 | 0.3340 | 2.3859 | 0.7059 | 5.0418 | 0.5176 | 3.6968 |
7 | 0.2622 | 1.8729 | 0.4028 | 2.8774 | 0.1330 | 0.9501 |
8 | 0.1449 | 1.0349 | 0.3045 | 2.1753 | 0.1023 | 0.7308 |
9 | 0.1013 | 0.7236 | 0.2039 | 1.4561 | 0.0677 | 0.4835 |
10 | 0.0368 | 0.2627 | 0.0923 | 0.6594 | 0.0241 | 0.1724 |
11 | 0.0076 | 0.0542 | 0.0662 | 0.4728 | 0.0196 | 0.1397 |
12 | 0.0005 | 0.0037 | 0.0019 | 0.0135 | 0.0005 | 0.0034 |
13 | 0.0000 | 0.0000 | 0.0011 | 0.0079 | 0.0000 | 0.0000 |
14 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Figure 8
PCA results for variables: (a) component 1 and component 2 of water samples in the western border area, (b) component 1 and component 3 of water samples in the western border area; (c) component 1 and component 2 of water samples in the southern border area, and (d) component 1 and component 3 of water samples in the southern border area; (e) component 1 and component 2 of water samples in the northeastern border area, and (f) component 1 and component 3 of water samples in the northeastern border area of the Qinghai-Tibet Plateau"
[1] | Ahmad T, Khanna P P, Chakrapani G J et al., 1998. Geochemical characteristics of water and sediment of the Indus river, Trans-Himalaya, India: Constraints on weathering and erosion. Journal of Asian Earth Sciences, 16(2/3):333-346. |
[2] | Cao D , 2013. Yangtze River source area water environment and hydrochemistry background characteristic [D]. Beijing: Engineering China University of Geosciences (Beijing). (in Chinese) |
[3] | Cao J, Zhao Y, Liu J et al., 2000. Fluoride concentrations of water sources in Tibet. Fluoride, 33(4):205-209. |
[4] | Chang H, Xu W, Yuan J et al., 2012. Current situation of grassland resources and grazing capacity in Ali, Tibet. Pratacultural Science, 29(11):1660-1664. (in Chinese) |
[5] | Chen J, Wang F, Xia X et al., 2002. Major element chemistry of the Changjiang (Yangtze River). Chemical Geology, 187(3/4):231-255. |
[6] | Cruz J V L, Amaral C S , 2004. Major ion chemistry of groundwater from perched-water bodies of the Azores (Portugal) volcanic archipelago. Applied Geochemistry, 19(3):445-459. |
[7] | Dalai T K, Krishnaswami S, Sarin M M , 2002. Major ion chemistry in the headwaters of the Yamuna river system: Chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochimica et Cosmochimica Acta, 66(19):3397-3416. |
[8] | Deng W , 1988. Research on fundamental characteristic of hydrochemistry in the region of the Changjiang River headwater. Scientia Geographica Sinica, 8(4):363-370. (in Chinese) |
[9] | Gao T, Kang S, Zhang Q et al., 2008. Major ionic features and their sources in the Nam Co Basin over the Tibetan Plateau. Environmental Science, 29(11):3009-3016. (in Chinese) |
[10] | Gibbs R J , 1970. Mechanisms controlling world water chemistry. Science, 170(3962):1088-1090. |
[11] | Grange M L, Mathieu F, Begaux F et al., 2001. Kashin-Beck disease and drinking water in Central Tibet. International Orthopaedics, 25(3):167-169. |
[12] | Guo J, Kang S, Zhang Q et al., 2012. Temporal and spatial variations of major ions in Nam Co Lake water, Tibetan Plateau. Environmental Science, 33(7):2295-2302. (in Chinese) |
[13] | Guo Q, Wang Y , 2012. Hydrochemical anomaly of drinking waters in some endemic Kashin-Beck disease areas of Tibet, China. Environmental Earth Sciences, 65(3):659-667. |
[14] | Holloway J M, Dahlgren R A, Hansen B et al., 1998. Contribution of bedrock nitrogen to high nitrate concentrations in stream water. Nature, 395(395):785-788. |
[15] | Hou S, Xu H, An Z , 2009. Major ion chemistry of waters in Lake Qinghai catchment and the possible controls. Earth & Environment, 37(1):11-19. (in Chinese) |
[16] | Jin Z, Yu J, Wang S et al., 2009. Constraints on water chemistry by chemical weathering in the Lake Qinghai catchment, northeastern Tibetan Plateau (China): Clues from Sr and its isotopic geochemistry. Hydrogeology Journal, 17(8):2037-2048. |
[17] | Ju J, Zhu L P, Wang J et al., 2010. Water and sediment chemistry of Lake Pumayum Co, South Tibet, China: Implications for interpreting sediment carbonate. Journal of Paleolimnology, 43(3):463-474. |
[18] | Katz B G, Böhlke J K, Hornsby H D , 2001. Timescales for nitrate contamination of spring waters, northern Florida, USA. Chemical Geology, 179(1-4):167-186. |
[19] | Li S, Wang M, Yang Q et al., 2012. Enrichment of arsenic in surface water, stream sediments and soils in Tibet. Journal of Geochemical Exploration, 135(6):104-116. |
[20] | Li S, Yang L, Wang W et al., 2006. Study on the relationship between selenium concentrations in drinking water and Kaschin-Beck Disease in Tibet. Chinese Journal of Endemiology, 25(4):428-429. (in Chinese) |
[21] | Li S, Zhang Q , 2008. Geochemistry of the upper Han River basin, China, 1: Spatial distribution of major ion compositions and their controlling factors. Applied Geochemistry, 23(12):3535-3544. |
[22] | Lu Y, Li Y, Mimapuchi et al., 2016. Evolution of structural geology and metallogenic unite, Xizang (Tibet) Autonomous Region. Geological Review, 62(b11):219-220. (in Chinese) |
[23] | Meenakshi, Maheshwari R C , 2006. Fluoride in drinking water and its removal. Journal of Hazardous Materials, 137(1):456-463. |
[24] | Meybeck M , 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5):401-428. |
[25] | Meybeck M, Helmer R , 1989. The quality of rivers: From pristine stage to global pollution. Palaeogeography Palaeoclimatology Palaeoecology, 75(4):283-309. |
[26] | Ministry of Environment Protection of the People’s Republic of China (MEP), 2002. Methods for Chemical Analysis of Water and Waste Water. Beijing: China Environmental Science Press. (in Chinese) |
[27] | Ministry of Health of the People’s Republic of China (MH), 2007. Standards Examination Methods for Drinking Water GB/T 5750-2006. Beijing: China Standards Press. (in Chinese) |
[28] | Ministry of Health of the People’s Republic of China (MH), 2007. Standards for Drinking Water Quality GB 5749-2006. Beijing: China Standards Press. (in Chinese) |
[29] | National Bureau of Statistics of People’s Republic of China (NBS), 2017. China Statistical Yearbook 2017. Beijing: China Statistics Press. (in Chinese) |
[30] | Nemeth A, Paolini J, Herrera R , 1982. Carbon transport in the Orinoco River: The preliminary results. Nairobi, Kenya, Scientific Committee on Problems of the Environment/United Nations Environment Programme Sonderband Heft. |
[31] | Nie L , 2011. Analysis of microbial indicators of drinking water in rural areas of six counties in Tibet. Tibet Medical Journal, 32(1):56-57. (in Chinese) |
[32] | Piper A M , 1944. A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union, 25(6):914-928. |
[33] | Reeder S W, Hitchon B, Levinson A A , 1972. Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada (I): Factors controlling inorganic composition. Geochimica et Cosmochimica Acta, 36(8):825-865. |
[34] | Roy S, Gaillardet J, Allègre C J , 1999. Geochemistry of dissolved and suspended loads of the Seine River, France: Anthropogenic impact, carbonate and silicate weathering. Geochimica et Cosmochimica Acta, 63(9):1277-1292. |
[35] | Sarin M M, Krishnaswami S , 1984. Major ion chemistry of the Ganga-Brahmaputra river systems, India. Nature, 312(5994):538-541. |
[36] | Sarin M M, Krishnaswami S, Dilli K et al., 1989. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 53(5):997-1009. |
[37] | Shen Z, Zhu W, Zhong Z , 1993. Hydrogeochemical Basis. Beijing: Geological Publishing House. (in Chinese) |
[38] | Sheng Y, Rui Y, Yu Y , 2012. Heavy metal pollution in water of rivers and lake in Tibet by ICP-MS. Asian Journal of Chemistry, 24(11):5403-5404. |
[39] | Sun H, Zheng D, Yao T et al., 2012. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica, 67(1):3-12. (in Chinese) |
[40] | Sun R, Zhang X, Wu Y , 2012. Major ion chemistry of water and its controlling factors in the Yamzhog Yumco Basin, South Tibet. Journal of Lake Sciences, 24(4):600-608. (in Chinese) |
[41] | Sun R, Zhang X, Zheng D , 2013. Spatial variation and its causes of water chemical property in Yamzhog Yumco Basin, South Tibet. Acta Geographica Sinica, 68(1):36-44. (in Chinese) |
[42] | Tan L, Li F, Li Z et al., 2016. Study on groundwater characteristics and development in permafrost region of Tuotuo River. Yellow River, 38(5):62-67. (in Chinese) |
[43] | Tian Y, Yu C, Luo K et al., 2015. Hydrochemical characteristics and element contents of natural waters in Tibet, China. Journal of Geographical Sciences, 25(6):669-686. |
[44] | Tian Y, Yu C, Zha X et al., 2016. Distribution and potential health risks of arsenic, selenium, and fluorine in natural waters in Tibet, China. Water, 8(12):568. |
[45] | United States Environmental Protection Agency (EPA), 1993. Determination of inorganic anions by ion chromatography. Cincinnati, Ohio 45268, Environmental Protection Agency Environmental Monitoring Systems Laboratory Office of Research and Decelopment. |
[46] | Wang J, Ju J, Zhu L , 2013. Water chemistry variations of lake and inflowing rivers between pre- and post-monsoon season in Nam Co, Tibet. Scientia Geographica Sinica, 33(1):90-96. (in Chinese) |
[47] | Wang L , 2016. Study on hydrochemical characteristics and its influencing factors in Yarlung Tsangpo River Basin [D]. Beijing: University of Chinese Academy of Sciences. (in Chinese) |
[48] | Wang M, Li S, Wang H et al., 2012. Distribution of arsenic in surface water in Tibet. Environmental Science, 33(10):3411-3416. (in Chinese) |
[49] | World Health Organization (WHO), 2008. Guidelines for drinking-water quality. Geneva, World Health Organization: 186. |
[50] | Wu W, Yang J, Xu S et al., 2008. Geochemistry of the headwaters of the Yangtze River, Tongtian He and Jinshajiang: Silicate weathering and CO consumption. Applied Geochemistry, 23(12):3712-3727. |
[51] | Xiao J, Jin Z, Zhang F et al., 2012. Major ion geochemistry of shallow groundwater in the Qinghai Lake catchment, NE Qinghai-Tibet Plateau. Environmental Earth Sciences, 67(5):1331-1344. |
[52] | Yao T, Thompson L G, Qin D et al., 1996. Variations in temperature and precipitation in the past 2000 a on the Xizang (Tibet) Plateau-Guliya ice core record. Science in China (Series D), 39(4):425-433. |
[53] | Yao Z, Rui W, Liu Z et al., 2015. Spatial-temporal patterns of major ion chemistry and its controlling factors in the Manasarovar Basin, Tibet. Journal of Geographical Sciences, 25(6):687-700. |
[54] | Zhang M, Gustafsson J E , 1995. The Tibetan Water Environment: Water Chemistry of Some Surface Waters in Southern Tibet. Ambio, 24(6):385-387. |
[55] | Zhang X, He Y, Shen Z et al., 2015. Frontier of the ecological construction support the sustainable development in Tibet Autonomous Region. Bulletin of Chinese Academy of Sciences, (3):306-312. (in Chinese) |
[56] | Zhang X, Li X, Budu et al., 2013. Analysis on sanitary surveillance of drinking water quality in Nyingchi region of Tibet in 2011. Tibet Medical Journal, 34(1):62-64. (in Chinese) |
[57] | Zhang X, Sun R, Zhu L , 2012. Lake water in the Yamzhog Yumco basin in south Tibetan region: Quality and evaluation. Journal of Glaciology and Geocryology, 34(4):950-958. (in Chinese) |
[58] | Zhang Y, Li B, Zheng D , 2002. A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 21(1):1-8. (in Chinese) |
[59] | Zhao T, Chen Y, Yao W et al., 2017. The spatiotemporal distribution of two bacterial indexes in a small Tibetan Plateau watershed. Water, 9(11):823. |
[60] | Zhe M, Zhang X, Wang B et al., 2017. Hydrochemical regime and its mechanism in Yamzhog Yumco Basin, South Tibet. Journal of Geographical Sciences, 27(9):1111-1122. |
[61] | Zheng D, Tan J, Wang W , 2007. Environmental Geosciences Introduction. Beijing: Higher Education Press. |
[62] | Zhu B, Yang X , 2007. Chemical characteristics and origin of natural water in the Taklimakan Desert. Chinese Science Bulletin, 52(13):1561-1566. (in Chinese) |
[63] | Zhu L, Ju J, Yong W et al., 2010. Composition, spatial distribution, and environmental significance of water ions in Pumayum Co catchment, southern Tibet. Journal of Geographical Sciences, 20(1):109-120. |
[1] | GAO Ge, CHEN Deliang, REN Guoyu, CHEN Yu, LIAO Yaoming. Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956-2000 [J]. Journal of Geographical Sciences, 2006, 16(1): 3-12. |
[2] | ZHANG Zu-lu, JIANG Lu-guang, YANG Li-yuan, QI Yong-hua. Ground water hydrochemical characteristics:seawater intruded area in eastern and southern coast of Laizhou Bay [J]. Journal of Geographical Sciences, 2001, 11(3): 350-355. |
|