Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (7): 1113-1126.doi: 10.1007/s11442-019-1648-4
• Orginal Article • Previous Articles Next Articles
Xiaoyun HOU1,2(), Shengyan DING1,2,*(
), Shuang ZHAO1,2, Xiaobo LIU1,2
Received:
2018-05-10
Accepted:
2019-01-22
Online:
2019-07-25
Published:
2019-07-25
Contact:
Shengyan DING
E-mail:houxiaoyun526@126.com;syding@henu.edu.cn
About author:
Author: Hou Xiaoyun (1989-), PhD Candidate, specialized in ground arthropods research. E-mail:
Supported by:
Xiaoyun HOU, Shengyan DING, Shuang ZHAO, Xiaobo LIU. The response of spiders to less-focused non-crop habitats in the agricultural landscape along the lower reach of the Yellow River[J].Journal of Geographical Sciences, 2019, 29(7): 1113-1126.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Explanatory variables at the local (50 m) and landscape (100, 200, 350 and 500 m radii buffers) scales"
Variables | Spatial scale (m) | Range (min-max)% | Mean ± SD |
---|---|---|---|
Crop cover | Local | 0-94 | 27.3±25.3 |
Woodland cover | Local | 4-99 | 63±25.1 |
Distance from road (m) | Local | 18.2-1269.5 | 434.1±397.2 |
Crop cover | Landscape (100 m) | 8.1-91.2 | 44.1±20.3 |
Woodland cover | Landscape (100 m) | 3-82 | 41.4±19.1 |
LNH cover | Landscape (100 m) | 0-15.3 | 3.2±5.4 |
Crop cover | Landscape (200 m) | 28-84.5 | 55.7±14.5 |
Woodland cover | Landscape (200 m) | 5.2-56.7 | 26.2±12.1 |
LNH cover | Landscape (200 m) | 0-30 | 3.4±6.5 |
Crop cover | Landscape (350 m) | 35.5-81.5 | 60.4±11.4 |
Woodland cover | Landscape (350 m) | 3-47.7 | 18.4±9.8 |
LNH cover | Landscape (350 m) | 0-24.8 | 3.6±5.3 |
Crop cover | Landscape (500 m) | 38.5-82.6 | 62.5±10.6 |
Woodland cover | Landscape (500 m) | 3.9-42.8 | 15.5±8.6 |
LNH cover | Landscape (500 m) | 0.2-19.8 | 4.1±6.1 |
Table 2
Results of the information theoretic model selection and multi-model inference explaining spiders at the local (50 m) and landscape (100, 200, 350 and 500 m) scales"
Model | Spatial scale | Adjusted R2 | Loglik | df | AICc | Wi | |
---|---|---|---|---|---|---|---|
Model 1 | 0.177 | -5.5798 | 8 | 32.2505 | |||
Crop cover | Local | 0.29 | |||||
Woodland cover | Local | 0.17 | |||||
Distance from road (m) | Local | 0.18 | |||||
Crop cover | Landscape (100 m) | 0.21 | |||||
Woodland cover | Landscape (100 m) | 0.07 | |||||
LNH cover | Landscape (100 m) | 0.06 | |||||
Model 2 | 0.052 | -7.7082 | 8 | 36.5073 | |||
Crop cover | Local | 0.34 | |||||
Woodland cover | Local | 0.20 | |||||
Distance from road (m) | Local | 0.21 | |||||
Crop cover | Landscape (200 m) | 0.09 | |||||
Woodland cover | Landscape (200 m) | 0.07 | |||||
LNH cover | Landscape (200 m) | 0.08 | |||||
Model 3 | 0.148 | -6.1067 | 8 | 33.3043 | |||
Crop cover | Local | 0.30 | |||||
Woodland cover | Local | 0.18 | |||||
Distance from road (m) | Local | 0.19 | |||||
Crop cover | Landscape (350 m) | 0.06 | |||||
Woodland cover | Landscape (350 m) | 0.06 | |||||
LNH cover | Landscape (350 m) | 0.21 | |||||
Model 4 | 0.170 | -5.7152 | 8 | 32.5213 | |||
Crop cover | Local | 0.24 | |||||
Woodland cover | Local | 0.15 | |||||
Distance from road (m) | Local | 0.15 | |||||
Crop cover | Landscape (500 m) | 0.05 | |||||
Woodland cover | Landscape (500 m) | 0.05 | |||||
LNH cover | Landscape (500 m) | 0.36 |
Table 3
Responses of spiders to LNH cover at 500 m scale by indicator species analysis"
Taxa | Family | LNH coverage classes (500 m) and indicator values | ||
---|---|---|---|---|
Low | Medium | High | ||
Pardosa astrigena | Lycosidae | 0.13 | 0.25 | 0.49 |
Pirata piratoides | Lycosidae | 0.03 | 0.17 | 0.29 |
Trochosa ruricola | Lycosidae | 0.01 | 0.08 | 0.48 |
Alopecosa albostriata | Lycosidae | 0 | 0.02 | 0.44 |
Lycosidae Larvae | Lycosidae | 0.10 | 0 | 0 |
Gnaphosa kansuensis | Gnaphosidae | 0.10 | 0.13 | 0.34 |
Drassyllus shaanxiensis | Gnaphosidae | 0.13 | 0.20 | 0.40 |
Hitobia unifascigera | Gnaphosidae | 0.13 | 0.21 | 0.39 |
Pseudodrassus pichoni | Gnaphosidae | 0 | 0 | 0.10 |
Erigone prominens | Linyphiidae | 0.25 | 0.11 | 0.30 |
Ummeliata insecticeps | Linyphiidae | 0.04 | 0.14 | 0.17 |
Xysticus hedini | Thomisidae | 0 | 0.03 | 0.20 |
Xysticus ephippiafus | Thomisidae | 0.11 | 0.05 | 0.11 |
Xysticus pseudoblitea | Thomisidae | 0 | 0 | 0.10 |
Evarcha albaria | Salticidae | 0 | 0.10 | 0.10 |
Myrmarachne formicaria | Salticidae | 0 | 0.05 | 0.05 |
Enoplognatha japonica | Theridiidae | 0.03 | 0.03 | 0.05 |
Achaearanea asiatica | Theridiidae | 0 | 0.10 | 0 |
Pholcus crypticolens | Pholcus | 0 | 0.10 | 0 |
Nurscia albofasciata | Titanoecidae | 0 | 0 | 0.20 |
Atypus heterothecus | Atypidae | 0 | 0 | 0.10 |
Figure 4
Abundance and richness of spiders in relation to LNH cover (500 m). The three LNH cover classes are based on the combination of orchard, wetland, pit and ditch areas at 500 m scale: 1) high LNH cover (High); 2) medium LNH cover (Medium); and 3) low LNH cover (Low). In the first row (a, b) the symbol (*) among LNH cover classes (High, Medium and Low) indicates significant differences in abundance and richness of spiders. The second row (c, d) shows the logistic trend-line of the abundance (or richness) and LNH cover."
1 |
Aviron S, Burel F, Baudry J et al., 2005. Carabid assemblages in agricultural landscapes: Impacts of habitat features, landscape context at different spatial scales and farming intensity. Agriculture, Ecosystems and Environment, 108(3): 205-217.
doi: 10.1016/j.agee.2005.02.004 |
2 |
Batáry P, Báldi A, Samu F et al., 2008. Are spiders reacting to local or landscape scale effects in Hungarian pastures?Biological Conservation, 141(8): 2062-2070.
doi: 10.1016/j.biocon.2008.06.002 |
3 |
Bennett A F, Radford J Q, Haslem A, 2006. Properties of land mosaics: Implications for nature conservation in agricultural environments. Biological Conservation, 133(2): 250-264.
doi: 10.1016/j.biocon.2006.06.008 |
4 |
Benton T G, Vickery J A, Wilson J D, 2003. Farmland biodiversity: Is habitat heterogeneity the key?Trends in Ecology and Evolution, 18(4): 182-188.
doi: 10.1016/S0169-5347(03)00011-9 |
5 | Billeter R, Liira J, Bailey D et al., 2008. Indicators for biodiversity in agricultural landscapes: A pan-European study. Journal of Applied Ecology, 45(1): 141-150. |
6 |
Bird S, Coulson R N, Crossley D A J, 2000. Impacts of silvicultural practices on soil and litter arthropod diversity in a Texas pine plantation. Forest Ecology and Management, 131(1): 65-80.
doi: 10.1016/S0378-1127(99)00201-7 |
7 |
Butchart S H M, Walpole1 M, Collen B et al., 2010. Global biodiversity: Indicators of recent declines. Science, 328(5982): 1164-1168.
doi: 10.1126/science.1187512 |
8 |
Carrete M, Tella J L, Blanco G et al., 2009. Effects of habitat degradation on the abundance, richness and diversity of raptors across Neotropical biomes. Biological Conservation, 142(10): 2002-2011.
doi: 10.1016/j.biocon.2009.02.012 |
9 | Carnus J M, Parrotta J, Brockerhoff E et al., 2006. Planted forests and biodiversity. Journal of Forestry, 104(2): 65-77. |
10 | Carvell C, Meek W R, Pywell R F et al.F , 2007. Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. Journal of Applied Ecology, 44(1): 29-40. |
11 | Chang H, Zhang X Z, Duan M C et al., 2012. Spatial distribution pattern of carabid assemblage in agricultural landscape of Miyun County, Beijing. Chinese Journal of Applied Ecology, 23(6): 1545-1550. |
12 |
Conzúlez G, Seastedt T R, 2001. Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology, 82(4): 955-964.
doi: 10.1890/0012-9658(2001)082[0955:SFAPLD]2.0.CO;2 |
13 |
Deyn G B D, Raaijmakers C E, Zommer H R et al., 2003. Soil invertebrate fauna enhances grassland succession and diversity. Nature, 422(6933): 711-713.
doi: 10.1038/nature01548 |
14 | Diekötter T, Wamser S, Wolters V et al., 2010. Landscape and management effects on structure and function of soil arthropod communities in winter wheat. Agriculture, Ecosystems and Environment, 137(1-2): 108-112. |
15 | Dufrêne M, Legendre P, 1997. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monograph, 67(3): 345-366. |
16 |
Ekroos J, Kuussaari M, Tiainen J et al., 2013. Correlations in species richness between taxa depend on habitat, scale and landscape context. Ecological Indicators, 34(11): 528-535.
doi: 10.1016/j.ecolind.2013.06.015 |
17 |
Ernoult A, Alard D, 2011. Species richness of hedgerow habitats in changing agricultural landscapes: Are α and γ diversity shaped by the same factors?Landscape Ecology, 26(5): 683-696.
doi: 10.1007/s10980-011-9593-3 |
18 | Fahrig L, Nuttle W K, 2005. Issues and Perspectives in Landscape Ecology. New York, USA: Springer-Verlag. |
19 |
Fahrig L, Baudry J, Brotons L et al., 2011. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14(2): 101-112.
doi: 10.1111/j.1461-0248.2010.01559.x |
20 |
Flohre A, Fischer C, Aavik T et al., 2011. Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecological Applications, 21(5): 1772-1781.
doi: 10.1890/10-0645.1 |
21 |
Fournier E, Loreau M, 2001. Respective roles of recent hedges and forest patch remnants in the maintenance of ground-beetle (Coleoptera: Carabidae) diversity in an agricultural landscape. Landscape Ecology, 16(1): 17-32.
doi: 10.1023/A:1008115516551 |
22 | Fu B J, 1995. Landscape diversity analysis and mapping. Acta Ecologica Sinica, 15(4): 345-350. |
23 |
Gardiner M M, Landis D A, Gratton C et al., 2010. Landscape composition influences the activity density of carabidae and arachnida in soybean fields. Biological Control, 55(1): 11-19.
doi: 10.1016/j.biocontrol.2010.06.008 |
24 |
Gurr G M, Wratten S D, Luna J M, 2003. Multi-function agricultural biodiversity: Pest management and other benefits. Basic and Applied Ecology, 4(2): 107-116.
doi: 10.1078/1439-1791-00122 |
25 |
Hartley M J, 2002. Rationale and methods for conserving biodiversity in plantation forests. Forest Ecology and Management, 155(1): 81-95.
doi: 10.1016/S0378-1127(01)00549-7 |
26 |
Heiniger C, Barot S, Ponge J F et al., 2014. Effect of habitat spatiotemporal structure on collembolan diversity. Pedobiologia, 57(2): 103-117.
doi: 10.1016/j.pedobi.2014.01.006 |
27 |
Hendrickx F, Maelfait J P, Wingerden W V et al., 2007. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. Journal of Applied Ecology, 44(2): 340-351.
doi: 10.1111/jpe.2007.44.issue-2 |
28 |
Herrmann J D, Bailey D, Hofer G et al., 2010. Spiders associated with the meadow and tree canopies of orchards respond differently to habitat fragmentation. Landscape Ecology, 25(7): 1375-1384.
doi: 10.1007/s10980-010-9518-6 |
29 |
Huhta V, 2007. The role of soil fauna in ecosystems: A historical review. Pedobiologia, 50(6): 489-495.
doi: 10.1016/j.pedobi.2006.08.006 |
30 | Horváth R, Magura T, Szinetár C et al., 2015. In stable, unmanaged grasslands local factors are more important than landscape-level factors in shaping spider assemblages. Agriculture, Ecosystems & Environment, 208: 106-113. |
31 |
Jenkins M, Green R E, Madden J, 2003. The challenge of measuring global change in wild nature: Are things getting better or worse?Conservation Biology, 17(1): 20-23.
doi: 10.1046/j.1523-1739.2003.01719.x |
32 |
Karp D S, Mendenhall C D, Sand R F et al., 2013. Forest bolsters bird abundance, pest control and coffee yield. Ecology Letters, 16: 1339-1347.
doi: 10.1111/ele.12173 |
33 |
Kerr J T, Sugar A, Packer L, 2000. Indicator taxa, rapid biodiversity assessment, and nestedness in an endangered ecosystem. Conservation Biology, 14(6): 1726-1734.
doi: 10.1111/cbi.2000.14.issue-6 |
34 |
Kiss B, Samu F, 2000. Evaluation of population densities of the common wolf spider Pardosa agrestis (Araneae: Lycosidae) in Hungarian alfalfa fields using mark recapture. European Journal of Entomology, 97(2): 191-195.
doi: 10.14411/eje.2000.036 |
35 |
Kleijn D, Kohler F, Báldi A et al., 2009. On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of Biological Sciences, 276(1658): 903-909.
doi: 10.1098/rspb.2008.1509 |
36 |
Kleijn D, Rundlöf M, Scheper J et al., 2011. Does conservation on farmland contribute to halting the biodiversity decline?Trends in Ecology and Evolution, 26(9): 474-481.
doi: 10.1016/j.tree.2011.05.009 |
37 |
Kleijn D, Verbeek M, 2000. Factors affecting the species richness of arable field boundary vegetation. Journal of Applied Ecology, 37(2): 256-266.
doi: 10.1046/j.1365-2664.2000.00486.x |
38 |
Lavelle P, Decaëns T, Aubert M et al., 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42(Suppl.1): S3-S15.
doi: 10.1016/j.ejsobi.2006.10.002 |
39 |
Lazzerini G, Camera A, Benedettelli S et al., 2007. The role of field margins in agro-biodiversity management at the farm level. Italian Journal of Agronomy, 2(2): 127-134.
doi: 10.4081/ija.2007.127 |
40 | Li J L, Tang J C, Zhao C Y et al., 2013. Effects of different landscape patch structure on the diversity of arthropod community in tea plantations. Chinese Journal of Applied Ecology, 24(5): 1305-1312. |
41 |
Li L, Tang C, Rengel Z et al., 2004. Calcium, magnesium and microelement uptake as affected by phosphorus sources and interspecific root interactions between wheat and chickpea. Plant and Soil, 261(1/2): 29-37.
doi: 10.1023/B:PLSO.0000035579.39823.16 |
42 | Liu X B, 2016. Effects of agricultural landscape structure and habitat characteristics ground-dwelling spiders in typical regions of the lower reaches of the Yellow River [D]. Kaifeng: Henan University. |
43 |
Liu Y, Yu Z, Gu W et al., 2006. Diversity of carabids (Coleoptera, Carabidae) in the desalinized agricultural landscape of Quzhou County, China. Agriculture, Ecosystems and Environment, 113(1-4): 45-50.
doi: 10.1016/j.agee.2005.08.035 |
44 | Liu Y H, Yu Z R, Liu Y, 2004. Temporal and spatial structure of carabid community in agricultural landscape of Dongbeiwang, Beijing. Chinese Journal of Applied Ecology, 15(1): 85-90. |
45 |
Louzada J, Lima A P, Matavelli R et al., 2010. Community structure of dung beetles in Amazonian savannas: Role of fire disturbance, vegetation and landscape structure. Landscape Ecology, 25(4): 631-641.
doi: 10.1007/s10980-010-9448-3 |
46 | Lu X L, Liang G F, Tang Q et al., 2014. Plant species of the non-agricultural habitats in the lower reaches of the Yellow River plain agro-landscape. Acta Ecologica Sinica, 34(4): 789-797. |
47 |
Maharning A R, Mils A A S, Adl S M, 2009. Soil community changes during secondary succession to naturalized grassland. Applied Soil Ecology, 41(2): 137-147.
doi: 10.1016/j.apsoil.2008.11.003 |
48 |
Maisonhaute J É, Peres-Neto P, Lucas É, 2010. Influence of agronomic practices, local environment and landscape structure on predatory beetle assemblage. Agriculture, Ecosystems and Environment, 139(4): 500-507.
doi: 10.1016/j.agee.2010.09.008 |
49 | MEA, 2005. Millennium Ecosystem Assessment. Washington: Island Press. |
50 | Montgomery D C, Peck E A, Vining G G et al., 2016. Introduction to linear regression analysis. 5th ed. Beijing: China Machine Press, 91-268. (in Chinese) |
51 |
Öberg S, Mayr S, Dauber J, 2008. Landscape effects on recolonisation patterns of spiders in arable fields. Agriculture, Ecosystems and Environment, 123(1-3): 211-218.
doi: 10.1016/j.agee.2007.06.005 |
52 |
Pereira H M, Daily G C, 2006. Modeling biodiversity dynamics in countryside landscapes. Ecology, 87(8): 1877-1885.
doi: 10.1890/0012-9658(2006)87[1877:MBDICL]2.0.CO;2 |
53 |
Pimm S L, Raven P, 2000. Extinction by numbers. Nature, 403(6772): 843-845.
doi: 10.1038/35002708 |
54 |
Pryke J S, Samways M J, 2009. Recovery of invertebrate diversity in a rehabilitated city landscape mosaic in the heart of a biodiversity hotspot. Landscape and Urban Planning, 93(1): 54-62.
doi: 10.1016/j.landurbplan.2009.06.003 |
55 | R Development Core Team (RDCT), 2011. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, URL . |
56 |
Ricci B, Franck P, Toubon J F et al., 2009. The influence of landscape on insect pest dynamics: A case study in southeastern France. Landscape Ecology, 24(3): 337-349.
doi: 10.1007/s10980-008-9308-6 |
57 |
Robertson L N, Kettle B A, Simpson G B, 1994. The influence of tillage practices on soil macrofauna in a semi-arid agroecosystem in northeastern Australia. Agriculture, Ecosystems and Environment, 48(2): 149-156.
doi: 10.1016/0167-8809(94)90085-X |
58 |
Rossi J P, 2011. Extrapolation and biodiversity indicators: Handle with caution!Ecological Indicators, 11(5): 1490-1491.
doi: 10.1016/j.ecolind.2010.09.002 |
59 |
Rusch A, Valantin-Morison M, Sarthou J P et al., 2013. Effect of crop management and landscape context on insect pest populations and crop damage. Agriculture, Ecosystems and Environment, 166(15): 118-125.
doi: 10.1016/j.agee.2011.05.004 |
60 |
Schmidt M H, Roschewitz I C, Tscharntke T, 2005. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. Journal of Applied Ecology, 42(2): 281-287.
doi: 10.1111/j.1365-2664.2005.01014.x |
61 | Schmidt M H, Thies C, Nentwig W et al., 2008. Contrasting responses of arable spiders to the landscape matrix at different spatial scales. Journal of Biogeography, 35(1): 157-166. |
62 |
Schmidt M H, Tscharntke T, 2005. Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. Journal of Biogeography, 32(3): 467-473.
doi: 10.1111/jbi.2005.32.issue-3 |
63 |
Schneider S, Widmer F, Jacot K et al., 2012. Spatial distribution of Metarhizium clade 1 in agricultural landscapes with arable land and different semi-natural habitats. Applied Soil Ecology, 52: 20-28.
doi: 10.1016/j.apsoil.2011.10.007 |
64 |
Steffan-dewenter I, Münzenberg U, Bürger C et al., 2002. Scale-dependent effects of landscape context on three pollinator guilds. Ecology, 83(5): 1421-1432.
doi: 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 |
65 | Tang Q, Liang G F, Lu X L et al., 2014. Effects of corridor networks on plant species composition and diversity in an intensive agriculture landscape. Chinese Geographical Science, 24(1): 93-103. |
66 |
Tscharntke T, Klein A M, Kruess A et al., 2005. Landscape perspectives on agricultural intensification and biodiversity ecosystem service management. Ecology Letters, 8(8): 857-874.
doi: 10.1111/ele.2005.8.issue-8 |
67 |
Vackar D, Chobot K, Orlitova K, 2012. Spatial relationship between human population density, land use intensity and biodiversity in the Czech Republic. Landscape Ecology, 27(9): 1279-1290.
doi: 10.1007/s10980-012-9779-3 |
68 | Venables W N, Ripley B D, 2002. Modern Applied Statistics with S. 4th ed. New York: Springer, . |
69 | Yin X, 2001. Research of Forest Soil Fauna in Northeast China. Changchun: Northeast Normal University Press. |
70 |
Zhang F, Shen J, Li L et al., 2004. An overview of rhizosphere processes related with plant nutrition in major cropping systems in China. Plant and Soil, 260(1/2): 89-99.
doi: 10.1023/B:PLSO.0000030192.15621.20 |
71 |
Zhang M Y, Wang K L, Liu H Y et al., 2018. Effect of ecological engineering projects on ecosystem services in a karst region: A case study of northwest Guangxi, China. Journal of Cleaner Production, 183: 831-842.
doi: 10.1016/j.jclepro.2018.02.102 |
72 |
Zhu Y, Chen H, Fan J et al., 2000. Genetic diversity and disease control in rice. Nature, 406(6797): 718-722.
doi: 10.1038/35021046 |
[1] | Li ZENG, Jing LI. A Bayesian belief network approach for mapping water conservation ecosystem service optimization region [J]. Journal of Geographical Sciences, 2019, 29(6): 1021-1038. |
[2] | Rubo ZHOU, Meizhen LIN, Jianzhou GONG, Zhuo WU. Spatiotemporal heterogeneity and influencing mechanism of ecosystem services in the Pearl River Delta from the perspective of LUCC [J]. Journal of Geographical Sciences, 2019, 29(5): 831-845. |
[3] | Yuanyuan LI, Minghong TAN, Haiguang HAO. The impact of global cropland changes on terrestrial ecosystem services value, 1992-2015 [J]. Journal of Geographical Sciences, 2019, 29(3): 323-333. |
[4] | WANG Pengtao,ZHANG Liwei,LI Yingjie,JIAO Lei,WANG Hao,YAN Junping,Lü Yihe,FU Bojie. Spatio-temporal variations of the flood mitigation service of ecosystem under different climate scenarios in the Upper Reaches of Hanjiang River Basin, China [J]. Journal of Geographical Sciences, 2018, 28(10): 1385-1398. |
[5] | DU Bingzhen,ZHEN Lin,HU Yunfeng,YAN Huimin,DE GROOT Rudolf,LEEMANS Rik. Comparison of ecosystem services provided by grasslands with different utilization patterns in China’s Inner Mongolia Autonomous Region [J]. Journal of Geographical Sciences, 2018, 28(10): 1399-1414. |
[6] | LI Shicheng,WANG Zhaofeng,ZHANG Yili. Crop cover reconstruction and its effects on sediment retention in the Tibetan Plateau for 1900-2000 [J]. Journal of Geographical Sciences, 2017, 27(7): 786-800. |
[7] | LI Yingjie,ZHANG Liwei,YAN Junping,WANG Pengtao,HU Ningke,CHENG Wei,FU Bojie. Mapping the hotspots and coldspots of ecosystem services in conservation priority setting [J]. Journal of Geographical Sciences, 2017, 27(6): 681-696. |
[8] | ZHOU Zhongxue,LI Mengtao. Spatial-temporal change in urban agricultural land use efficiency from the perspective of agricultural multi-functionality: A case study of the Xi’an metropolitan zone [J]. Journal of Geographical Sciences, 2017, 27(12): 1499-1520. |
[9] | DENG Xiangzheng,LI Zhihui,John GIBSON. A review on trade-off analysis of ecosystem services for sustainable land-use management [J]. Journal of Geographical Sciences, 2016, 26(7): 953-968. |
[10] | LEI Kampeng, WANG Zhishi. The value of the ecosystem services and method [J]. Journal of Geographical Sciences, 2003, 13(3): 339-347. |
[11] | ZHANG Na, YU Guirui, YU Zhenliang, ZHAO Shidong. Simulation of leaf area index and biomass at landscape scale [J]. Journal of Geographical Sciences, 2003, 13(2): 139-152. |
[12] | REN Zhiyuan, ZHANG Yanfang, LI Jing. The value of vegetation ecosystem services: a case of Qinling-Daba Mountains [J]. Journal of Geographical Sciences, 2003, 13(2): 195-200. |
|