Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (7): 1159-1178.doi: 10.1007/s11442-019-1651-9
• Orginal Article • Previous Articles Next Articles
Fangyan CHENG(), Shiliang LIU*(
), Xiaoyun HOU, Xue WU, Shikui DONG, COXIXO Ana
Received:
2018-05-10
Accepted:
2019-01-22
Online:
2019-07-25
Published:
2019-07-25
Contact:
Shiliang LIU
E-mail:chengfangyan@mail.bnu.edu.cn;shiliangliu@bnu.edu.cn
About author:
Author: Cheng Fangyang, PhD, specialized in landscape ecology and ecosystem ecology. E-mail:
Supported by:
Fangyan CHENG, Shiliang LIU, Xiaoyun HOU, Xue WU, Shikui DONG, COXIXO Ana. The effects of urbanization on ecosystem services for biodiversity conservation in southernmost Yunnan Province, Southwest China[J].Journal of Geographical Sciences, 2019, 29(7): 1159-1178.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 2
Schematic framework of the study (a) and the framework of the PANDORA model (b) (Pelorosso et al., 2017). BESV represents the ES for biodiversity conservation. The full line represents the steps of the study, the dashed line represents the indexes and methods used in this study, and the dotted line represents the original data and the implementation of PANDORA model."
Figure 4
The uncertainty analysis of the PANDORA model. a, b, c, and d represent the Scenario 1 (the original sample), Scenario 2 (reduces roads based on the original sample), Scenario 3 (adds roads based on the original sample), and Scenario 4 (increases the local fragmentation based on the original sample), respectively. e, f, g, and h represent the BESV of Scenario 1, the BESV of Scenario 2, the BESV of Scenario 3, and the BESV of Scenario 4, respectively."
Figure 3
Land use map of the study area in 2010 (a), and the comparison of the performance of the PANDORA model (b), a unit value-based approach (c), and the InVEST model to evaluate the BESV (d). UL, IU, OP, SC, AV, AL, PL, FO, WA, and WE separately represent urban fabric, industrial units, open spaces, scrub, green space, arable land, plantation, forests, inland water, and inland wetland. b, c, and d represent the BESVs evaluated by PANDORA model ($·m-2 year-1), by the unit value-based approach (Costanza et al., 1997a; Ng et al., 2013) ($·m-2 year-1), and the carbon storage evaluated by the InVEST model (mg ha-1) in 2010, respectively. The classification of low, medium and high level applies the equal interval method."
Figure 7
The distance gradients for the difference between urban land areas (?Area) and the difference between BESVs (?BESV) in different periods. The left longitudinal axis shows the standardized ?Area, and its value increases from bottom to top along the axis. The right longitudinal axis shows the standardized ?BESV, and its value decreases from bottom to top. The 0 in the X-axis represents the city center. Because of the normalization, the plus-minus state in the Figure is not the same as those in the raw data while the fluctuated trends of these data were consistent with those of the raw data."
Table 3
Pearson correlation coefficients between the difference (?) of BESVs and the difference (?) of landscape metrics"
Period | Moving-window size/km2 | ?AI | ?DI | ?EN | ?LP | ?ME | ?PD | ?PL | ?SH |
---|---|---|---|---|---|---|---|---|---|
?BESV (1970s-1990) | 0.1 | -0.13 | 0.35 | 0.14 | -0.65 | -0.62 | 0.14 | -0.65 | 0.15 |
1 | 0.10 | 0.22 | 0.06 | -0.43 | -0.40 | 0.19 | -0.42 | 0.20 | |
5 | 0.09 | 0.12 | 0.02 | -0.21 | -0.21 | 0.11 | -0.26 | 0.15 | |
?BESV (1990-2010) | 0.1 | -0.16 | 0.19 | 0.14 | -0.55 | -0.45 | 0.08 | -0.55 | -0.01 |
1 | 0.07 | 0.14 | 0.10 | -0.31 | -0.24 | 0.10 | -0.30 | 0.07 | |
5 | 0.01 | 0.04 | 0.03 | -0.18 | -0.14 | 0.06 | -0.16 | 0.04 |
Table 4
The stepwise regression analysis for the difference (?) of BESVs and the difference (?) of landscape metrics"
Period | R2 | p | Regression model |
---|---|---|---|
1970s-1990 | 0.480 | <0.001 | ?BESV=0.053+0.005?AI-1.624?DI-0.038?LP-0.019?PL+1.552?SH |
1990-2010 | 0.327 | <0.001 | ?BESV=0.001+0.003?AI-0.902?DI-0.063?LP+0.226?ME+0.890?SH |
1 | Angel S, Parent J, Civco D, 2007. Urban sprawl metrics: An analysis of global urban expansion using GIS. Tampa, Florida: ASPRS 2007 Annual Conference. |
2 | Angel S, Sheppard S C, Civco D L et al., 2005. The Dynamics of Global Urban Expansion. Washington DC: World Bank. |
3 | Benza M, Weeks J R, Stow D A et al., 2016. A pattern-based definition of urban context using remote sensing and GIS. Remote Sensing of Environment, 183: 250-264. |
4 |
Brunsell N A, Schymanski S J, Kleidon A, 2011. Quantifying the thermodynamic entropy budget of the land surface: Is this useful? Earth System Dynamics, 2(26): 87-103.
doi: 10.5194/esd-2-87-2011 |
5 | Cai Y B, Li H M, Ye X Y et al., 2016. Analyzing three-decadal patterns of land use/land cover change and regional ecosystem services at the landscape level: Case study of two coastal metropolitan regions, eastern China. Sustainability, 8(8): 773. |
6 | Cao H, Liu J, Fu C et al., 2017. Urban expansion and its impact on the land use pattern in Xishuangbanna since the reform and opening up of China. Remote Sensing, 9(2): 137. |
7 | Cao M, Zhang J H, 1997. Tree species diversity of tropical forest vegetation in Xishuangbanna, SW China. Biodiversity & Conservation, 6(7): 995-1006. |
8 | Chen H W, Feng X, Liu Y G et al., 2002. Study of biomass of six kinds of plantations in Xishuangbanna. Yunan Forestry Science & Technology, 3: 19-22. |
9 | Costanza R, d'Arge R, de Groot R et al., 1997. The value of the world’s ecosystem services and natural capital. Nature, 387: 253-260. |
10 | De Montis A, Caschili S, Mulas M et al., 2016. Urban-rural ecological networks for landscape planning. Land Use Policy, 50: 312-327. |
11 |
Eigenbrod F, 2016. Redefining landscape structure for ecosystem services. Current Landscape Ecology Reports, 1(2): 80-86.
doi: 10.1007/s40823-016-0010-0 |
12 |
Estoque R C, Murayama Y, 2013. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landscape and Urban Planning, 116: 60-72.
doi: 10.1016/j.landurbplan.2013.04.008 |
13 |
Estoque R C, Murayama Y, 2016. Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landscape Ecology, 31(7): 1481-1507.
doi: 10.1007/s10980-016-0341-6 |
14 |
Friedman L, Wall M, 2005. Graphical views of suppression and multicollinearity in multiple linear regression. American Statistician, 59(2): 127-136.
doi: 10.1198/000313005X41337 |
15 | Fu W, Liu S L, DeGloria S D et al., 2010a. Characterizing the “fragmentation-barrier” effect of road networks on landscape connectivity: A case study in Xishuangbanna, Southwest China. Landscape and Urban Planning, 95(3): 122-129. |
16 | Fu Y, Chen J, Guo H, et al. 2010b. Agrobiodiversity loss and livelihood vulnerability as a consequence of converting from subsistence farming systems to commercial plantation-dominated systems in Xishuangbanna, Yunnan, China: A household level analysis. Land Degradation & Development, 21(3): 274-284. |
17 |
Gagné S A, Fahrig L, 2010. The trade-off between housing density and sprawl area: Minimising impacts to forest breeding birds. Basic and Applied Ecology, 11(8): 723-733.
doi: 10.1016/j.baae.2010.09.001 |
18 | Gobattoni F, Pelorosso R, Lauro G et al., 2011. A procedure for mathematical analysis of landscape evolution and equilibrium scenarios assessment. Landscape and Urban Planning, 103(3/4): 289-302. |
19 | Ingegnoli V, 2011. Non-Equilibrium Thermodynamics, Landscape Ecology and Vegetation Science. Rijeka: InTech. |
20 |
Jiang W, 2017. Ecosystem services research in China: A critical review. Ecosystem Services, 26(Part A): 10-16.
doi: 10.1016/j.ecoser.2017.05.012 |
21 | Kindu M, Schneider T, Teketay D et al., 2016. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa-Shashemene landscape of the Ethiopian highlands. Science of the Total Environment, 547: 137-147. |
22 |
Kleidon A, Malhi Y, Cox P M, 2010. Introduction: Maximum entropy production in environmental and ecological systems. Philosophical Transactions of the Royal Society of London, 365(1545): 1297-1302.
doi: 10.1098/rstb.2010.0018 |
23 | Kroll F, Müller F, Haase D et al., 2012. Rural-urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy, 29(3): 521-535. |
24 | Lawler J J, Lewis D J, Nelson E et al., 2014. Projected land-use change impacts on ecosystem services in the United States. Proceedings of the National Academy of Sciences of the United States of America, 111(20): 7492-7497. |
25 | Li H, Ma Y, Aide T M et al., 2008. Past, present and future land-use in Xishuangbanna, China and the implications for carbon dynamics. Forest Ecology and Management, 255(1): 16-24. |
26 | Li H L, Peng Jian, Liu Y X et al., 2017. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecological Indicators, 82: 50-60. |
27 |
Li X, Yeh A G-O, 2004. Analyzing spatial restructuring of land use patterns in a fast growing region using remote sensing and GIS. Landscape and Urban Planning, 69(4): 335-354.
doi: 10.1016/j.landurbplan.2003.10.033 |
28 |
Lipovetsky S, Conklin W M, 2004. Enhance-synergism and suppression effects in multiple regression. International Journal of Mathematical Education in Science and Technology, 35(3): 391-402.
doi: 10.1080/00207390310001658492 |
29 | Liu S L, Deng L, Zhao Q H et al., 2011. Effects of road network on vegetation pattern in Xishuangbanna, Yunnan Province, Southwest China. Transportation Research Part D Transport & Environment, 16(8): 591-594. |
30 | Liu S L, Deng L, Dong S K et al., 2014a. Landscape connectivity dynamics based on network analysis in the Xishuangbanna Nature Reserve, China. Acta Oecologica, 55: 66-77. |
31 | Liu S L, Dong Y H, Deng L et al., 2014b. Forest fragmentation and landscape connectivity change associated with road network extension and city expansion: A case study in the Lancang River Valley. Ecological Indicators, 36(36): 160-168. |
32 | Liu S L, Yin Y J, Liu X H et al., 2017. Ecosystem Services and landscape change associated with plantation expansion in a tropical rainforest region of Southwest China. Ecological Modelling, 353: 129-138. |
33 | Liu W J, Hu H B, Ma Y X et al., 2006. Environmental and socioeconomic impacts of increasing rubber plantations in Menglun Township, Southwest China. Mountain Research & Development, 26(3): 245-253. |
34 | Lv X H, Han Y P, Luo Y, 2007. Observation on 58 cases of threatened miscarriage. Journal of Yunnan Chinese Medicine, 28(12): 11. |
35 | Mayer A L, Buma B, Davis A et al., 2016. How landscape ecology informs global land-change science and policy. Bioscience, 66(6): 458-469. |
36 | Mitchell M G E, Suarez-Castro A F, Martinez-Harms M et al., 2015. Reframing landscape fragmentation's effects on ecosystem services. Trends in Ecology & Evolution, 30(4): 190-198. |
37 |
Ng C N, Xie Y J, Yu X J, 2013. Integrating landscape connectivity into the evaluation of ecosystem services for biodiversity conservation and its implications for landscape planning. Applied Geography, 42: 1-12.
doi: 10.1016/j.apgeog.2013.04.015 |
38 |
Ochoa V, Urbina-Cardona N, 2017. Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges. Ecosystem Services, 26(Part A): 155-169.
doi: 10.1016/j.ecoser.2017.06.011 |
39 | Pelorosso R, Gobattoni F, Geri F et al., 2016. Evaluation of ecosystem services related to bio-energy landscape connectivity (BELC) for land use decision making across different planning scales. Ecological Indicators, 61(Part 1): 114-129. |
40 | Pelorosso R, Gobattoni F, Geri F et al., 2017. PANDORA 3.0 plugin: A new biodiversity ecosystem service assessment tool for urban green infrastructure connectivity planning. Ecosystem Services, 26(Part B): 476-482. |
41 | Peng J, Liu Z C, Liu Y X et al., 2015. Multifunctionality assessment of urban agriculture in Beijing City, China. Science of the Total Environment, 534: 343-351. |
42 |
Radford K G, James P, 2013. Changes in the value of ecosystem services along a rural-urban gradient: A case study of Greater Manchester, UK. Landscape and Urban Planning, 109: 117-127.
doi: 10.1016/j.landurbplan.2012.10.007 |
43 | Shen Z H, Zhang Z M, Hu J M et al., 2016. Protection and utilization of plant biodiversity resources in dry valleys of Southwest China. Biodiversity Science, 24(4): 475-488. |
44 | Smajgl A, Xu J C, Egan S et al., 2015. Assessing the effectiveness of payments for ecosystem services for diversifying rubber in Yunnan, China. Environmental Modelling & Software, 69(Suppl.C): 187-195. |
45 | Song Q H, Zhang Y P, 2010. Biomass, carbon sequestration and its potential of rubber plantations in Xishuangbanna, Southwest China. Chinese Journal of Ecology, 29(10): 1887-1891. |
46 | Song W, Deng X Z, Yuan Y W et al., 2015. Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecological Modelling, 318: 245-253. |
47 | Su S L, Hu Y N, Luo F H et al., 2014a. Farmland fragmentation due to anthropogenic activity in rapidly developing region. Agricultural Systems, 131: 87-93. |
48 |
Su S L, Ma X Y, Xiao R, 2014b. Agricultural landscape pattern changes in response to urbanization at ecoregional scale. Ecological Indicators, 40: 10-18.
doi: 10.1016/j.ecolind.2013.12.013 |
49 | Su S L, Xiao R, Jiang Z L et al., 2012. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Applied Geography, 34: 295-305. |
50 |
Subasinghe S, Estoque R C, Murayama Y, 2016. Spatiotemporal analysis of urban growth using GIS and remote sensing: A case study of the Colombo Metropolitan Area, Sri Lanka. ISPRS International Journal of Geo- Information, 5(11): 197.
doi: 10.3390/ijgi5110197 |
51 | Tan M H, Li X B, Xie H et al., 2005. Urban land expansion and arable land loss in China: A case study of Beijing-Tianjin-Hebei region. Land Use Policy, 22(3): 187-196. |
52 |
Vallino J J, 2011. Differences and implications in biogeochemistry from maximizing entropy production locally versus globally. Earth System Dynamics, 2(1): 69-85.
doi: 10.5194/esd-2-69-2011 |
53 | Wang J Y, Zhu H Q, Yu N Z et al., 1982. Forestry soil map of Yunnan Province, China. Forest Inventory and Planning of Yunnan Province, 1: 18-25. |
54 | Wu W J, Zhao S Q, Zhu C et al., 2015. A comparative study of urban expansion in Beijing, Tianjin and Shijiazhuang over the past three decades. Landscape and Urban Planning, 134(Suppl. C): 93-106. |
55 | Xie G D, Lu C X, Leng Y F et al., 2003. Ecological assets valuation of the Tibetan Plateau. Journal of Natural Resources, 18(2): 189-196. |
56 | Yi K, Tani H, Li Q et al., 2014a. Mapping and evaluating the urbanization process in Northeast China using DMSP/OLS Nighttime Light Data. Sensors, 14(2): 3207-3226. |
57 | Yi Z F, Cannon C H, Chen J et al., 2014b. Developing indicators of economic value and biodiversity loss for rubber plantations in Xishuangbanna, Southwest China: A case study from Menglun township. Ecological Indicators, 36(1): 788-797. |
58 | Ying L X, Shen Z H, Chen J D et al., 2014. Spatiotemporal patterns of road network and road development priority in Three Parallel Rivers Region in Yunnan, China: An Evaluation Based on Modified Kernel Distance Estimate. Chinese Geographical Science, 24(1): 39-49. |
59 | Zhang J J, Fu M C, Zeng H et al., 2013. Variations in ecosystem service values and local economy in response to land use: A case study of Wu'an, China. Land Degradation & Development, 24(3): 236-249. |
60 |
Zhou X L, Wang Y C, 2011. Spatial-temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landscape and Urban Planning, 100(3): 268-277.
doi: 10.1016/j.landurbplan.2010.12.013 |
61 |
Ziegler A D, Fox J M, Xu J C, 2009. The Rubber Juggernaut. Science, 324(5930): 1024-1025.
doi: 10.1126/science.1173833 |
62 | Zurlini G, Petrosillo I, Jones K B et al., 2013. Highlighting order and disorder in social-ecological landscapes to foster adaptive capacity and sustainability. Landscape Ecology, 28(6): 1161-1173. |
[1] | CHE Lei, ZHOU Liang, XU Jiangang. Integrating the ecosystem service in sustainable plateau spatial planning: A case study of the Yarlung Zangbo River Basin [J]. Journal of Geographical Sciences, 2021, 31(2): 281-297. |
[2] | GAO Jiangbo, ZUO Liyuan. Revealing ecosystem services relationships and their driving factors for five basins of Beijing [J]. Journal of Geographical Sciences, 2021, 31(1): 111-129. |
[3] | LIU Ruiqing, XU Hao, LI Jialin, PU Ruiliang, SUN Chao, CAO Luodan, JIANG Yimei, TIAN Peng, WANG Lijia, GONG Hongbo. Ecosystem service valuation of bays in East China Sea and its response to sea reclamation activities [J]. Journal of Geographical Sciences, 2020, 30(7): 1095-1116. |
[4] | ZHENG Liang, LIU Hai, HUANG Yuefei, YIN Shoujing, JIN Gui. Assessment and analysis of ecosystem services value along the Yangtze River under the background of the Yangtze River protection strategy [J]. Journal of Geographical Sciences, 2020, 30(4): 553-568. |
[5] | CHEN Kunlun, LIU Xiaoqiong, CHEN Xi, GUO Yuqi, DONG Yin. Spatial characteristics and driving forces of the morphological evolution of East Lake, Wuhan [J]. Journal of Geographical Sciences, 2020, 30(4): 583-600. |
[6] | Wen WU, Yuehui LI, Yuanman HU, Yu CHANG, Zaiping XIONG. Anthropogenic effect on forest landscape pattern and Cervidae habitats in northeastern China [J]. Journal of Geographical Sciences, 2019, 29(7): 1098-1112. |
[7] | Xiaoyun HOU, Shengyan DING, Shuang ZHAO, Xiaobo LIU. The response of spiders to less-focused non-crop habitats in the agricultural landscape along the lower reach of the Yellow River [J]. Journal of Geographical Sciences, 2019, 29(7): 1113-1126. |
[8] | Jie GONG, Yuchu XIE, Erjia CAO, Qiuyan Huang, Hongying LI. Integration of InVEST-habitat quality model with landscape pattern indexes to assess mountain plant biodiversity change: A case study of Bailongjiang watershed in Gansu Province [J]. Journal of Geographical Sciences, 2019, 29(7): 1193-1210. |
[9] | Li ZENG, Jing LI. A Bayesian belief network approach for mapping water conservation ecosystem service optimization region [J]. Journal of Geographical Sciences, 2019, 29(6): 1021-1038. |
[10] | Rubo ZHOU, Meizhen LIN, Jianzhou GONG, Zhuo WU. Spatiotemporal heterogeneity and influencing mechanism of ecosystem services in the Pearl River Delta from the perspective of LUCC [J]. Journal of Geographical Sciences, 2019, 29(5): 831-845. |
[11] | Yuanyuan LI, Minghong TAN, Haiguang HAO. The impact of global cropland changes on terrestrial ecosystem services value, 1992-2015 [J]. Journal of Geographical Sciences, 2019, 29(3): 323-333. |
[12] | Jun ZHAI, Peng Hou, Wei CAO, Min YANG, Mingyong CAI, Jing LI. Ecosystem assessment and protection effectiveness of a tropical rainforest region in Hainan Island, China [J]. Journal of Geographical Sciences, 2018, 28(4): 415-428. |
[13] | Shisong CAO, Deyong HU, Zhuowei HU, Wenji ZHAO, Shanshan CHEN, Chen YU. Comparison of spatial structures of urban agglomerations between the Beijing-Tianjin-Hebei and Boswash based on the subpixel-level impervious surface coverage product [J]. Journal of Geographical Sciences, 2018, 28(3): 306-322. |
[14] | Dajing LI, Duanyang XU, Ziyu WANG, Xue DING, Alin SONG. Ecological compensation for desertification control: A review [J]. Journal of Geographical Sciences, 2018, 28(3): 367-384. |
[15] | Wenhui KUANG, Fengqin YAN. Urban structural evolution over a century in Changchun city, Northeast China [J]. Journal of Geographical Sciences, 2018, 28(12): 1877-1895. |
|