Journal of Geographical Sciences ›› 2017, Vol. 27 ›› Issue (11): 1413-1427.doi: 10.1007/s11442-017-1443-z
• Research Articles • Previous Articles Next Articles
Jiao WANG1,2(), Weiming CHENG2,*(
), Chenghu ZHOU2, Xinqi ZHENG1
Received:
2017-06-13
Accepted:
2017-07-31
Online:
2017-11-10
Published:
2017-09-07
Contact:
Weiming CHENG
E-mail:wjiao@lreis.ac.cn;chengwm@lreis.ac.cn
About author:
Author: Wang Jiao (1990-), PhD, specialized in planetary geomorphology and spatial analysis. E-mail:
Supported by:
Jiao WANG, Weiming CHENG, Chenghu ZHOU, Xinqi ZHENG. Automatic mapping of lunar landforms using DEM-derived geomorphometric parameters[J].Journal of Geographical Sciences, 2017, 27(11): 1413-1427.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 3
Dendrogram showing the relationships between the 20 landform classes generated by automatic classification within the LQ-8, LQ-11, and LQ-20 test areas. The gray rectangles denote the five major landform types identified manually by assigning geomorphologic interpretations to classes, while the multidimensional distance along the top of the dendrogram is the distance between classes in attribute space."
Table 1
Average values for landform class morphologic parameters within the LQ-8 test area"
Class | Count (pixels) | Elevation (m) | Filled elevation (m) | Slope (degree) | Filled slope (degree) | Relief (m) | Filled relief (m) |
---|---|---|---|---|---|---|---|
1 | 106,694 | -697 | 5787 | 6.17 | 6.17 | 1188 | 1187 |
2 | 262,266 | 512 | 4579 | 6.54 | 6.54 | 1245 | 1244 |
3 | 304,078 | 1216 | 3877 | 6.58 | 6.6 | 1262 | 1261 |
4 | 288,478 | 1794 | 3301 | 6.63 | 6.63 | 1263 | 1262 |
5 | 249,714 | 2257 | 2839 | 6.67 | 6.67 | 1270 | 1272 |
6 | 239,441 | 2618 | 2482 | 6.75 | 6.74 | 1272 | 1273 |
7 | 229,001 | 2890 | 2215 | 6.78 | 6.79 | 1275 | 1276 |
8 | 229,510 | 3112 | 2004 | 6.8 | 6.8 | 1278 | 1278 |
9 | 222,440 | 3306 | 1796 | 6.9 | 6.9 | 1291 | 1291 |
10 | 238,691 | 3491 | 1608 | 6.98 | 6.99 | 1297 | 1297 |
11 | 253,876 | 3676 | 1423 | 6.99 | 6.99 | 1306 | 1306 |
12 | 258,172 | 3864 | 1237 | 7.00 | 7.00 | 1314 | 1313 |
13 | 261,774 | 4062 | 1040 | 7.02 | 7.02 | 1318 | 1318 |
14 | 263,442 | 4281 | 821 | 7.03 | 7.03 | 1325 | 1325 |
15 | 281,458 | 4539 | 562 | 7.03 | 7.03 | 1325 | 1325 |
16 | 308,016 | 4864 | 235 | 7.04 | 7.04 | 1336 | 1336 |
17 | 325,804 | 5280 | -182 | 7.24 | 7.25 | 1346 | 1346 |
18 | 316,858 | 5823 | -723 | 7.31 | 7.32 | 1396 | 1395 |
19 | 224,284 | 6548 | -1443 | 7.55 | 7.55 | 1412 | 1414 |
20 | 102,783 | 7743 | -2634 | 7.74 | 7.75 | 1472 | 1472 |
Table 2
Average values for landform class morphologic parameters within the LQ-11 test area"
Class | Count (pixels) | Elevation (m) | Filled elevation (m) | Slope (degree) | Filled slope (degree) | Relief (m) | Filled relief (m) |
---|---|---|---|---|---|---|---|
1 | 42,808 | -3569 | 8776 | 1.85 | 1.86 | 337 | 337 |
2 | 265,504 | -2766 | 7961 | 1.89 | 1.9 | 338 | 338 |
3 | 330,694 | -2516 | 7709 | 1.91 | 1.91 | 342 | 341 |
4 | 313,714 | -2306 | 7500 | 1.93 | 1.93 | 343 | 343 |
5 | 256,718 | -2139 | 7334 | 1.93 | 1.93 | 344 | 345 |
6 | 192,104 | -1996 | 7201 | 1.97 | 1.97 | 351 | 351 |
7 | 158,366 | -1898 | 7091 | 1.99 | 1.99 | 352 | 352 |
8 | 156,600 | -1808 | 6997 | 2.01 | 2.01 | 354 | 354 |
9 | 191,501 | -1732 | 6921 | 2.01 | 2.01 | 358 | 358 |
10 | 228,543 | -1662 | 6852 | 2.08 | 2.08 | 371 | 371 |
11 | 274,974 | -1594 | 6787 | 2.2 | 2.18 | 383 | 383 |
12 | 320,671 | -1528 | 6723 | 2.22 | 2.22 | 386 | 384 |
13 | 368,498 | -1461 | 6656 | 2.23 | 2.23 | 398 | 398 |
14 | 414,463 | -1389 | 6584 | 2.28 | 2.28 | 407 | 407 |
15 | 433,738 | -1303 | 6497 | 2.62 | 2.62 | 455 | 455 |
16 | 411,237 | -1184 | 6379 | 3.66 | 3.65 | 622 | 621 |
17 | 295,272 | -999 | 6194 | 4.97 | 4.96 | 847 | 847 |
18 | 185,843 | -680 | 5875 | 5.53 | 5.56 | 1116 | 1126 |
19 | 86,950 | -152 | 5349 | 6.75 | 6.74 | 1248 | 1247 |
20 | 38,582 | 856 | 4344 | 7.95 | 7.95 | 1485 | 1484 |
Table 3
Average values for landform class morphologic parameters within the LQ-20 test area"
Class | Count (pixels) | Elevation (m) | Filled elevation (m) | Slope (degree) | Filled slope (degree) | Relief (m) | Filled relief (m) |
---|---|---|---|---|---|---|---|
1 | 13,103,851 | -5184 | -184 | 6.84 | 6.84 | 272 | 287 |
2 | 7,767,995 | -3749 | 1251 | 10.49 | 10.49 | 432 | 447 |
3 | 3,022,547 | -3047 | 1953 | 10.92 | 10.92 | 460 | 481 |
4 | 3,932,609 | -2584 | 2416 | 11.37 | 11.37 | 478 | 522 |
5 | 2,662,286 | -2132 | 2868 | 12.70 | 12.70 | 540 | 668 |
6 | 2,023,806 | -1779 | 3221 | 14.08 | 14.08 | 603 | 955 |
7 | 2,486,296 | -1439 | 3561 | 13.53 | 13.53 | 581 | 1392 |
8 | 2,215,210 | -1115 | 3885 | 13.47 | 13.44 | 581 | 2684 |
9 | 2,665,493 | -821 | 2558 | 12.43 | 28.63 | 528 | 5942 |
10 | 3,546,739 | -543 | -3558 | 11.34 | 12.90 | 471 | 3494 |
11 | 4,014,407 | -276 | -3276 | 11.39 | 11.35 | 470 | 1489 |
12 | 4,133,915 | -9 | -3009 | 11.75 | 11.75 | 483 | 948 |
13 | 4,717,575 | 277 | -2723 | 12.33 | 12.33 | 509 | 724 |
14 | 5,023,863 | 606 | -2394 | 13.51 | 13.51 | 560 | 666 |
15 | 5,161,705 | 1012 | -1988 | 14.22 | 14.22 | 593 | 646 |
16 | 5,667,975 | 1514 | -1486 | 14.74 | 14.74 | 618 | 651 |
17 | 5,556,587 | 2166 | -834 | 15.04 | 15.04 | 635 | 662 |
18 | 5,911,671 | 3045 | 45 | 15.28 | 15.28 | 650 | 678 |
19 | 3,473,170 | 4427 | 1427 | 16.50 | 16.50 | 707 | 748 |
20 | 1,368,136 | 6032 | 3032 | 16.74 | 16.74 | 722 | 762 |
Table 4
Error matrix for the best classification result"
Test area | Landform | UA% | PA% | OA% | K |
---|---|---|---|---|---|
LQ-8 | Crater | 70.98 | 87.72 | 76.04 | 0.68 |
Mare | - | - | |||
Lowland | 86.4 | 85.1 | |||
Highrelief | 85.41 | 56.79 | |||
Highland | 64.24 | 81.72 | |||
LQ-11 | Crater | 61.53 | 97.45 | 83.34 | 0.77 |
Mare | 85.04 | 82.95 | |||
Lowland | 94.97 | 88.35 | |||
Highrelief | 81.77 | 71.02 | |||
Highland | - | - | |||
LQ-20 | Crater | 78.30 | 85.93 | 70.12 | 0.59 |
Mare | 92.26 | 69.01 | |||
Lowland | 77.54 | 68.62 | |||
Highrelief | 53.31 | 67.24 | |||
Highland | 76.09 | 87.81 |
[1] |
Adediran A O, Parcharidis I, Poscolieri Met al., 2004. Computer-assisted discrimination of morphological units on north-central Crete (Greece) by applying multivariate statistics to local relief gradients.Geomorphology, 58: 357-370. doi: 10.1016/j.geomorph.2003.07.024.
doi: 10.1016/j.geomorph.2003.07.024 |
[2] |
Bolongaro-Crevenna A, Torres-Rodriguez V, Sorani Vet al., 2005. Geomorphometric analysis for characterizing landforms in Morelos State, Mexico.Geomorphology, 67(3): 407-422. doi: 10.1016/j.geomorph.2004.11.007.
doi: 10.1016/j.geomorph.2004.11.007 |
[3] | Bue B D, Stepinski T F, 2006. Machine detection of Martian craters from digital topography. In: 37th Annual Lunar and Planetary Science Conference, 37: 1178. |
[4] | Burrough P A, McDonnell R A, 2011. Principles of Geographical Information Systems (Vol. 19988). Oxford: Oxford University Press. |
[5] |
Burrough P A, Gaans P F M V, Macmillan R A, 2000. High-resolution landform classification using fuzzy k-means.Fuzzy Sets and System, 113(1): 37-52. doi: 10.1016/S0165-0114(99)00011-1.
doi: 10.1016/S0165-0114(99)00011-1 |
[6] |
Butle D R, Walsh S J, 1998. The application of remote sensing and geographic information systems in the study of geomorphology: An introduction.Geomorphology, 21(3): 179-181. doi: 10.1016/S0169-555X(97)00056-1.
doi: 10.1016/S0169-555X(97)00056-1 |
[7] |
Cohen J, 1960. A coefficient of agreement for nominal scales.Educational and Psychological Measurement, 20(1): 37-46. doi: 10.1177/001316446002000104.
doi: 10.1177/001316446002000104 |
[8] |
Dehn M, Gärtner H, Dikau R, 2001. Principles of semantic modeling of landform structures.Computer Geoscience, 27: 1005-1010. doi: 10.1016/S0098-3004(00)00138-2.
doi: 10.1016/S0098-3004(00)00138-2 |
[9] |
Drăguţ L, Blaschke T, 2006. Automated classification of landform elements using object-based image analysis.Geomorphology, 81(3): 330-344. doi: 10.1016/j.geomorph.2006.04.013.
doi: 10.1016/j.geomorph.2006.04.013 |
[10] |
Ehlers M, Janowsky R, Gaehler M, 2002. New remote sensing concepts for environmental monitoring. In: International Society for Optics and Photonics. International Symposium on Remote Sensing, 1-12.
doi: 10.1117/12.453657 |
[11] |
Florinsky I V, 1998. Accuracy of local topographic variables derived from digital elevation models.International Journal of Geographical Information Science, 12(1): 47-62. doi: 10.1080/136588198242003.
doi: 10.1080/136588198242003 |
[12] | Fortezzo C M, Hare T M, 2013. Completed digital renovation of the 1:5,000,000 lunar geologic map series. Lunar and Planetary Science Conference, Vol. 44. |
[13] | Gaddis L R, Skinner J A J, Hare T et al., 2006.The lunar geologic mapping program and status of Copernicus quadrangle mapping. In: 37th Annual Lunar and Planetary Science Conference, Vol. 37, p.2135. |
[14] |
Giles P T, Franklin S E, 1998. An automated approach to the classification of the slope units using digital data.Geomorphology, 21(3): 251-264. doi: 10.1016/S0169-555X(97)00064-0.
doi: 10.1016/S0169-555X(97)00064-0 |
[15] | Guth P L, 1995. Slope and aspect calculations on gridded digital elevation models: Examples from a geomorphometric toolbox for personal computers.Zeitschrift fur Geomorphologie Supplementband, 101: 31-52. |
[16] |
Hengl T, Rossiter D G, 2003. Supervised landform classification to enhance and replace photo-interpretation in semi-detailed soil survey.Soil Science Society of America Journal, 67: 1810-1822. doi: 10.2136/sssaj2003.1810.
doi: 10.2136/sssaj2003.1810 |
[17] |
Hodgson M E, 1998. Comparison of angles from surface slope/aspect algorithms.Cartography and Geographic Information Systems, 25(3): 173-185. doi: 10.1559/152304098782383106.
doi: 10.1559/152304098782383106 |
[18] |
Iwahashi J, Pike R J, 2007. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature.Geomorphology, 86: 409-440. doi: 10.1016/j.geomorph.2006.09.012.
doi: 10.1016/j.geomorph.2006.09.012 |
[19] |
Jenks G F, Caspall F C, 1971. Error on choroplethic maps: Definition, measurement, reduction.Annals of the Association of American Geographers, 61(2): 217-244. doi: 10.1111/j.1467-8306.1971.tb00779.x.
doi: 10.1111/j.1467-8306.1971.tb00779.x |
[20] |
Jones K H, 1998. A comparison of algorithms used to compute hill slope as a property of the DEM.Computer Geoscience, 24: 315-324. doi: 10.1016/S0098-3004(98)00032-6.
doi: 10.1016/S0098-3004(98)00032-6 |
[21] |
Kohonen T, 1982. Self-organized formation of topologically correct feature maps.Biological Cybernetics, 43(1): 59-69. doi: 10.1016/S0925-2312(98)00030-7.
doi: 10.1007/BF00337288 |
[22] |
Lewis H G, Brown M, 2001. A generalized confusion matrix for assessing area estimates from remotely sensed data. International Journal of Remote Sensing, 22(16): 3223-3235. doi: 10.1080/01431160152558332.
doi: 10.1080/01431160152558332 |
[23] |
Miliaresis G C, 2001. Extraction of bajadas from digital elevation models and satellite imagery.Computer Geoscience, 27(10): 1157-1167. doi: 10.1016/S0098-3004(01)00032-2.
doi: 10.1016/S0098-3004(01)00032-2 |
[24] |
O'Callaghan J F, Mark D M, 1984. The extraction of drainage networks from digital elevation data. Computer Vision, Graphics,and Image Processing, 28(3): 323-344. doi: 10.1016/S0734-189X(84)80011-0.
doi: 10.1016/S0734-189X(84)80011-0 |
[25] |
Prima O D A, Echigo A, Yokoyama Ret al., 2006.Supervised landform classification of Northeast Honshu from DEM-derived thematic maps.Geomorphology, 78: 373-386. doi: 10.1016/j.geomorph.2006.02.005.
doi: 10.1016/j.geomorph.2006.02.005 |
[26] |
Smith D E, Zuber M T, Jackson G Bet al., 2010. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission. Space Science Review, 150(1-4): 209-241. doi: 10.1007/s11214-009-9512-y.
doi: 10.1007/s11214-009-9512-y |
[27] |
Stepinski T F, Collier M L, 2004. Extraction of Martian valley networks from digital topography. Journal of Geophysical Research, Planets, 109(E11): 179-204. doi: 10.1029/2004JE002269.
doi: 10.1029/2004JE002269 |
[28] |
Stepinski T F, Vilalta R, 2005. Digital topography models for Martian surfaces.IEEE Geoscience and Remote Sensing Letters, 2(3): 260-264. doi: 10.1109/LGRS.2005.848509.
doi: 10.1109/LGRS.2005.848509 |
[29] | Tarboton D G, Bras R L, Rodriguez-Iturbe I, 1989. The analysis of river basins and channel networks using digital terrain data. Technical Report No. 326, Ralf M. Cambridge: Parsons Laboratory, MIT. |
[30] |
Wang J, Cheng W M, Zhou C H, 2015. A Chang’E global catalog of lunar impact craters.Planet Space Science, 112: 42-45. doi: 10.1016/j.pss.2015.04.012.
doi: 10.1016/j.pss.2015.04.012 |
[31] | Wessel P, Smith W H, 2001. The Generic Mapping Tools. . |
[1] | FANG Chuanglin, WANG Zhenbo, LIU Haimeng. Beautiful China Initiative: Human-nature harmony theory, evaluation index system and application [J]. Journal of Geographical Sciences, 2020, 30(5): 691-704. |
[2] | YE Yuyao, WANG Changjian, ZHANG Hong’ou, YANG Ji, LIU Zhengqian, WU Kangmin, DENG Yingbin. Spatiotemporal analysis of COVID-19 risk in Guangdong Province based on population migration [J]. Journal of Geographical Sciences, 2020, 30(12): 1985-2001. |
[3] | ZHANG Yongqiang. Using LiDAR-DEM based rapid flood inundation modelling framework to map floodplain inundation extent and depth [J]. Journal of Geographical Sciences, 2020, 30(10): 1649-1663. |
[4] | XIONG Ying, CHEN Yun, PENG Fen, LI Jingzhi, YAN Xiaojing. Analog simulation of urban construction land supply and demand in Chang-Zhu-Tan Urban Agglomeration based on land intensive use [J]. Journal of Geographical Sciences, 2019, 29(8): 1346-1362. |
[5] | Haitao MA, Chuanglin FANG, Sainan LIN, Xiaodong HUANG, Chengdong XU. Hierarchy, clusters, and spatial differences in Chinese inter-city networks constructed by scientific collaborators [J]. Journal of Geographical Sciences, 2018, 28(12): 1793-1809. |
[6] | Chao BAO, Xiaojie CHEN. The driving effects of urbanization on economic growth and water use change in China: A provincial-level analysis in 1997-2011 [J]. Journal of Geographical Sciences, 2015, 25(5): 530-544. |
[7] | Xingran LIU, Yanjun SHEN, Ying GUO, Shuo LI, Bin GUO. Modeling demand/supply of water resources in the arid region of northwestern China during the late 1980s to 2010 [J]. Journal of Geographical Sciences, 2015, 25(5): 573-591. |
[8] | FU Qiang, ZHU Yunqiang, KONG Yunfeng, SUN Jiulin. Spatial analysis and districting of the livestock and poultry breeding in China [J]. Journal of Geographical Sciences, 2012, 22(6): 1079-1100. |
[9] | ZHAI Yuanzheng, WANG Jinsheng, TENG Yanguo, ZUO Rui. Water demand forecasting of Beijing using the Time Series Forecasting Method [J]. Journal of Geographical Sciences, 2012, 22(5): 919-932. |
[10] | LIU Dong, FENG Zhiming, YANG Yanzhao, YOU Zhen. Spatial patterns of ecological carrying capacity supply-demand balance in China at county level [J]. Journal of Geographical Sciences, 2011, 21(5): 833-844. |
[11] | LIU Yansui, CHEN Yangfen, LONG Hualou. Regional diversity of peasant household response to new countryside construction based on field survey in eastern coastal China [J]. Journal of Geographical Sciences, 2011, 21(5): 869-881. |
[12] | YANG Xin, TANG Guoan, XIAO Chenchao, GAO Yiping, ZHU Shijie. The scaling method of specific catchment area from DEMs [J]. Journal of Geographical Sciences, 2011, 21(4): 689-704. |
[13] | YE Zhaoxia, CHEN Yaning, LI Weihong. Ecological water demand of natural vegetation in the lower Tarim River [J]. Journal of Geographical Sciences, 2010, 20(2): 261-272. |
[14] | ZHOU Yi, TANG Guo'an, YANG Xin, XIAO Chenchao, ZHANG Yuan, LUO Mingliang. Positive and negative terrains on northern Shaanxi Loess Plateau [J]. Journal of Geographical Sciences, 2010, 20(1): 64-76. |
[15] | WANG Liwen, WEI Yaxing, NIU Zheng. Spatial and temporal variations of vegetation in Qinghai Province based on satellite data [J]. Journal of Geographical Sciences, 2008, 18(1): 73-84. |
|