[1] Craig H, 1961. Isotopic variations with meteoric water. Science, 133: 1702-1703.
[2] Craig H, Gordon I J, 1963. Isotopic exchange effects in the evaporation of water. J. Geophys. Res., 68: 5079-5087.
[3] Dansgaard W, 1964. Stable isotopes in precipitation. Tellus, 16(4): 436-468.
[4] Eriksson E, 1965. Deuterium and oxygen-18 in precipitation and other nature water: some theoretical consideration. Tellus, 17(4): 498-512.
[5] Gat J R, 1970. Environmental isotope balance of Lake Tiberis. Isotope Hydrology. Vienna: IAEA, 109-127.
[6] Gibbson J J, Edwards T W D, Bursey G G et al., 1993. Estimating evaporation using stable isotopes: quantitative results and sensitivity analysis for two catchments in Northern Canada. Nordic Hydrology, 24: 79-94.
[7] Jacob H, Sonntag C, 1991. An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapor and precipitation at Heidelberg, Germany. Tellus, 43(3): 291-300.
[8] Jouzel J, Merlivat L, 1984. Deuterium and oxygen-18 in precipitation: modeling of the isotopic effects at snow formation. J. Geophys. Res., 89: 11749-11757.
[9] Jouzel J, 1986. Isotopes in cloud: multiphase and multistage condensation process. In: Handbook of Environmental Isotope Geochemistry (2). Amsterdam-Oxford-New York: Elsevier Scientific Publishing Company, 61-112.
[10] Krabbenholf D P, Bowser C J, Anderson M P et al., 1990. Estimating groundwater exchange with lakes, 1, the stable isotope mass balance method. Wat. Resour. Res., 26: 2445-2453.
[11] Merlivat L, Coantic M, 1975. Study of mass transfer at the air-water interface by an isotopic method. J. Geophys. Res., 80: 3435-3464.
[12] Merlivat L, 1978a. Molecular diffusivities of water H216O, HD16O and H218O in gases. J. Chem. Phys., 69: 2864-2871.
[13] Merlivat L, 1978b. The dependence of bulk evaporation coefficients on air-water interfacial condition as determined by the isotopic method. J. Geophys. Res., 83: 2977-2980.
[14] Merlivat L, Jouzel J, 1979. Global climatic interpretation of the deuterium oxygen-18 relationship for precipitation. J. Geophys. Res., 84: 5029-5033.
[15] Qu Y G, Ding Y J, Liu F J et al., 1994. Water budget of Qinghai Lake and its drainage area. In: Evolution of Recent Environment in Qinghai Lake and Its Prediction. Beijing: Science Press, 41-67. (in Chinese)
[16] Saxena R K, 1987. Oxygen-18 fractionation in nature and estimation of groundwater recharge. Uppsala: Fyris-Tryck AB, 16-32.
[17] Tian L D, Yao T D, Sun W Z et al., 2000. Study on stable isotope fractionation during water evaporation in the middle of the Tibetan Plateau. Journal of Glaciology and Geocryology, 22(2): 159-164. (in Chinese)
[18] White J W C, Gedzelman S D, 1984. The isotopic composition of atmospheric water vapor and the concurrent meteorological conditions. J. Geophys. Res., 89: 4937-4939.
[19] Yao T D, Thompson L G, Qin D H et al., 1996. Variations in temperature and precipitation in the past 2000a on the Xizang (Tibet) Plateau Guliya ice core records. Science in China (B), 39: 425-433.
[20] Zhang B Z, 1994. Distribution characters of stable isotopes of waters in the Qinghai Lake area and their evolutional law. In: Evolution of Recent Environment in Qinghai Lake and Its Prediction. Beijing: Science Press, 29-40. (in Chinese)
[21] Zhang X P, Yao T D, 1994. Mathematical modeling on fractionation process of oxygen isotope in atmospheric precipitation. Journal of Glaciology and Geocryology, 16(2): 156-165. (in Chinese)
[22] Zhang X P, Yao T D, 1997. Estimation of lake evaporation by stable isotopic ratio. Journal of Glaciology and Geocryology, 19(2): 161-166.
[23] Zhang X P, Xie Z C, Yao T D, 1998. Mathematical modeling of variations on stable isotopic ratios in falling raindrops. Acta Meteorologica Sinica, 12: 213-220.
|