Journal of Geographical Sciences ›› 2022, Vol. 32 ›› Issue (6): 1177-1200.doi: 10.1007/s11442-022-1991-8
• Research article • Previous Articles
JI Xuan1,2(), CHEN Yunfang3,*(
), JIANG Wei1,2, LIU Chang1,2, YANG Luyi1,2
Received:
2021-09-19
Accepted:
2021-12-29
Online:
2022-06-25
Published:
2022-08-25
Contact:
CHEN Yunfang
E-mail:jixuan@ynu.edu.cn;yunfangchen@hotmail.com
About author:
Ji Xuan (1984-), PhD, specialized in hydrology and remote sensing. E-mail: jixuan@ynu.edu.cn
Supported by:
JI Xuan, CHEN Yunfang, JIANG Wei, LIU Chang, YANG Luyi. Glacier area changes in the Nujiang-Salween River Basin over the past 45 years[J].Journal of Geographical Sciences, 2022, 32(6): 1177-1200.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Landsat images used to delineate glaciers in the Nujiang-Salween River Basin during periods around 1975, 2000, and 2020
Period | Date | Path/Row | Cloud cover (%) | Sensor | Spatial resolution |
---|---|---|---|---|---|
Around 1975 | 1974-01-05 | 142/41 | 2.0 | Landsat MSS | 80 m |
1975-11-30 | 143/41 | 3.0 | |||
1974-01-05 | 142/40 | 4.0 | |||
1976-10-19 | 143/40 | 6.0 | |||
1976-10-19 | 143/39 | 3.0 | |||
1976-11-25 | 144/39 | 15.0 | |||
1977-08-05 | 145/38 | 17.0 | |||
1977-08-06 | 146/38 | 3.0 | |||
1977-08-05 | 145/39 | 42.0 | |||
1976-12-15 | 146/39 | 21.0 | |||
1976-12-15 | 146/38 | 5.0 | |||
1976-12-16 | 147/37 | 1.0 | |||
1976-12-16 | 147/39 | 12.0 | |||
1976-12-16 | 147/38 | 6.0 | |||
1976-12-17 | 148/37 | 1.0 | |||
1976-12-17 | 148/38 | 3.0 | |||
2000s | 2001-07-04 | 133/40 | 19.0 | Landsat TM | 30 m |
2000-07-17 | 133/40 | 18.0 | |||
1999-09-24 | 134/40 | 26.0 | |||
1999-06-04 | 134/39 | 17.0 | |||
2001-07-09 | 136/38 | 26.0 | |||
2000-07-22 | 136/38 | 22.0 | |||
1999-09-22 | 136/38 | 7.0 | |||
2000-07-22 | 136/39 | 31.0 | |||
1999-09-22 | 136/39 | 3.0 | |||
2000-08-30 | 137/37 | 0.0 | |||
2000-12-25 | 132/41 | 0.0 | Landsat ETM+ | ||
2000-12-25 | 132/40 | 0.0 | |||
2001-12-19 | 133/39 | 0.0 | |||
2001-12-19 | 133/40 | 10.0 | |||
2001-10-23 | 134/39 | 0.0 | |||
2001-10-23 | 134/38 | 10.0 | |||
1999-09-23 | 135/39 | 0.0 | |||
1999-09-23 | 135/38 | 0.0 | |||
2001-07-08 | 137/39 | 21.0 | |||
2000-12-28 | 137/39 | 10.0 | |||
2000-12-28 | 137/38 | 10.0 | |||
Period | Date | Path/Row | Cloud cover (%) | Sensor | Spatial resolution |
2020s | 2019-08-16 | 132/41 | 6.2 | Landsat OLI | 30 m |
2020-12-24 | 132/40 | 0.5 | |||
2020-08-25 | 133/40 | 21.7 | |||
2017-10-20 | 133/40 | 9.6 | |||
2020-09-01 | 134/39 | 15.0 | |||
2017-09-25 | 134/39 | 27.9 | |||
2019-08-14 | 134/39 | 23.8 | |||
2020-10-10 | 135/39 | 35.6 | |||
2020-10-10 | 135/38 | 0.9 | |||
2019-06-25 | 136/38 | 14.0 | |||
2020-12-20 | 136/38 | 0.9 | |||
2020-10-17 | 136/38 | 1.0 | |||
2019-06-25 | 136/39 | 54.6 | |||
2020-10-24 | 137/39 | 0.4 | |||
2021-01-28 | 137/38 | 0.2 | |||
2021-01-28 | 137/37 | 0.4 | |||
2020-10-31 | 138/38 | 1.1 |
Table S2
Basic information of the weather stations used in this study
Name | Station ID | Elevation (m) | Annual average temperature (℃) |
---|---|---|---|
Anduo | 55294 | 4694 | -2.26 |
Naqu | 55299 | 4508 | -0.52 |
Suoxian | 56106 | 3995 | 2.24 |
Biru | 56109 | 4019 | 3.85 |
Dingqing | 56116 | 3948 | 3.77 |
Leiwuqi | 56128 | 3826 | 3.42 |
Jiali | 56202 | 5246 | -0.21 |
Bomi | 56227 | 2745 | 9.06 |
Basu | 56228 | 3294 | 10.83 |
Zuogong | 56331 | 4244 | 4.88 |
Luolong | 56233 | 3797 | 5.94 |
Chayu | 56434 | 2959 | 12.14 |
Deqing | 56444 | 3197 | 5.85 |
Table S1
Comparison of glacier area extracted based on MSS data and KH data
No. | GLIMS_ID | Area (km2) | Deviation (km2) | Error rate (%) | |
---|---|---|---|---|---|
KH-9 | MSS | ||||
1 | G092530E32610N | 0.37 | 0.28 | -0.08 | -22.45 |
2 | G092531E32593N | 0.13 | 0.07 | -0.06 | -45.19 |
3 | G092533E32623N | 1.20 | 1.26 | 0.06 | 5.25 |
4 | G092537E32591N | 0.30 | 0.25 | -0.04 | -14.44 |
5 | G092553E32562N | 0.15 | 0.12 | -0.03 | -22.23 |
6 | G092557E32598N | 0.77 | 0.65 | -0.12 | -15.27 |
7 | G092560E32589N | 0.11 | 0.13 | 0.02 | 15.06 |
8 | G092564E32569N | 0.42 | 0.40 | -0.02 | -4.10 |
9 | G092564E32581N | 0.33 | 0.42 | 0.09 | 26.66 |
10 | G092581E32605N | 0.73 | 0.72 | -0.01 | -0.67 |
11 | G092585E32600N | 0.80 | 1.08 | 0.28 | 35.21 |
12 | G092597E32594N | 0.38 | 0.25 | -0.13 | -33.06 |
13 | G092608E32559N | 0.76 | 0.27 | -0.49 | -64.90 |
14 | G092614E32580N | 0.72 | 0.50 | -0.22 | -30.52 |
15 | G092615E32564N | 0.46 | 0.35 | -0.11 | -23.52 |
16 | G092623E32729N | 1.16 | 1.17 | 0.01 | 1.26 |
17 | G092627E32593N | 1.33 | 1.38 | 0.05 | 3.77 |
18 | G092627E32712N | 0.54 | 0.58 | 0.03 | 6.19 |
No. | GLIMS_ID | Area (km2) | Deviation (km2) | Error rate (%) | |
KH-9 | MSS | ||||
19 | G092629E32576N | 2.13 | 1.97 | -0.17 | -7.79 |
20 | G092629E32720N | 0.66 | 0.66 | -0.01 | -1.00 |
21 | G092631E32710N | 0.58 | 0.74 | 0.16 | 26.93 |
22 | G092638E32571N | 0.68 | 0.53 | -0.15 | -22.24 |
23 | G092640E32610N | 0.70 | 0.62 | -0.08 | -11.20 |
24 | G092641E32715N | 2.23 | 2.14 | -0.09 | -3.95 |
25 | G092646E32596N | 0.62 | 0.67 | 0.06 | 9.15 |
26 | G092646E32604N | 0.60 | 0.54 | -0.06 | -10.56 |
27 | G092647E32616N | 0.84 | 0.79 | -0.05 | -6.03 |
28 | G092650E32712N | 0.62 | 0.78 | 0.16 | 26.06 |
29 | G092653E32719N | 0.56 | 0.71 | 0.14 | 25.52 |
30 | G092656E32591N | 0.97 | 0.81 | -0.16 | -16.52 |
31 | G092662E32724N | 1.83 | 1.73 | -0.10 | -5.42 |
32 | G092664E32596N | 0.27 | 0.26 | -0.01 | -5.01 |
33 | G092666E32592N | 0.16 | 0.18 | 0.02 | 9.69 |
34 | G092672E32587N | 0.89 | 0.93 | 0.04 | 4.58 |
35 | G092673E32713N | 0.37 | 0.29 | -0.08 | -21.13 |
36 | G092679E32736N | 3.22 | 3.23 | 0.02 | 0.48 |
37 | G092680E32586N | 0.51 | 0.56 | 0.05 | 10.45 |
38 | G092680E32708N | 0.71 | 0.71 | 0.00 | 0.36 |
39 | G092690E32720N | 4.99 | 4.95 | -0.05 | -0.97 |
40 | G092694E32707N | 1.75 | 1.56 | -0.18 | -10.59 |
41 | G092701E32585N | 0.81 | 0.59 | -0.23 | -27.97 |
42 | G092707E32583N | 0.34 | 0.33 | -0.01 | -3.29 |
43 | G092708E32696N | 0.91 | 0.99 | 0.08 | 8.51 |
44 | G092709E32706N | 1.40 | 1.25 | -0.15 | -10.90 |
45 | G092714E32719N | 0.52 | 0.69 | 0.17 | 32.79 |
46 | G092728E32696N | 1.46 | 1.28 | -0.19 | -12.88 |
47 | G092746E32619N | 1.12 | 0.97 | -0.15 | -13.36 |
48 | G092770E32720N | 0.86 | 1.07 | 0.20 | 23.70 |
49 | G092794E32716N | 0.46 | 0.66 | 0.20 | 42.86 |
50 | G092795E32707N | 0.22 | 0.22 | 0.00 | 1.07 |
51 | G092801E32724N | 1.61 | 1.87 | 0.27 | 16.52 |
52 | G092811E32717N | 0.63 | 0.86 | 0.23 | 35.80 |
53 | G092812E32698N | 0.39 | 0.40 | 0.01 | 2.42 |
54 | G092816E32690N | 0.53 | 0.53 | 0.00 | -0.78 |
55 | G093384E31763N | 1.11 | 1.16 | 0.05 | 4.26 |
56 | G093390E31752N | 0.49 | 0.38 | -0.11 | -22.60 |
57 | G093391E31737N | 0.08 | 0.10 | 0.02 | 20.86 |
58 | G093394E31745N | 0.64 | 0.67 | 0.02 | 3.36 |
59 | G093400E31763N | 0.13 | 0.20 | 0.07 | 50.87 |
60 | G093402E31768N | 0.20 | 0.19 | -0.01 | -3.85 |
No. | GLIMS_ID | Area (km2) | Deviation (km2) | Error rate (%) | |
KH-9 | MSS | ||||
61 | G093403E31742N | 0.50 | 0.39 | -0.10 | -20.26 |
62 | G093409E31746N | 0.18 | 0.12 | -0.05 | -30.08 |
63 | G093413E31738N | 0.87 | 0.80 | -0.07 | -8.57 |
64 | G093414E31748N | 0.04 | 0.03 | -0.01 | -16.42 |
65 | G093424E31734N | 0.28 | 0.20 | -0.08 | -28.98 |
66 | G093434E31735N | 0.32 | 0.30 | -0.02 | -5.35 |
67 | G093435E31740N | 0.33 | 0.20 | -0.13 | -39.78 |
68 | G093439E31741N | 0.15 | 0.09 | -0.06 | -36.70 |
69 | G093439E31748N | 0.36 | 0.33 | -0.03 | -8.86 |
70 | G093439E31756N | 0.42 | 0.44 | 0.02 | 5.13 |
71 | G093448E31742N | 2.08 | 1.70 | -0.37 | -17.86 |
72 | G093463E31801N | 0.46 | 0.41 | -0.05 | -11.19 |
73 | G093465E31763N | 0.79 | 0.74 | -0.05 | -6.35 |
74 | G093466E31746N | 0.86 | 1.01 | 0.14 | 16.36 |
75 | G093467E31754N | 0.28 | 0.22 | -0.06 | -20.94 |
76 | G093472E31771N | 2.73 | 2.45 | -0.29 | -10.51 |
77 | G093475E31732N | 2.11 | 1.74 | -0.37 | -17.49 |
78 | G093475E31758N | 0.43 | 0.36 | -0.07 | -17.21 |
79 | G093488E31767N | 2.25 | 2.25 | 0.00 | 0.07 |
80 | G093496E31745N | 0.22 | 0.16 | -0.06 | -25.92 |
81 | G093496E31761N | 0.39 | 0.33 | -0.06 | -15.93 |
82 | G093497E31752N | 0.17 | 0.16 | -0.01 | -8.70 |
83 | G093501E31771N | 0.39 | 0.35 | -0.04 | -9.13 |
84 | G093514E31798N | 0.58 | 0.60 | 0.02 | 4.06 |
85 | G093515E31792N | 0.47 | 0.40 | -0.07 | -14.18 |
86 | G094626E31817N | 3.80 | 3.46 | -0.34 | -8.86 |
87 | G094626E31837N | 5.98 | 5.87 | -0.11 | -1.90 |
88 | G094631E31856N | 2.37 | 1.88 | -0.49 | -20.67 |
89 | G094667E31807N | 37.81 | 36.25 | -1.56 | -4.12 |
90 | G094684E31847N | 17.64 | 16.90 | -0.74 | -4.19 |
91 | G094692E31769N | 2.10 | 1.72 | -0.38 | -17.95 |
92 | G094702E31775N | 0.85 | 0.76 | -0.09 | -10.96 |
93 | G094702E31855N | 0.60 | 0.62 | 0.02 | 3.82 |
94 | G094710E31868N | 1.87 | 1.82 | -0.05 | -2.49 |
95 | G094713E31856N | 0.39 | 0.48 | 0.09 | 23.16 |
96 | G094716E31863N | 0.21 | 0.26 | 0.04 | 20.69 |
97 | G094720E31839N | 11.34 | 11.06 | -0.28 | -2.48 |
98 | G094728E31782N | 24.11 | 22.62 | -1.50 | -6.20 |
99 | G094732E31843N | 0.65 | 0.55 | -0.10 | -15.37 |
100 | G094745E31824N | 15.36 | 14.97 | -0.40 | -2.57 |
Sum | 193.21 | 184.64 | -8.57 | ||
Avg | -4.40 |
Table 2
Annual percentage of area change (APAC) for glaciers of different sizes during 1975-2020 (only the original number of individual glaciers in each rank is considered, and glaciers that formed after the area changed are not considered)
Area rank (km²) | APAC (%/a) | ||
---|---|---|---|
Around 1975-2000s | 2000s-2020s | Around 1975-2020s | |
< 2-3 | -0.01 | -1.29 | -0.67 |
2-3-2-1 | -0.90 | -1.31 | -0.90 |
2-1-21 | -1.06 | -0.89 | -0.89 |
21-23 | -1.03 | -0.33 | -0.72 |
23-25 | -0.64 | -0.23 | -0.47 |
> 25 | -0.75 | -0.15 | -0.46 |
In total | -0.80 | -1.16 | -0.84 |
Table 3
Glacier area of different mountain ranges in the Nujiang-Salween River Basin in different periods
Mountains | Around 1975 | 2000s | 2020s | |||
---|---|---|---|---|---|---|
Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | |
Hengduan Mountains | 552.86 | 32.60 | 402.36 | 29.25 | 331.32 | 27.20 |
Nyainqentanglha Mountains | 662.66 | 39.07 | 559.46 | 40.68 | 508.35 | 41.73 |
Tanggula Mountains | 480.52 | 28.33 | 413.55 | 30.07 | 378.59 | 31.08 |
Total | 1696.04 | 100 | 1375.37 | 100 | 1218.26 | 100 |
Table 4
Statistical analysis data for cold and hot spots of glacier changes over different time intervals in the Nujiang-Salween River Basin
Hot and cold spots confidence level | Proportion of glacier number (%) | Average change area (km2) | Variance | |||
---|---|---|---|---|---|---|
Around 1975- 2000s | 2000s-2020s | Around 1975 -2000s | 2000s-2020s | Around 1975 -2000s | 2000s-2020s | |
Cold spot-99% confidence | 0 | 3.02 | - | 0.04 | - | 0.002 |
Cold spot-95% confidence | 0 | 6.67 | - | 0.03 | - | 0.002 |
Cold spot-90% confidence | 0 | 6.28 | - | 0.04 | - | 0.004 |
Not significant | 95.51 | 65.79 | 0.16 | 0.08 | 0.058 | 0.009 |
Hot spot-90% confidence | 1.05 | 3.56 | 0.66 | 0.19 | 0.304 | 0.044 |
Hot spot-95% confidence | 1.01 | 5.78 | 0.67 | 0.22 | 0.285 | 0.055 |
Hot spot-99% confidence | 2.45 | 8.85 | 1.81 | 0.23 | 5.605 | 0.085 |
Figure 9
Temperature trend at each meteorological station in the Nujiang-Salween River Basin from 1971 to 2020 (the asterisk indicates that the trend analysis results were statistically significant, p<0.05; the different colored dots on the map of the study area represent the meteorological stations in the different mountain ranges)
Figure 10
Precipitation trend at each meteorological station in the Nujiang-Salween River Basin from 1971 to 2020 (the asterisk indicates that the trend analysis results were statistically significant, p<0.05; the different colored dots on map of the study area represent the meteorological stations in the different mountain ranges)
Table 5
Changes in precipitation and temperature in the different mountain ranges in the Nujiang-Salween River Basin from 1971 to 2020 (the asterisk indicates that the trend analysis result passed the significance level test, p<0.05)
Mountains | Linear trends | |
---|---|---|
Precipitation (mm/10a) | Temperature (℃/10a) | |
Hengduan Mountains | -27.32* | 0.26* |
Nyainqntanglha Mountains | 9.94 | 0.53* |
Tanggula Mountains | 20.17* | 0.49* |
Table 6
Comparison of glacier changes within typical regions of western China in recent decades
Regions | Period | Area changed (km2) | Change rate (%) | APAC (%/a) | References | |
---|---|---|---|---|---|---|
Shule River Basin | Basins | 2000-2015 | -57.5±2.68 | -11.9±0.60 | 0.79±0.04 | Zhang et al., |
Heihe River Basin | 1960s-2010 | -130.51 | -36.08 | -0.60 | Huai et al., | |
Aksu River Basin | 1975-2016 | -965.7 | -25.88 | -0.63 | Zhang et al., | |
Irrawaddy River Basin | 1976-2015 | -39.21±4.94 | -54.3±7.64 | -1.39±0.03 | Taft and Kühle, | |
Lancang-Mekong River Basin | (1968-1975)- (2005-2010) | -98.50±26.61 | 30%±8 | 0.75±0.2 | Liu et al., | |
Nujiang-Salween River Basin | Around 1975-2020s | -477.78 | -28.17 | -0.62 | This study | |
Tianshan Mountains | Moun tains | 1959-2010 | -1619.8 | -18.4 | -0.4 | Xing et al., |
Qilian Mountains | 1956-2010 | -420.8 | -20.9 | -0.4 | Sun et al., | |
Gangdisê Mountains | 1970-2016 | -854.05 | -39.53 | -1.09 | Liu et al., | |
Himalaya Mountains | 1990-2015 | 2553.10 | -10.99±0.23 | -0.44±0.014 | Ji et al., | |
Hengduan Mountains | 1990-2014 | 136.45±5 | 9.51±0.35 | -0.40±0.26 | Wang et al., | |
Eastern Nyainqêntanglha Mountains | 1999-2015 | 1285.99±6.01 | -19.76±3.78 | -1.24 | Ji et al., | |
Tanggula Mountains | 1969-2015 | -509.5 | -20.8 | -0.5 | Duan et al., | |
Hengduan Mountains in study area | Around 1975-2020s | 221.53 | 40.07 | -0.89 | This study | |
Nyainqentanglha Mountains in study area | Around 1975-2020s | 154.51 | 23.32 | -0.51 | This study | |
Tanggula Mountains in study area | Around 1975 -2020s | 101.93 | 21.21 | -0.47 | This study |
[1] |
Alipour M, Kibler K M, Alizadeh B, 2022. Flow alteration by diversion hydropower in tributaries to the Salween River: A comparative analysis of two streamflow prediction methodologies. International Journal of River Basin Management, 20(1): 33-43.
doi: 10.1080/15715124.2020.1760289 |
[2] |
Bolch T, 2007. Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Global and Planetary Change, 56(1/2): 1-12.
doi: 10.1016/j.gloplacha.2006.07.009 |
[3] |
Bolch T, Kulkarni A, Kääb A, et al., 2012. The state and fate of Himalayan glaciers. Science, 336(6079): 310-314.
doi: 10.1126/science.1215828 pmid: 22517852 |
[4] | Church J A, White N J, Konikow L F, et al., 2011. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophysical Research Letters, 38(18): L18601. |
[5] |
Duan H Y, Yao X J, Liu S Y, et al., 2019. Glacier change in the Tanggula Mountains, Tibetan Plateau, in 1969-2015. Journal of Mountain Science, 16(11): 2663-2678.
doi: 10.1007/s11629-018-5011-5 |
[6] |
Fan H, He D M, 2015. Temperature and precipitation variability and its effects on streamflow in the upstream regions of the Lancang-Mekong and Nu-Salween rivers. Journal of Hydrometeorology, 16(5): 2248-2263.
doi: 10.1175/JHM-D-14-0238.1 |
[7] |
Farinotti D, Longuevergne L, Moholdt G, et al., 2015. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience, 8(9): 716-722.
doi: 10.1038/NGEO2513 |
[8] |
Feng Y, He D M, Li Y G, 2010. Ecological changes and the drivers in the Nu River basin (upper Salween). Water International, 35(6): 786-799.
doi: 10.1080/02508060.2010.534619 |
[9] |
Garg P K, Shukla A, Jasrotia A S. 2017. Influence of topography on glacier changes in the Central Himalaya, India. Global and Planetary Change, 155: 196-212.
doi: 10.1016/j.gloplacha.2017.07.007 |
[10] |
Gao Y, Chen F, Lettenmaier D P, et al., 2018. Does elevation-dependent warming hold true above 5000 m elevation? Lessons from the Tibetan Plateau. npj Climate and Atmospheric Science, 1: 19. https://doi.org/10.1038/s41612-018-0030-z.
doi: 10.1038/s41612-018-0030-z |
[11] |
Getis A, Ord J K, 1992. The analysis of spatial association by use of distance statistics. Geographical Analysis, 24: 189-206.
doi: 10.1111/j.1538-4632.1992.tb00261.x |
[12] |
Grinsted A, 2013. An estimate of global glacier volume. The Cryosphere, 7(1): 141-151.
doi: 10.5194/tc-7-141-2013 |
[13] |
Guo W Q, Liu S Y, Xu J L, et al., 2015. The second Chinese glacier inventory: Data, methods and results. Journal of Glaciology, 61(226): 357-372.
doi: 10.3189/2015JoG14J209 |
[14] |
Huai B J, Li Z Q, Wang S J, et al., 2014. RS analysis of glaciers change in the Heihe River Basin, Northwest China, during the recent decades. Journal of Geographical Sciences, 24(6): 993-1008.
doi: 10.1007/s11442-014-1133-z |
[15] |
Huss M, Hock R, 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8(2): 135-140.
doi: 10.1038/s41558-017-0049-x |
[16] |
Immerzeel W W, Van Beek L P, Bierkens M F, 2010. Climate change will affect the Asian water towers. Science, 328(5984): 1382-1385.
doi: 10.1126/science.1183188 pmid: 20538947 |
[17] | IPCC, 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. (in press) |
[18] | Ji Q, Dong J, Li H R, et al., 2020. Glacier variations in the Himalaya from 1990 to 2015 based on remote sensing. The Cryosphere Discussions, [preprint]. https://doi.org/10.5194/tc-2019-297. |
[19] | Ji Q, Yang T B, Dong J, et al., 2018. Glacier variations in response to climate change in the eastern Nyainqêntanglha Range, Tibetan Plateau from 1999 to 2015. Arctic, Antarctic, and Alpine Research, 50(1): e1435844. |
[20] |
Kääb A, Berthier E, Nuth C, et al., 2012. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412): 495-498.
doi: 10.1038/nature11324 |
[21] |
Kendall S B, 1975. Enhancement of conditioned reinforcement by uncertainty. Journal of the Experimental Analysis of Behavior, 24(3): 311-314.
pmid: 16811882 |
[22] |
Lan C, Zhang Y X, Zhu F X, et al., 2014. Characteristics and changes of streamflow on the Tibetan Plateau: A review. Journal of Hydrology: Regional Studies, 2: 49-68.
doi: 10.1016/j.ejrh.2014.08.004 |
[23] |
Li B F, Chen Y N, Shi X, 2020. Does elevation dependent warming exist in high mountain Asia? Environmental Research Letters, 15: 024012. https://doi.org/10.1088/1748-9326/ab6d7f.
doi: 10.1088/1748-9326/ab6d7f |
[24] |
Li Y J, Ding Y J, Shangguan D H, et al., 2019. Regional differences in global glacier retreat from 1980 to 2015. Advances in Climate Change Research, 10(4): 203-213.
doi: 10.1016/j.accre.2020.03.003 |
[25] |
Liu J, Yao X J, Liu S Y, et al., 2020. Glacial changes in the Gangdisê Mountains from 1970 to 2016. Journal of Geographical Sciences, 30(1): 131-144.
doi: 10.1007/s11442-020-1719-6 |
[26] |
Liu Q, Liu S Y, Guo W Q, et al., 2015. Glacier changes in the Lancang River Basin, China, between 1968-1975 and 2005-2010. Arctic, Antarctic, and Alpine Research, 47(2): 335-344.
doi: 10.1657/AAAR0013-104 |
[27] | Liu S Y, Ding Y J, Zhang Y, et al., 2006. Impact of the glacial change on water resources in the Tarim River Basin. Acta Geographica Sinica, 61(5): 482-490. (in Chinese) |
[28] |
Liu S Y, Guo W Q, Xu J L, 2019. The Second Chinese Glacier Inventory (V 1.0). National glacial and frozen desert scientific data center (). doi: 10.12072/ncdc.Westdc.db0006.2020.
doi: 10.12072/ncdc.Westdc.db0006.2020 |
[29] |
Luo W, Zhang G Q, Chen W F, et al., 2020a. Response of glacial lakes to glacier and climate changes in the western Nyainqentanglha range. Science of The Total Environment, 735: 139607.
doi: 10.1016/j.scitotenv.2020.139607 |
[30] |
Luo X, Fan X M, Ji X, et al., 2020b. Hydrological impacts of interannual variations in surface soil freezing processes in the upper Nu-Salween River basin. Arctic, Antarctic, and Alpine Research, 52(1): 1-12.
doi: 10.1080/15230430.2019.1698893 |
[31] |
Mann H B, 1945. Nonparametric tests against trend. Econometrica, 13(3): 245-259.
doi: 10.2307/1907187 |
[32] | Nie Y, Pritchard H D, Liu Q, et al., 2021. Glacial change and hydrological implications in the Himalaya and Karakoram. Nature Reviews Earth & Environment, 2(2): 91-106. |
[33] |
Nie Y, Zhang Y L, Liu L S, et al., 2010. Glacial change in the vicinity of Mt. Qomolangma (Everest), central high Himalayas since 1976. Journal of Geographical Sciences, 20(5): 667-686.
doi: 10.1007/s11442-010-0803-8 |
[34] |
Oerlemans J, 2005. Extracting a climate signal from 169 glacier records. Science, 308(5722): 675-677.
pmid: 15746388 |
[35] |
Paul F, Bolch T, Kääb A, et al., 2015. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sensing of Environment, 162: 408-426.
doi: 10.1016/j.rse.2013.07.043 |
[36] |
Pepin N, Bradley R S, Diaz H F, et al., 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5(5): 424-430.
doi: 10.1038/nclimate2563 |
[37] |
Rankl M, Kienholz C, Braun M, 2014. Glacier changes in the Karakoram region mapped by multimission satellite imagery. The Cryosphere, 8(3): 977-989.
doi: 10.5194/tc-8-977-2014 |
[38] |
Ren Y Y, Ren G Y, Sun X B, et al., 2017. Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Advances in Climate Change Research, 8(3): 148-156.
doi: 10.1016/j.accre.2017.08.001 |
[39] |
Sahu R, Gupta R, 2020. Glacier mapping and change analysis in Chandra basin, Western Himalaya, India during 1971-2016. International Journal of Remote Sensing, 41(18): 6914-6945.
doi: 10.1080/01431161.2020.1752412 |
[40] |
Sen P K, 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324): 1379-1389.
doi: 10.1080/01621459.1968.10480934 |
[41] |
Sun M P, Liu S Y, Yao X J, et al., 2018. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory. Journal of Geographical Sciences, 28(2): 206-220.
doi: 10.1007/s11442-018-1468-y |
[42] |
Taft L, Kühle L, 2018. Glacier changes between 1976 and 2015 in the source area of the Ayeyarwady (Irrawaddy) River, Myanmar. Water, 10(12): 1850.
doi: 10.3390/w10121850 |
[43] |
Wang W C, Xiang Y, Gao Y, et al., 2015. Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrological Processes, 29(6): 859-874.
doi: 10.1002/hyp.10199 |
[44] |
Wang X, Chai K G, Liu S Y, et al., 2017. Changes of glaciers and glacial lakes implying corridor-barrier effects and climate change in the Hengduan Shan, southeastern Tibetan Plateau. Journal of Glaciology, 63(239): 535-542.
doi: 10.1017/jog.2017.14 |
[45] |
Wu K P, Liu S Y, Jiang Z L, et al., 2018. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories. The Cryosphere, 12(1): 103-121.
doi: 10.5194/tc-12-103-2018 |
[46] |
Xiao X M, Shen Z X, Qin X G, 2001. Assessing the potential of VEGETATION sensor data for mapping snow and ice cover: A Normalized Difference Snow and Ice Index. International Journal of Remote Sensing, 22(13): 2479-2487.
doi: 10.1080/01431160119766 |
[47] | Xing W C, Li Z Q, Zhang H, et al., 2017. Spatial-temporal variation of glacier resources in Chinese Tianshan Mountains since 1959. Acta Geographica Sinica, 72(9): 1594-1605. (in Chinese) |
[48] | Xu A W, Yang T B, Wang C Q, et al., 2016. Variation of glaciers in the Shaksgam River Basin, Karakoram Mountains during 1978-2015. Progress in Geography, 35(7): 878-888. (in Chinese) |
[49] | Yan L, Liu X, 2014. Has climatic warming over the Tibetan Plateau paused or continued in recent years. Journal of Earth, Ocean and Atmospheric Sciences, 1(1): 13-28. |
[50] |
Yang Y H, Weng B S, Yan D H, et al., 2021. Partitioning the contributions of cryospheric change to the increase of streamflow on the Nu River. Journal of Hydrology, 598: 126330.
doi: 10.1016/j.jhydrol.2021.126330 |
[51] |
Yao T D, Pu J C, Lu A X, et al., 2007. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arctic, Antarctic, and Alpine Research, 39(4): 642-650.
doi: 10.1657/1523-0430(07-510)[YAO]2.0.CO;2 |
[52] |
Yao T D, Thompson L N, Yang W, et al., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663-667.
doi: 10.1038/nclimate1580 |
[53] | Yao T D, Yu W S, Wu G J, et al., 2019. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chinese Science Bulletin, 64(27): 2770-2782. |
[54] |
Ye B S, Ding Y J, Liu F J, et al., 2003. Responses of various-sized alpine glaciers and runoff to climatic change. Journal of Glaciology, 49(164): 1-7.
doi: 10.3189/172756503781830999 |
[55] |
Ye Q H, Zong J B, Tian L D, et al., 2017. Glacier changes on the Tibetan Plateau derived from Landsat imagery: Mid-1970s-2000-13. Journal of Glaciology, 63(238): 273-287.
doi: 10.1017/jog.2016.137 |
[56] |
Zhang Q F, Chen Y N, Li Z, et al., 2019. Glacier changes from 1975 to 2016 in the Aksu River Basin, Central Tianshan Mountains. Journal of Geographical Sciences, 29(6): 984-1000.
doi: 10.1007/s11442-019-1640-z |
[57] |
Zhang X W, Li H J, Zhang Z H, et al., 2018. Recent glacier mass balance and area changes from dems and landsat images in upper reach of Shule River Basin, northeastern edge of Tibetan Plateau during 2000 to 2015. Water, 10(6): 796.
doi: 10.3390/w10060796 |
[58] |
Zhang Y G, Hao Z C, Xu C Y, et al., 2020. Response of melt water and rainfall runoff to climate change and their roles in controlling streamflow changes of the two upstream basins over the Tibetan Plateau. Hydrology Research, 51(2): 272-289.
doi: 10.2166/nh.2019.075 |
[59] |
Zhou Z H, Han N, Liu J J, et al., 2020. Glacier variations and their response to climate change in an arid inland river basin of Northwest China. Journal of Arid Land, 12: 357-373.
doi: 10.1007/s40333-020-0061-2 |
[1] | ZHANG Yuxin, LI Yu. Three modes of climate change since the Last Glacial Maximum in arid and semi-arid regions of the Asian continent [J]. Journal of Geographical Sciences, 2022, 32(2): 195-213. |
[2] | ZHANG Yuan, YAO Xiaojun, ZHOU Sugang, ZHANG Dahong. Glacier changes in the Sanjiangyuan Nature Reserve of China during 2000-2018 [J]. Journal of Geographical Sciences, 2022, 32(2): 259-279. |
[3] | DING Rui, SHI Wenjiao. Contributions of climate change to cereal yields in Tibet, 1993-2017 [J]. Journal of Geographical Sciences, 2022, 32(1): 101-116. |
[4] | CAI Xingran, LI Zhongqin, XU Chunhai. Glacier wastage and its vulnerability in the Qilian Mountains [J]. Journal of Geographical Sciences, 2022, 32(1): 117-140. |
[5] | CHENG Guowei, LIU Yong, CHEN Yan, GAO Wei. Spatiotemporal variation and hotspots of climate change in the Yangtze River Watershed during 1958-2017 [J]. Journal of Geographical Sciences, 2022, 32(1): 141-155. |
[6] | YIN Yunhe, DENG Haoyu, MA Danyang, WU Shaohong. Intensified risk to ecosystem productivity under climate change in the arid/humid transition zone in northern China [J]. Journal of Geographical Sciences, 2021, 31(9): 1261-1282. |
[7] | ZHANG Yuhang, YE Aizhong, YOU Jinjun, JING Xiangyang. Quantification of human and climate contributions to multi-dimensional hydrological alterations: A case study in the Upper Minjiang River, China [J]. Journal of Geographical Sciences, 2021, 31(8): 1102-1122. |
[8] | Ilan STAVI, Eli ZAADY, Alexander GUSAROV, Hezi YIZHAQ. Dead shrub patches as ecosystem engineers in degraded drylands [J]. Journal of Geographical Sciences, 2021, 31(8): 1187-1204. |
[9] | LI Yu, HAN Qin, HAO Lu, ZHANG Xinzhong, CHEN Dawei, ZHANG Yuxin, XU Lingmei, YE Wangting, PENG Simin, LI Yichan, FENG Zhuowen, LIU Hebin. Paleoclimatic proxies from global closed basins and the possible beginning of Anthropocene [J]. Journal of Geographical Sciences, 2021, 31(6): 765-784. |
[10] | HUANG Chang, ZHANG Shiqiang, DONG Linyao, WANG Zucheng, LI Linyi, CUI Luming. Spatial and temporal variabilities of rainstorms over China under climate change [J]. Journal of Geographical Sciences, 2021, 31(4): 479-496. |
[11] | HUANG Huiping, CHEN Wei, ZHANG Yuan, QIAO Lin, DU Yunyan. Analysis of ecological quality in Lhasa Metropolitan Area during 1990-2017 based on remote sensing and Google Earth Engine platform [J]. Journal of Geographical Sciences, 2021, 31(2): 265-280. |
[12] | WU Xue, PAUDEL Basanta, ZHANG Yili, LIU Linshan, WANG Zhaofeng, XIE Fangdi, GAO Jungang, SUN Xiaomin. Vertical distribution changes in land cover between 1990 and 2015 within the Koshi River Basin, Central Himalayas [J]. Journal of Geographical Sciences, 2021, 31(10): 1419-1436. |
[13] | CAI Xingran, LI Zhongqin, ZHANG Hui, XU Chunhai. Vulnerability of glacier change in the Tianshan Mountains region of China [J]. Journal of Geographical Sciences, 2021, 31(10): 1469-1489. |
[14] | XU Chenchen, LIAO Xiaohan, YE Huping, YUE Huanyin. Iterative construction of low-altitude UAV air route network in urban areas: Case planning and assessment [J]. Journal of Geographical Sciences, 2020, 30(9): 1534-1552. |
[15] | ZHANG Chi, WU Shaohong, LENG Guoyong. Possible NPP changes and risky ecosystem region identification in China during the 21st century based on BCC-CSM2 [J]. Journal of Geographical Sciences, 2020, 30(8): 1219-1232. |