Journal of Geographical Sciences ›› 2022, Vol. 32 ›› Issue (7): 1383-1404.doi: 10.1007/s11442-022-2002-9
• Special Issue: Urban and Rural Governance Toward Sustainable Development Goals • Previous Articles Next Articles
WANG Bingbing1,2(), LUO Qing3, CHEN Guangping1,2, ZHANG Zhe1,4, JIN Pingbin1,2,*(
)
Received:
2022-01-07
Accepted:
2022-05-17
Online:
2022-07-25
Published:
2022-09-25
Contact:
JIN Pingbin
E-mail:wangbing118@zju.edu.cn;chshs@zju.edu.cn
About author:
Wang Bingbing (1995-), PhD, specialized in rural vitalization and poverty alleviation. E-mail: wangbing118@zju.edu.cn
Supported by:
WANG Bingbing, LUO Qing, CHEN Guangping, ZHANG Zhe, JIN Pingbin. Differences and dynamics of multidimensional poverty in rural China from multiple perspectives analysis[J].Journal of Geographical Sciences, 2022, 32(7): 1383-1404.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Distribution of household samples in China Family Panel Studies from 2010 to 2018
Region | Provinces, autonomous regions and municipalities | County | Village | Household |
---|---|---|---|---|
East | Tianjin | 1 | 1 | 377 |
Hebei | 7 | 21 | 23 | |
Shanghai | 3 | 3 | 13 | |
Jiangsu | 3 | 3 | 220 | |
Zhejiang | 3 | 5 | 567 | |
Fujian | 2 | 4 | 81 | |
Shandong | 7 | 17 | 212 | |
Guangdong | 10 | 25 | 32 | |
Central | Shanxi | 6 | 17 | 192 |
Anhui | 3 | 5 | 47 | |
Jiangxi | 3 | 9 | 62 | |
Henan | 13 | 34 | 97 | |
Hubei | 2 | 3 | 53 | |
Hunan | 4 | 7 | 46 | |
West | Guangxi | 3 | 8 | 84 |
Chongqing | 1 | 3 | 316 | |
Sichuan | 6 | 12 | 25 | |
Guizhou | 5 | 11 | 130 | |
Yunnan | 4 | 11 | 149 | |
Shaanxi | 2 | 6 | 63 | |
Gansu | 16 | 47 | 37 | |
Northeast | Liaoning | 10 | 23 | 45 |
Jilin | 3 | 5 | 116 | |
Heilongjiang | 3 | 5 | 22 |
Table 2
The components and indicators of the multidimensional poverty index
Dimension | Indicator | Deprivation threshold | Weight |
---|---|---|---|
Economy | Per capita income | The family’s annual per capita income is less than 2300 yuan1(1Price adjusted calculation was made for family’s per capita income from 2012 to 2018, using 2010 as the base period), assigned a value of 1, otherwise it is 0. | 1/4 |
Education | Years of education | The average years of education of the family over 16 years old is less than 9, assigned a value of 1, otherwise it is 0. | 1/4 |
Health | Chronic diseases | If there is a chronic disease among family members, the value is 1, otherwise it is 0. | 1/8 |
Self-rated health | There are health self-assessments among family members, “Unhealthy”, “Relatively unhealthy” and “Very unhealthy” assigned a value of 1, otherwise it is 0. | 1/8 | |
Living standard | Cooking fuel | Household cooking fuel is mainly non-clean energy such as firewood and coal, assigned a value of 1, otherwise it is 0. | 1/12 |
Housing type | Family housing is not a house type such as “bungalows”, “unit houses”, “small buildings”, “villas”, “townhouses and courtyard houses”, assigned the value is 1, otherwise it is 0 | 1/12 | |
Drinking water | Drinking water types are “river and lake water”, “rain water”, “pond water” and “cellar water”, etc. The clean water sources are not available, assigned a value of 1, otherwise it is 0. | 1/12 |
Table 3
The multidimensional poverty in rural households from 2010 to 2018
Year | k | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
---|---|---|---|---|---|---|---|
2010 | H (%) | 72.0 | 43.0 | 28.0 | 13.0 | 9.1 | 2.0 |
A | 0.48 | 0.57 | 0.64 | 0.73 | 0.76 | 0.85 | |
M0 | 0.34 | 0.25 | 0.18 | 0.09 | 0.07 | 0.02 | |
2012 | H (%) | 65.9 | 38.9 | 24.2 | 10.5 | 6.8 | 0.9 |
A | 0.47 | 0.56 | 0.62 | 0.72 | 0.75 | 0.87 | |
M0 | 0.31 | 0.22 | 0.15 | 0.08 | 0.05 | 0.01 | |
2014 | H (%) | 61.4 | 34.0 | 21.8 | 8.5 | 5.1 | 0.9 |
A | 0.46 | 0.55 | 0.62 | 0.71 | 0.75 | 0.87 | |
M0 | 0.28 | 0.19 | 0.13 | 0.06 | 0.04 | 0.01 | |
2016 | H (%) | 58.9 | 31.4 | 20.5 | 7.5 | 4.6 | 1.1 |
A | 0.46 | 0.56 | 0.61 | 0.72 | 0.76 | 0.86 | |
M0 | 0.27 | 0.17 | 0.13 | 0.05 | 0.04 | 0.01 | |
2018 | H (%) | 48.5 | 23.6 | 18.3 | 5.4 | 3.5 | 0.9 |
A | 0.45 | 0.56 | 0.60 | 0.72 | 0.76 | 0.85 | |
M0 | 0.22 | 0.13 | 0.11 | 0.04 | 0.03 | 0.01 |
Table 4
Classification of data according to terrain and geographical location of China
Region | Terrain | Geographical location (mins) | |||||
---|---|---|---|---|---|---|---|
Plain | Hill | Mountain | 0-15 | 15-30 | 30-60 | >60 | |
East | 375 | 286 | 58 | 75 | 183 | 358 | 103 |
Central | 463 | 231 | 96 | 56 | 274 | 330 | 130 |
West | 117 | 517 | 443 | 39 | 211 | 253 | 574 |
Northeast | 180 | 192 | 51 | 41 | 63 | 220 | 99 |
China | 1135 | 1226 | 648 | 211 | 731 | 1161 | 906 |
Table 5
The multidimensional poverty of different regions from 2010 to 2018
Region | 2010 | 2012 | 2014 | 2016 | 2018 | Average | |
---|---|---|---|---|---|---|---|
H (%) | East | 57.6 | 53.1 | 49.1 | 44.7 | 36.4 | 48.2 |
Central | 69.2 | 58.6 | 56.1 | 53.0 | 40.8 | 55.6 | |
West | 84.5 | 78.7 | 74.4 | 72.6 | 61.4 | 74.3 | |
Northeast | 69.7 | 68.8 | 59.3 | 58.9 | 50.6 | 61.5 | |
A | East | 0.46 | 0.46 | 0.46 | 0.45 | 0.44 | 0.45 |
Central | 0.46 | 0.47 | 0.45 | 0.46 | 0.47 | 0.46 | |
West | 0.51 | 0.48 | 0.47 | 0.46 | 0.44 | 0.47 | |
Northeast | 0.44 | 0.42 | 0.42 | 0.44 | 0.44 | 0.43 | |
M0 | East | 0.27 | 0.24 | 0.22 | 0.20 | 0.16 | 0.22 |
Central | 0.32 | 0.28 | 0.25 | 0.24 | 0.19 | 0.26 | |
West | 0.43 | 0.38 | 0.35 | 0.33 | 0.27 | 0.35 | |
Northeast | 0.30 | 0.29 | 0.25 | 0.26 | 0.22 | 0.26 |
Table 6
The multidimensional poverty of different terrains in 2010-2018
Terrain | 2010 | 2012 | 2014 | 2016 | 2018 | Average | |
---|---|---|---|---|---|---|---|
H (%) | Plain | 63.1 | 55.6 | 50.7 | 49.6 | 38.5 | 51.5 |
Hill | 73.1 | 67.8 | 64.1 | 59.8 | 49.0 | 62.8 | |
Mountain | 88.8 | 83.7 | 77.0 | 75.0 | 65.9 | 78.1 | |
A | Plain | 0.45 | 0.45 | 0.45 | 0.44 | 0.45 | 0.45 |
Hill | 0.48 | 0.46 | 0.45 | 0.46 | 0.44 | 0.46 | |
Mountain | 0.52 | 0.50 | 0.48 | 0.47 | 0.45 | 0.48 | |
M0 | Plain | 0.28 | 0.25 | 0.23 | 0.22 | 0.17 | 0.23 |
Hill | 0.35 | 0.31 | 0.29 | 0.27 | 0.22 | 0.29 | |
Mountain | 0.46 | 0.41 | 0.37 | 0.35 | 0.30 | 0.38 |
Table 7
The multidimensional poverty in different geographical locations during 2010-2018
Geographical location (mins) | 2010 | 2012 | 2014 | 2016 | 2018 | Average | |
---|---|---|---|---|---|---|---|
H (%) | 0-15 | 60.3 | 59.6 | 52.6 | 48.7 | 38.5 | 51.9 |
15-30 | 65.0 | 56.7 | 51.3 | 52.1 | 39.8 | 53.0 | |
30-60 | 69.0 | 61.9 | 58.0 | 53.9 | 43.3 | 57.2 | |
>60 | 85.8 | 81.8 | 76.5 | 73.7 | 64.5 | 76.5 | |
A | 0-15 | 0.45 | 0.45 | 0.46 | 0.44 | 0.44 | 0.45 |
15-30 | 0.46 | 0.47 | 0.45 | 0.45 | 0.46 | 0.46 | |
30-60 | 0.46 | 0.45 | 0.45 | 0.44 | 0.45 | 0.45 | |
>60 | 0.52 | 0.48 | 0.48 | 0.47 | 0.45 | 0.48 | |
M0 | 0-15 | 0.27 | 0.27 | 0.24 | 0.21 | 0.17 | 0.23 |
15-30 | 0.30 | 0.27 | 0.23 | 0.24 | 0.18 | 0.24 | |
30-60 | 0.31 | 0.28 | 0.26 | 0.24 | 0.19 | 0.26 | |
>60 | 0.44 | 0.40 | 0.36 | 0.34 | 0.29 | 0.37 |
Appendix Appendix Table 1
The multidimensional poverty of different terrains in eastern China during 2010-2018
Terrain | 2010 | 2012 | 2014 | 2016 | 2018 | |
---|---|---|---|---|---|---|
H (%) | Plain | 47.7 | 42.9 | 40.8 | 40.0 | 30.4 |
Hill | 64.0 | 62.2 | 54.6 | 46.5 | 38.8 | |
Mountain | 89.7 | 74.1 | 75.9 | 65.5 | 63.8 | |
East | 57.6 | 53.1 | 49.1 | 44.7 | 36.4 | |
A | Plain | 0.45 | 0.45 | 0.46 | 0.43 | 0.43 |
Hill | 0.48 | 0.47 | 0.45 | 0.48 | 0.44 | |
Mountain | 0.46 | 0.45 | 0.47 | 0.44 | 0.48 | |
East | 0.46 | 0.46 | 0.46 | 0.45 | 0.44 | |
M0 | Plain | 0.21 | 0.19 | 0.19 | 0.17 | 0.13 |
Hill | 0.30 | 0.29 | 0.25 | 0.22 | 0.17 | |
Mountain | 0.41 | 0.34 | 0.36 | 0.29 | 0.31 | |
East | 0.27 | 0.24 | 0.22 | 0.20 | 0.16 |
Appendix Appendix Table 2
The multidimensional poverty of different terrains in central China during 2010-2018
Terrain | 2010 | 2012 | 2014 | 2016 | 2018 | |
---|---|---|---|---|---|---|
H (%) | Plain | 73.2 | 60.0 | 57.0 | 53.8 | 40.0 |
Hill | 62.3 | 54.1 | 55.4 | 52.0 | 41.1 | |
Mountain | 66.7 | 62.5 | 53.1 | 52.1 | 43.8 | |
Central | 69.2 | 58.6 | 56.1 | 53.0 | 40.8 | |
A | Plain | 0.46 | 0.47 | 0.45 | 0.46 | 0.48 |
Hill | 0.46 | 0.46 | 0.45 | 0.45 | 0.45 | |
Mountain | 0.47 | 0.48 | 0.48 | 0.46 | 0.48 | |
Central | 0.46 | 0.47 | 0.45 | 0.46 | 0.47 | |
M0 | Plain | 0.33 | 0.28 | 0.25 | 0.25 | 0.19 |
Hill | 0.29 | 0.25 | 0.25 | 0.23 | 0.18 | |
Mountain | 0.31 | 0.30 | 0.26 | 0.24 | 0.21 | |
Central | 0.32 | 0.28 | 0.25 | 0.24 | 0.19 |
Appendix Appendix Table 3
The multidimensional poverty of different terrains in western China during 2010-2018
Terrain | 2010 | 2012 | 2014 | 2016 | 2018 | |
---|---|---|---|---|---|---|
H (%) | Plain | 73.5 | 65.0 | 64.1 | 59.0 | 52.1 |
Hill | 81.0 | 74.1 | 70.6 | 68.7 | 55.1 | |
Mountain | 91.4 | 87.8 | 81.5 | 80.8 | 71.1 | |
West | 84.5 | 78.7 | 74.4 | 72.6 | 61.4 | |
A | Plain | 0.45 | 0.44 | 0.47 | 0.43 | 0.45 |
Hill | 0.49 | 0.47 | 0.47 | 0.45 | 0.44 | |
Mountain | 0.54 | 0.51 | 0.49 | 0.47 | 0.45 | |
West | 0.51 | 0.48 | 0.47 | 0.46 | 0.44 | |
M0 | Plain | 0.33 | 0.28 | 0.30 | 0.25 | 0.23 |
Hill | 0.40 | 0.35 | 0.33 | 0.31 | 0.24 | |
Mountain | 0.49 | 0.45 | 0.40 | 0.38 | 0.32 | |
West | 0.43 | 0.38 | 0.35 | 0.33 | 0.27 |
Appendix Appendix Table 4
The multidimensional poverty of different terrains in northeastern China during 2010-2018
Terrain | 2010 | 2012 | 2014 | 2016 | 2018 | |
---|---|---|---|---|---|---|
H (%) | Plain | 62.8 | 65.0 | 47.2 | 53.9 | 45.0 |
Hill | 70.8 | 68.2 | 67.2 | 61.5 | 54.7 | |
Mountain | 90.2 | 84.3 | 72.6 | 66.7 | 54.9 | |
Northeast | 69.7 | 68.8 | 59.3 | 58.9 | 50.6 | |
A | Plain | 0.42 | 0.41 | 0.43 | 0.42 | 0.42 |
Hill | 0.45 | 0.43 | 0.42 | 0.45 | 0.44 | |
Mountain | 0.46 | 0.44 | 0.41 | 0.47 | 0.45 | |
Northeast | 0.44 | 0.42 | 0.42 | 0.44 | 0.44 | |
M0 | Plain | 0.26 | 0.27 | 0.20 | 0.22 | 0.19 |
Hill | 0.32 | 0.29 | 0.28 | 0.28 | 0.24 | |
Mountain | 0.42 | 0.37 | 0.30 | 0.31 | 0.25 | |
Northeast | 0.30 | 0.29 | 0.25 | 0.26 | 0.22 |
Appendix Appendix Table 5
The multidimensional poverty of different geographical location in eastern China during 2010-2018
Geographical location (mins) | 2010 | 2012 | 2014 | 2016 | 2018 | |
---|---|---|---|---|---|---|
H (%) | 0-15 | 52.2 | 47.9 | 41.7 | 36.8 | 25.8 |
15-30 | 56.7 | 53.6 | 48.5 | 43.7 | 38.8 | |
30-60 | 68.9 | 54.4 | 51.7 | 46.9 | 39.7 | |
>60 | 70.7 | 66.7 | 62.7 | 61.3 | 48.0 | |
A | 0-15 | 0.44 | 0.44 | 0.44 | 0.44 | 0.43 |
15-30 | 0.43 | 0.46 | 0.45 | 0.45 | 0.42 | |
30-60 | 0.48 | 0.46 | 0.46 | 0.46 | 0.44 | |
>60 | 0.48 | 0.48 | 0.48 | 0.48 | 0.45 | |
M0 | 0-15 | 0.23 | 0.21 | 0.18 | 0.16 | 0.11 |
15-30 | 0.24 | 0.25 | 0.22 | 0.20 | 0.16 | |
30-60 | 0.33 | 0.25 | 0.24 | 0.21 | 0.17 | |
>60 | 0.34 | 0.32 | 0.30 | 0.29 | 0.21 |
Appendix Appendix Table 6
The multidimensional poverty of different geographical locations in central China in 2010-2018
Geographical location (mins) | 2010 | 2012 | 2014 | 2016 | 2018 | |
---|---|---|---|---|---|---|
H (%) | 0-15 | 55.2 | 58.6 | 65.5 | 44.8 | 34.5 |
15-30 | 61.7 | 49.6 | 44.9 | 48.2 | 34.3 | |
30-60 | 75.5 | 63.0 | 61.5 | 54.6 | 41.5 | |
>60 | 78.5 | 75.4 | 67.7 | 64.6 | 58.5 | |
A | 0-15 | 0.47 | 0.48 | 0.47 | 0.46 | 0.49 |
15-30 | 0.46 | 0.47 | 0.44 | 0.46 | 0.47 | |
30-60 | 0.46 | 0.46 | 0.45 | 0.44 | 0.47 | |
>60 | 0.46 | 0.49 | 0.47 | 0.47 | 0.48 | |
M0 | 0-15 | 0.26 | 0.28 | 0.31 | 0.20 | 0.17 |
15-30 | 0.28 | 0.23 | 0.20 | 0.22 | 0.16 | |
30-60 | 0.35 | 0.29 | 0.28 | 0.24 | 0.19 | |
>60 | 0.36 | 0.37 | 0.32 | 0.30 | 0.28 |
Appendix Appendix Table 7
The multidimensional poverty of different geographical locations in western China in 2010-2018
Geographical location(mins) | 2010 | 2012 | 2014 | 2016 | 2018 | |
---|---|---|---|---|---|---|
H (%) | 0-15 | 48.7 | 53.9 | 38.5 | 30.8 | 28.2 |
15-30 | 80.6 | 72.0 | 67.3 | 66.4 | 56.9 | |
30-60 | 76.3 | 67.9 | 63.3 | 63.3 | 47.5 | |
>60 | 93.1 | 88.2 | 84.4 | 82.0 | 71.1 | |
A | 0-15 | 0.46 | 0.43 | 0.48 | 0.42 | 0.46 |
15-30 | 0.47 | 0.50 | 0.47 | 0.45 | 0.46 | |
30-60 | 0.45 | 0.45 | 0.45 | 0.44 | 0.43 | |
>60 | 0.54 | 0.50 | 0.49 | 0.47 | 0.44 | |
M0 | 0-15 | 0.22 | 0.23 | 0.18 | 0.13 | 0.13 |
15-30 | 0.38 | 0.36 | 0.32 | 0.30 | 0.26 | |
30-60 | 0.34 | 0.30 | 0.28 | 0.28 | 0.21 | |
>60 | 0.51 | 0.44 | 0.41 | 0.39 | 0.32 |
Appendix Appendix Table 8
The multidimensional poverty of different geographical locations in northeastern China in 2010-2018
Geographical location (mins) | 2010 | 2012 | 2014 | 2016 | 2018 | |
---|---|---|---|---|---|---|
H (%) | 0-15 | 46.2 | 38.5 | 15.4 | 30.8 | 23.1 |
15-30 | 60.7 | 59.0 | 50.8 | 60.7 | 42.6 | |
30-60 | 71.4 | 67.3 | 57.3 | 54.1 | 47.3 | |
>60 | 72.7 | 82.8 | 73.7 | 70.7 | 62.6 | |
A | 0-15 | 0.43 | 0.45 | 0.65 | 0.34 | 0.40 |
15-30 | 0.41 | 0.44 | 0.42 | 0.43 | 0.44 | |
30-60 | 0.43 | 0.43 | 0.41 | 0.44 | 0.44 | |
>60 | 0.47 | 0.40 | 0.43 | 0.44 | 0.43 | |
M0 | 0-15 | 0.20 | 0.17 | 0.10 | 0.11 | 0.09 |
15-30 | 0.25 | 0.26 | 0.22 | 0.26 | 0.19 | |
30-60 | 0.31 | 0.29 | 0.24 | 0.24 | 0.21 | |
>60 | 0.34 | 0.34 | 0.31 | 0.31 | 0.27 |
Appendix Appendix Table 9
The contribution of indicator to the MPI during 2010-2018 (%)
Year | Region | Drinking water | Cooking fuel | Housing type | Per capita income | Years of education | Self-rated health | Chronic diseases |
---|---|---|---|---|---|---|---|---|
2010 | China | 1.5 | 15.6 | 3.2 | 17.7 | 51.0 | 8.6 | 2.5 |
East | 0.2 | 14.8 | 0.4 | 18.6 | 52.5 | 9.9 | 3.6 | |
Central | 0.6 | 16.3 | 2.9 | 16.4 | 53.2 | 8.0 | 2.7 | |
West | 2.7 | 14.9 | 4.7 | 19.6 | 47.7 | 8.2 | 2.2 | |
Northeast | 0.1 | 16.9 | 1.2 | 13.6 | 56.5 | 9.9 | 1.8 | |
2012 | China | 1.4 | 13.9 | 3.7 | 17.7 | 51.4 | 10.2 | 1.7 |
East | 0.3 | 12.6 | 0.9 | 19.3 | 51.3 | 12.7 | 2.8 | |
Central | 0.7 | 12.8 | 4.7 | 18.9 | 51.2 | 9.9 | 1.9 | |
West | 2.7 | 14.5 | 4.7 | 17.2 | 50.1 | 9.4 | 1.5 | |
Northeast | 0.1 | 15.7 | 2.5 | 14.6 | 56.1 | 10.3 | 0.7 | |
2014 | China | 1.5 | 14.4 | 2.7 | 16.4 | 52.8 | 9.2 | 2.9 |
East | 0.3 | 12.0 | 1.3 | 18.9 | 52.4 | 11.8 | 3.3 | |
Central | 0.7 | 14.2 | 3.4 | 16.1 | 53.4 | 9.5 | 2.9 | |
West | 2.9 | 15.0 | 3.5 | 16.8 | 51.4 | 8.0 | 2.5 | |
Northeast | 0.1 | 16.5 | 0.9 | 12.0 | 57.1 | 9.4 | 4.0 | |
2016 | China | 1.5 | 14.5 | 1.6 | 16.5 | 53.3 | 9.6 | 3.1 |
East | 0.8 | 12.0 | 0.1 | 17.4 | 53.4 | 13.2 | 3.2 | |
Central | 1.1 | 13.6 | 2.2 | 17.4 | 53.4 | 8.9 | 3.4 | |
West | 2.3 | 15.6 | 2.2 | 15.6 | 52.9 | 8.4 | 3.1 | |
Northeast | 0.2 | 15.6 | 0.9 | 16.9 | 54.0 | 9.8 | 2.5 | |
2018 | China | 1.5 | 13.7 | 1.4 | 19.8 | 53.4 | 6.3 | 3.8 |
East | 0.7 | 12.0 | 0.1 | 20.0 | 54.1 | 8.8 | 4.2 | |
Central | 1.5 | 11.5 | 1.7 | 21.0 | 50.8 | 7.9 | 5.6 | |
West | 2.4 | 15.0 | 2.1 | 17.8 | 54.7 | 4.9 | 3.1 | |
Northeast | 0.0 | 15.3 | 0.2 | 24.2 | 52.6 | 5.1 | 2.7 |
[1] |
Aguilar R G, Sumner A, 2020. Who are the world’s poor? A new profile of global multidimensional poverty. World Development, 126: 104716.
doi: 10.1016/j.worlddev.2019.104716 |
[2] |
Alkire S, Fang Y F, 2018. Dynamics of multidimensional poverty and uni-dimensional income poverty: An evidence of stability analysis from China. Social Indicators Research, 142(1): 25-64.
doi: 10.1007/s11205-018-1895-2 |
[3] |
Alkire S, Foster J, 2011. Counting and multidimensional poverty measurement. Journal of Public Economics, 95(7/8): 476-487.
doi: 10.1016/j.jpubeco.2010.11.006 |
[4] |
Alkire S, Roche J M, Vaz A, 2017. Changes over time in multidimensional poverty: Methodology and results for 34 countries. World Development, 94: 232-249.
doi: 10.1016/j.worlddev.2017.01.011 |
[5] |
Alkire S, Santos M E, 2014. Measuring acute poverty in the developing world: Robustness and scope of the multidimensional poverty index. World Development, 59: 251-274.
doi: 10.1016/j.worlddev.2014.01.026 |
[6] |
Cai P R, Wang X, Yan Y H et al., 2021. Spatio-temporal pattern and its influencing factors of children multidimensional poverty in China. Acta Geographica Sinica, 76(10): 2551-2567. (in Chinese)
doi: 10.11821/dlxb202110015 |
[7] |
Chakravarty S R, Deutsch J, Silber J, 2008. On the watts multidimensional poverty index and its decomposition. World Development, 36(6): 1067-1077.
doi: 10.1016/j.worlddev.2007.10.003 |
[8] | Chen Y F, Wang Y H, Wang X L, 2016. Measurement and spatial analysis of poverty-stricken villages in China. Geographical Research, 35(12): 2298-2308. (in Chinese) |
[9] |
Dang H-A H, Dabalen A L, 2018. Is poverty in Africa mostly chronic or transient? Evidence from synthetic panel data. The Journal of Development Studies, 55(7): 1527-1547.
doi: 10.1080/00220388.2017.1417585 |
[10] |
Ding J J, Leng Z M, 2018. Regional poverty analysis in a view of geography science. Acta Geographica Sinica, 73(2): 232-247. (in Chinese)
doi: 10.11821/dlxb201802003 |
[11] |
Ding J J, Wang Z, Liu Y H et al., 2020. Rural households' livelihood responses to industry-based poverty alleviation as a sustainable route out of poverty. Regional Sustainability, 1(1): 68-81.
doi: 10.1016/j.regsus.2020.07.002 |
[12] |
Dong Y, Jin G, Deng X Z et al., 2021. Multidimensional measurement of poverty and its spatio-temporal dynamics in China from the perspective of development geography. Journal of Geographical Sciences, 31(1): 130-148.
doi: 10.1007/s11442-021-1836-x |
[13] |
Fang Y F, Zhang F, 2021. The future path to China’s poverty reduction: Dynamic decomposition analysis with the evolution of China’s poverty reduction policies. Social Indicator Research, 158(2): 507-538.
doi: 10.1007/s11205-021-02716-5 |
[14] |
Gava O, Ardakani Z, Delalić A et al., 2021. Agricultural cooperatives contributing to the alleviation of rural poverty: The case of Konjic (Bosnia and Herzegovina). Journal of Rural Studies, 82: 328-339.
doi: 10.1016/j.jrurstud.2021.01.034 |
[15] |
Glauben T, Herzfeld T, Rozelle S et al., 2012. Persistent poverty in rural China: Where, why, and how to escape? World Development, 40(4): 784-795.
doi: 10.1016/j.worlddev.2011.09.023 |
[16] |
Haushofer J, Fehr E, 2014. On the psychology of poverty. Science, 344(6186): 862-867.
doi: 10.1126/science.1232491 pmid: 24855262 |
[17] | Jiao W X, 2020. Analyzing multidimensional measures of poverty and their influences in China’s Qinba Mountains. Chinese Journal of Population, Resources and Environment, 18(3): 214-221. |
[18] |
Katumba S, Cheruiyot K, Mushongera D, 2019. Spatial change in the concentration of multidimensional poverty in Gauteng, South Africa: Evidence from quality of life survey data. Social Indicators Research, 145(1): 95-115.
doi: 10.1007/s11205-019-02116-w |
[19] |
Li G E, Chang L Y, Liu X J et al., 2019. Monitoring the spatiotemporal dynamics of poor counties in China: Implications for global sustainable development goals. Journal of Cleaner Production, 227: 392-404.
doi: 10.1016/j.jclepro.2019.04.135 |
[20] |
Liu Y H, Xu Y, 2016. A geographic identification of multidimensional poverty in rural China under the framework of sustainable livelihoods analysis. Applied Geography, 73: 62-76.
doi: 10.1016/j.apgeog.2016.06.004 |
[21] |
Mohanty S K, Rasul G, Mahapatra B et al., 2017. Multidimensional poverty in mountainous regions: Shan and Chin in Myanmar. Social Indicators Research, 138(1): 23-44.
doi: 10.1007/s11205-017-1662-9 |
[22] |
Nussbaum M, 2003. Capabilities as fundamental entitlements: Sen and social justice. Feminist Economics, 9(2/3): 33-59.
doi: 10.1080/1354570022000077926 |
[23] |
Padda I U H, Hameed A, 2018. Estimating multidimensional poverty levels in rural Pakistan: A contribution to sustainable development policies. Journal of Cleaner Production, 197: 435-442.
doi: 10.1016/j.jclepro.2018.05.224 |
[24] |
Pham A T Q, Mukhopadhaya P, Vu H, 2020. Targeting administrative regions for multidimensional poverty alleviation: A study on vietnam. Social Indicators Research, 150(1): 143-189.
doi: 10.1007/s11205-020-02285-z |
[25] |
Qi D, Wu Y C, 2018. Comparing the extent and levels of child poverty by the income and multidimensional deprivation approach in China. Child Indicators Research, 12(2): 627-645.
doi: 10.1007/s12187-018-9544-5 |
[26] |
Ren Q, Huang Q X, He C Y et al., 2018. The poverty dynamics in rural China during 2000-2014: A multi-scale analysis based on the poverty gap index. Journal of Geographical Sciences, 28(10): 1427-1443.
doi: 10.1007/s11442-018-1554-1 |
[27] |
Sen A, 1976. Poverty: An ordinal approach to measurement. Econometrica, 44(2): 219-231.
doi: 10.2307/1912718 |
[28] |
Shi K F, Chang Z J, Chen Z Q et al., 2020. Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: A case study of Chongqing, China. Journal of Cleaner Production, 255: 120245.
doi: 10.1016/j.jclepro.2020.120245 |
[29] |
Vasishtha G, Mohanty S K, 2021. Spatial pattern of multidimensional and consumption poverty in districts of india. Spatial Demography, 9: 213-240.
doi: 10.1007/s40980-021-00089-4 |
[30] |
Wagle U R, 2016. The caste/ethnic bases of poverty dynamics: A longitudinal analysis of chronic and structural poverty in nepal. The Journal of Development Studies, 53(9): 1430-1451.
doi: 10.1080/00220388.2016.1224850 |
[31] | Wang X L, Alkire S, 2009. Multidimensional poverty measurement in China estimates and policy implications. Chinese Rural Economy, 12: 4-10. (in Chinese) |
[32] |
Wang C C, Wang Y, Fang H Y et al., 2020. Determinants of rural poverty in remote mountains of southeast China from the household perspective. Social Indicators Research, 150(3): 793-810.
doi: 10.1007/s11205-020-02348-1 |
[33] |
Wang Y H, Chen Y F, Chi Y et al., 2018. Village-level multidimensional poverty measurement in China: Where and how. Journal of Geographical Sciences, 28(10): 1444-1466.
doi: 10.1007/s11442-018-1555-0 |
[34] | Wang Y H, Qian L Y, Duan F Z, 2013. Multidimensional poverty measurement and spatial distribution pattern at the country scale: A case study on key country from national contiguous special poverty-stricken areas. Scientia Geographica Sinica, 33(12): 1489-1497. (in Chinese) |
[35] | Xie Y, Hu J W, 2014. An Introduction to the China Family Panel Studies (CFPS). Chinese Sociological Review, 47(1): 3-29. |
[36] |
Xu L D, Deng X Z, Jiang Q O et al., 2021. Identification and alleviation pathways of multidimensional poverty and relative poverty in counties of China. Journal of Geographical Sciences, 31(12): 1715-1736.
doi: 10.1007/s11442-021-1919-8 |
[37] |
Xu Y, Duan J, Xu X R, 2018. Comprehensive methods for measuring regional multidimensional development and their applications in China. Journal of Geographical Sciences, 28(8): 1182-1196.
doi: 10.1007/s11442-018-1549-y |
[38] |
Yan X Y, Qi X H, 2021. The measurement method and evolution mechanism of poverty dynamics. Acta Geographica Sinica, 76(10): 2425-2438. (in Chinese)
doi: 10.11821/dlxb202110007 |
[39] |
Yang J, Mukhopadhaya P, 2018. Is the adb’s conjecture on upward trend in poverty for China right? An analysis of income and multidimensional poverty in China. Social Indicators Research, 143(2): 451-477.
doi: 10.1007/s11205-018-1985-1 |
[40] |
Yu J T, 2013. Multidimensional poverty in China: Findings based on the chns. Social Indicators Research, 112(2): 315-336.
doi: 10.1007/s11205-013-0250-x |
[41] |
Yu R Y, Liang L K, Su X Y et al., 2020. A driver based framework for vulnerability assessment of the poverty stricken areas of Funiu Mountain, China. Ecological Indicators, 113: 106209.
doi: 10.1016/j.ecolind.2020.106209 |
[42] |
Zhang D Y, Li J J, Han P, 2019. A multidimensional measure of energy poverty in China and its impacts on health: An empirical study based on the China family panel studies. Energy Policy, 131: 72-81.
doi: 10.1016/j.enpol.2019.04.037 |
[43] |
Zhang Z, Ma C Y, Wang A P, 2021. A longitudinal study of multidimensional poverty in rural China from 2010 to 2018. Economics Letters, 204: 109912.
doi: 10.1016/j.econlet.2021.109912 |
[44] |
Zhou L, Xiong L Y, 2018. Natural topographic controls on the spatial distribution of poverty-stricken counties in China. Applied Geography, 90: 282-292.
doi: 10.1016/j.apgeog.2017.10.006 |
[1] | TANG Lisha, LONG Hualou. Simulating the development of resilient human settlement in Changsha [J]. Journal of Geographical Sciences, 2022, 32(8): 1513-1529. |
[2] | WANG Hongyang, LU Yongjun, YAO Shiming, ZUO Liqin, LIU Huaixiang. Bank and point bar morphodynamics in the Lower Jingjiang Reach of the Yangtze River in response to the Three Gorges Project [J]. Journal of Geographical Sciences, 2022, 32(8): 1530-1556. |
[3] | HUANG Gengzhi, XING Zuge, WEI Chunzhu, XUE Desheng. The driving effect of informal economies on urbanization in China [J]. Journal of Geographical Sciences, 2022, 32(5): 785-805. |
[4] | LI Yuheng, JIN Qihui, LI Ao. Understanding the multidimensional poverty in South Asia [J]. Journal of Geographical Sciences, 2022, 32(10): 2053-2068. |
[5] | XU Lidan, DENG Xiangzheng, JIANG Qun’ou, MA Fengkui. Identification and alleviation pathways of multidimensional poverty and relative poverty in counties of China [J]. Journal of Geographical Sciences, 2021, 31(12): 1715-1736. |
[6] | HUANG Daquan, HE Han, LIU Tao. City size and employment dynamics in China: Evidence from recruitment website data [J]. Journal of Geographical Sciences, 2021, 31(12): 1737-1756. |
[7] | DONG Yin, JIN Gui, DENG Xiangzheng, WU Feng. Multidimensional measurement of poverty and its spatio-temporal dynamics in China from the perspective of development geography [J]. Journal of Geographical Sciences, 2021, 31(1): 130-148. |
[8] | MA Haitao, SUN Zhan. Comprehensive urbanization level and its dynamic factors for five Central Asian countries [J]. Journal of Geographical Sciences, 2020, 30(11): 1761-1780. |
[9] | WANG Pei, LI Xiaoyan, TONG Yaqin, HUANG Yongmei, YANG Xiaofan, WU Xiuchen. Vegetation dynamics dominate the energy flux partitioning across typical ecosystem in the Heihe River Basin: Observation with numerical modeling [J]. Journal of Geographical Sciences, 2019, 29(9): 1565-1577. |
[10] | Zhixiang FANG, Hongchu YU, Feng LU, Mingxiang FENG, Meng HUANG. Maritime network dynamics before and after international events [J]. Journal of Geographical Sciences, 2018, 28(7): 937-956. |
[11] | Jie WANG, , Xuefei MEI, Yaying LOU, Wen WEI, Zhenpeng GE. Immediately downstream effects of Three Gorges Dam on channel sandbars morphodynamics between Yichang-Chenglingji Reach of the Changjiang River, China [J]. Journal of Geographical Sciences, 2018, 28(5): 629-646. |
[12] | Haitao MA, Chuanglin FANG, Sainan LIN, Xiaodong HUANG, Chengdong XU. Hierarchy, clusters, and spatial differences in Chinese inter-city networks constructed by scientific collaborators [J]. Journal of Geographical Sciences, 2018, 28(12): 1793-1809. |
[13] | Yuanzhi GUO, Yang ZHOU, Zhi CAO. Geographical patterns and anti-poverty targeting post-2020 in China [J]. Journal of Geographical Sciences, 2018, 28(12): 1810-1824. |
[14] | Huimin YAN, Fang LIU, Zhongen NIU, Fengxue GU, Yanzhao YANG. Changes of multiple cropping in Huang-Huai-Hai agricultural region, China [J]. Journal of Geographical Sciences, 2018, 28(11): 1685-1699. |
[15] | Qiang REN, Qingxu HUANG, Chunyang HE, Mengzhao TU, Xiaoying LIANG. The poverty dynamics in rural China during 2000-2014: A multi-scale analysis based on the poverty gap index [J]. Journal of Geographical Sciences, 2018, 28(10): 1427-1443. |
|