Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (3): 351-362.doi: 10.1007/s11442-019-1602-5
• Research Articles • Previous Articles Next Articles
Yujie LIU1,3,*(), Ya QIN1,2, Quansheng GE1,3
Received:
2018-01-15
Accepted:
2018-07-12
Online:
2019-03-25
Published:
2019-03-20
Contact:
Yujie LIU
E-mail:liuyujie@igsnrr.ac.cn
About author:
Author: Zhu Guofeng (1983-), PhD and Associate Professor, specialized in hydrology and water resources.E-mail:
Supported by:
Yujie LIU, Ya QIN, Quansheng GE. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010[J].Journal of Geographical Sciences, 2019, 29(3): 351-362.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Changing trends of climate factors during the entire growth period of maize in different regions"
Growing zones | Average air temperature (℃/a) | Precipitation (mm/a) | Sunshine duration (h/a) | GDD (℃ d/a) |
---|---|---|---|---|
Nationwide | 0.03** | ?0.16 | ?2.07** | 4.92** |
Northwest maize zone | 0.05** | 0.14 | ?0.99 | 5.26** |
Northern spring maize zone | 0.04** | ?2.26** | 0.51 | 7.01** |
Huang-Huai spring-summer maize zone | 0.02** | 2.61** | ?7.30** | 0.87 |
Southwest maize zone | ?0.001 | 1.53 | ?1.15 | 5.81** |
Table 2
Changing trend of major phenological/growing stages length of maize in different regions from 1981 to 2010 (d/yr)"
Growing zones | Planting type | Sowing date | Seedling date | Three-leaf date | Seven-leaf date | Jointing date | Tasseling date | Milk-ripe date | Ripening date | Vegetative growth stage | Reproductive growth stage | Entire growth stage |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Northwest maize zone | Spring maize | ?0.05 | ?0.20** | ?0.16* | ?0.24** | ?0.18** | 0.02 | 0.12 | 0.06 | 0.02* | 0.03 | 0.10 |
Summer maize | 0.87** | 0.66** | 0.64** | 0.73** | 0.21 | 0.46** | 0.39** | 0.22* | ?0.46 | ?0.24** | ?0.65** | |
Northern spring maize zone | Spring maize | 0.18** | 0.04 | 0.01 | ?0.14** | 0.10** | 0.05* | 0.23** | 0.30** | ?0.12 | 0.25** | 0.11** |
Huang-Huai spring-summer maize zone | Spring maize | ?0.52** | ?0.53** | ?0.45** | ?0.32** | ?0.24* | ?0.24* | ?0.13 | ?0.18 | 0.35** | 0.10 | 0.41** |
Southwest maize zone | Summer maize | 0.20** | 0.17** | 0.22** | 0.15** | 0.09* | 0.09* | 0.25** | 0..35** | ?0.11* | 0.26** | 0.14** |
Spring-summer maize | 0.96** | 0.17** | 0.13 | 0.18* | 0.12* | 0.23** | 0.22** | 0.37** | ?0.83 | 0.14* | ?0.60** |
[1] |
Cui L L, Shi J, Ma Yet al., 2018. Variations of the thermal growing season during the period 1961-2015 in northern China.Journal of Arid Land, 10(2): 264-276.http://link.springer.com/10.1007/s40333-018-0001-6
doi: 10.1007/s40333-018-0001-6 |
[2] | Fu G, Zhong Z M, 2016. Initial response of phenology and aboveground biomass to experimental warming in a maize system of the Tibet.Ecology and Environmental Sciences, 25(7): 1093-1097. (in Chinese)http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-TRYJ201607001.htm |
[3] | Guo J P, 2015. Advances in impacts of climate change on agricultural production in China.Journal of Applied Meteorological Science, 26(1): 1-11. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTotal-YYQX201501001.htm |
[4] |
He L, Asseng S, Zhao Get al., 2015. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China.Agricultural and Forest Meteorology, 200: 135-143.https://linkinghub.elsevier.com/retrieve/pii/S0168192314002226
doi: 10.1016/j.agrformet.2014.09.011 |
[5] |
Hou P, Liu Y E, Xie R Zet al., 2014. Temporal and spatial variation in accumulated temperature requirements of maize.Field Crops Research, 158: 55-64.https://linkinghub.elsevier.com/retrieve/pii/S0378429013004358
doi: 10.1016/j.fcr.2013.12.021 |
[6] | IPCC, 2014. Climate change 2014: The physical science basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 5-7. |
[7] |
Ji R P, Zhang Y S, Jiang L Xet al., 2012. Effect of climate change on maize production in Northeast China.Geographical Research, 31(2): 290-298. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ201202009.htm
doi: 10.11821/yj2012020009 |
[8] | Li R P, Zhou G S, Shi K Qet al., 2009. Phenological characteristics of maize and their response to the climate from 1980 to 2005.Journal of Anhui Agricultural Science, 37(31): 15197-15199, 15267. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHNY200931047.htm |
[9] |
Li Z G, Yang P, Tang H Jet al., 2013. Trends of spring maize phenophases and spatio-temporal responses to temperature in three provinces of Northeast China during the past 20 years.Acta Ecologica Sinica, 33(18): 5818-5827. (in Chinese)http://www.ecologica.cn/
doi: 10.5846/stxb |
[10] |
Liu Y, Wang E L, Yang X Get al., 2010. Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s.Global Change Biology, 16(8): 2287-2299.http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2009.02077.x/pdf
doi: 10.1111/j.1365-2486.2009.02077.x |
[11] |
Liu Y J, Chen Q M, Ge Q Set al., 2018a. Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China.Agricultural and Forest Meteorology, 248: 518-526.https://linkinghub.elsevier.com/retrieve/pii/S0168192317303039
doi: 10.1016/j.agrformet.2017.09.008 |
[12] |
Liu Y J, Chen Q M, Ge Q Set al., 2018b. Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010.Science China-Earth Sciences, 61: 1088-1097.http://www.cnki.com.cn/Article/CJFDTotal-JDXG201808008.htm
doi: 10.1007/s11430-017-9149-0 |
[13] |
Liu Y J, Qin Y, Ge Q Set al., 2017. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan Province, China.Journal of Geographical Sciences, 27(9): 1072-1084.http://link.springer.com/10.1007/s11442-017-1422-4
doi: 10.1007/s11442-017-1422-4 |
[14] |
Liu Z J, Hubbard Kenneth G, Lin X Met al., 2013. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China.Global Change Biology, 19(11): 3481-3492.http://europepmc.org/abstract/MED/23857749
doi: 10.1111/gcb.12324 pmid: 23857749 |
[15] |
McMaster G S, Wilhelm W W, 1997. Growing degree-days: One equation, two interpretations.Agricultural and Forest Meteorology, 87(4): 291-300.http://linkinghub.elsevier.com/retrieve/pii/S0168192397000270
doi: 10.1016/S0168-1923(97)00027-0 |
[16] | Meng L, Liu X J, Wu D Ret al., 2015. Responses of summer maize main phenology to climate change in the North China Plain.Chinese Journal of Agrometeorology, 36(4): 375-382. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGNY201504001.htm |
[17] |
Sacks William J, Kucharik Christopher J, 2011. Crop management and phenology trends in the US Corn Belt: Impacts on yields, evapotranspiration and energy balance.Agricultural and Forest Meteorology, 151(7): 882-894.https://linkinghub.elsevier.com/retrieve/pii/S0168192311000761
doi: 10.1016/j.agrformet.2011.02.010 |
[18] |
Tao F L, Zhang S, Zhang Zet al., 2014. Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift.Global Change Biology, 20(12): 3686-3699.http://doi.wiley.com/10.1111/gcb.12684
doi: 10.1111/gcb.12684 pmid: 25044728 |
[19] | Tong P Y, 1992. Maize planting regionalization in China. Beijing: Press of Chinese Agriculture Science and Technology, 6-24. (in Chinese) |
[20] |
Vitasse Y, Francois C, Delpierre Net al., 2011. Assessing the effects of climate change on the phenology of European temperate trees.Agricultural and Forest Meteorology, 151(7): 969-980.https://linkinghub.elsevier.com/retrieve/pii/S0168192311000840
doi: 10.1016/j.agrformet.2011.03.003 |
[21] | Wang L X, Chen H L, Li Qet al., 2010 Research advances in plant phenology and climate.Acta Ecologica Sinica, 30(2): 447-454. (in Chinese) |
[22] |
Wang N, Wang J, Wang E Let al., 2015. Increased uncertainty in simulated maize phenology with more frequent supra-optimal temperature under climate warming.European Journal of Agronomy, 71: 19-33.https://linkinghub.elsevier.com/retrieve/pii/S1161030115300204
doi: 10.1016/j.eja.2015.08.005 |
[23] | Xiao D P, 2015. Changes of crop phenology in Inner Mongolia under the background of climate warming.Chinese Agricultural Science Bulletin, 31(26): 216-221. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTotal-ZNTB201526036.htm |
[24] |
Yin X G, Wang M, Kong Q Xet al., 2015. Impacts of high temperature on maize production and adaptation measures in Northeast China.Chinese Journal of Applied Ecology, 26(1): 186-198. (in Chinese)http://www.ncbi.nlm.nih.gov/pubmed/25985670
doi: 10.1016/j.fuel.2015.04.032 pmid: 25985670 |
[25] |
Zhao J, Yang X G, Dai S Wet al., 2015. Increased utilization of lengthening growing season and warming temperatures by adjusting sowing dates and cultivar selection for spring maize in Northeast China.European Journal of Agronomy, 67: 12-19.https://linkinghub.elsevier.com/retrieve/pii/S1161030115000416
doi: 10.1016/j.eja.2015.03.006 |
[26] |
Zhang T Y, Huang Y, Yang X G, 2013. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice.Global Change Biology, 19(2): 563-570.http://doi.wiley.com/10.1111/gcb.2012.19.issue-2
doi: 10.1111/gcb.12057 pmid: 23504793 |
[27] | Zhang W X, Liu P X, Feng Q Ret al., 2018. The spatiotemporal responses ofPopulus euphratica to global warming in Chinese oases between 1960 and 2015. Journal of Geographical Sciences, 28(5): 579-594. |
[28] |
Zheng J Y, Ge Q S, Hao Z X, 2002. Impacts of climate warming on plants phenophases in China for the last 40 years.Chinese Science Bulletin, 47(21): 1826-1831.http://www.scichina.com/ky/0221/ky1826.stm
doi: 10.1360/02tb9399 |
[29] |
Zheng J Y, Ge Q S, Hao Z Xet al., 2012. Changes of spring phenodate in Yangtze River Delta region in the past 150 years.Acta Geographica Sinica, 67(1): 45-52. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXB201201007.htm
doi: 10.1007/s11442-013-0991-0 |
[1] | Martha Elizabeth APPLE, Macy Kara RICKETTS, Alice Caroline MARTIN. Plant functional traits and microbes vary with position on striped periglacial patterned ground at Glacier National Park, Montana [J]. Journal of Geographical Sciences, 2019, 29(7): 1127-1141. |
[2] | Leilei MIN, Yongqing QI, Yanjun SHEN, Ping WANG, Shiqin WANG, Meiying LIU. Groundwater recharge under irrigated agro-ecosystems in the North China Plain: From a critical zone perspective [J]. Journal of Geographical Sciences, 2019, 29(6): 877-890. |
[3] | Xifang WU, Yongqing QI, Yanjun SHEN, Wei YANG, Yucui ZHANG, Akihiko KONDOH. Change of winter wheat planting area and its impacts on groundwater depletion in the North China Plain [J]. Journal of Geographical Sciences, 2019, 29(6): 891-908. |
[4] | Yucui ZHANG, Yongqing QI, Yanjun SHEN, Hongying WANG, Xuepeng PAN. Mapping the agricultural land use of the North China Plain in 2002 and 2012 [J]. Journal of Geographical Sciences, 2019, 29(6): 909-921. |
[5] |
MARTINSEN Grith, Suxia LIU, Xingguo MO, Peter BAUER-GOTTWEIN.
Optimizing water resources allocation in the Haihe River basin under groundwater sustainability constraints [J]. Journal of Geographical Sciences, 2019, 29(6): 935-958. |
[6] | Wenlan GAO, Keqin DUAN, Shuangshuang LI. Spatial-temporal variations in cold surge events in northern China during the period 1960-2016 [J]. Journal of Geographical Sciences, 2019, 29(6): 971-983. |
[7] | Yuan ZHANG, Shuying ZANG, Li SUN, Binghe YAN, Tianpeng YANG, Wenjia YAN, E Michael MEADOWS, Cuizhen WANG, Jiaguo QI. Characterizing the changing environment of cropland in the Songnen Plain, Northeast China, from 1990 to 2015 [J]. Journal of Geographical Sciences, 2019, 29(5): 658-674. |
[8] | M. ROBINSON Guy, Bingjie SONG. Rural transformation: Cherry growing on the Guanzhong Plain, China and the Adelaide Hills, South Australia [J]. Journal of Geographical Sciences, 2019, 29(5): 675-701. |
[9] | Liying GUO, Liping DI, Qing TIAN. Detecting spatio-temporal changes of arable land and construction land in the Beijing-Tianjin corridor during 2000-2015 [J]. Journal of Geographical Sciences, 2019, 29(5): 702-718. |
[10] | Yifan WU, Weilun FENG, Yang ZHOU. Practice of barren hilly land consolidation and its impact: A typical case study from Fuping County, Hebei Province of China [J]. Journal of Geographical Sciences, 2019, 29(5): 762-778. |
[11] | Qinqin DU, Mingjun ZHANG, Shengjie WANG, Cunwei CHE, Rong MA, Zhuanzhuan MA. Changes in air temperature over China in response to the recent global warming hiatus [J]. Journal of Geographical Sciences, 2019, 29(4): 496-516. |
[12] | Shengfa LI, Xiubin LI. The mechanism of farmland marginalization in Chinese mountainous areas: Evidence from cost and return changes [J]. Journal of Geographical Sciences, 2019, 29(4): 531-548. |
[13] | Xiaoyu GAO, Weiming CHENG, Nan WANG, Qiangyi LIU, Ting MA, Yinjun CHEN, Chenghu ZHOU. Spatio-temporal distribution and transformation of cropland in geomorphologic regions of China during 1990-2015 [J]. Journal of Geographical Sciences, 2019, 29(2): 180-196. |
[14] | Liang ZHOU, Chenghu ZHOU, Fan YANG, Lei CHE, Bo WANG, Dongqi SUN. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2015 [J]. Journal of Geographical Sciences, 2019, 29(2): 253-270. |
[15] | Chenzhi WANG, Zhao ZHANG, Jing ZHANG, Fulu TAO, Yi CHEN, Hu DING. The effect of terrain factors on rice production: A case study in Hunan Province [J]. Journal of Geographical Sciences, 2019, 29(2): 287-305. |
|