Journal of Geographical Sciences ›› 2022, Vol. 32 ›› Issue (1): 79-100.doi: 10.1007/s11442-022-1937-1
Previous Articles Next Articles
SHEN Beibei1(), SONG Shuaifeng2, ZHANG Lijuan1(
), WANG Ziqing2, REN Chong1, LI Yongsheng3
Received:
2021-01-02
Accepted:
2021-02-28
Online:
2022-01-25
Published:
2022-03-25
Contact:
ZHANG Lijuan
E-mail:467856268@qq.com;zlj19650205@163.com
About author:
Shen Beibei (1985-), specialized in earth surface processes and environmental change. E-mail: 467856268@qq.com
Supported by:
SHEN Beibei, SONG Shuaifeng, ZHANG Lijuan, WANG Ziqing, REN Chong, LI Yongsheng. Temperature trends in some major countries from the 1980s to 2019[J].Journal of Geographical Sciences, 2022, 32(1): 79-100.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Correlation coefficients for the seven global temperature reanalysis datasets
CRU | NCEP/NCAR | NCEP/DOE | ERA5 | GHCN | CFSR | JRA55 | |
---|---|---|---|---|---|---|---|
CRU | 1 | 0.974** | 0.983** | 0.987** | 0.993** | 0.872** | 0.992** |
NCEP/NCAR | 1 | 0.984** | 0.982** | 0.968** | 0.866** | 0.975** | |
NCEP/DOE | 1 | 0.989** | 0.977** | 0.884** | 0.978** | ||
ERA5 | 1 | 0.983** | 0.858** | 0.988** | |||
GHCN | 1 | 0.865** | 0.996** | ||||
CFSR | 1 | 0.863** | |||||
JRA55 | 1 |
Table 2
Global, northern and southern hemispheres annual mean temperature (℃) and the rate of change (℃/10a)
CRU | NCEP/NCAR | NCEP/DOE | ERA5 | GHCN | CFSR | JRA55 | MEAN | ||
---|---|---|---|---|---|---|---|---|---|
Annual mean temperature (℃) | Global land | 8.793 | 8.008 | 8.460 | 8.556 | 9.002 | 8.541 | 9.093 | 8.636 |
Northern Hemisphere | 5.612 | 4.974 | 5.397 | 5.488 | 5.939 | 5.579 | 6.139 | 5.590 | |
Southern Hemisphere | 21.623 | 20.493 | 21.063 | 21.179 | 21.532 | 20.795 | 21.450 | 21.162 | |
Rate of change of temperature (℃/10a) | Global land | 0.310** | 0.283** | 0.307** | 0.347** | 0.403** | 0.231** | 0.358** | 0.320** |
Northern Hemisphere | 0.347** | 0.332** | 0.364** | 0.380** | 0.439** | 0.271** | 0.403** | 0.362** | |
Southern Hemisphere | 0.161** | 0.081** | 0.072* | 0.211** | 0.267** | 0.066* | 0.169** | 0.147** |
Table 3
Rate of change of temperature (℃/10a) and temperature variation (℃) with latitude
Latitude (°N) | Rate of change of temperature (℃/10a) | Temperature variation (℃) | Latitude (°S) | Rate of change of temperature (℃/10a) | Temperature variation (℃) |
---|---|---|---|---|---|
80-90 | 0.707** | 2.757 | 10-0 | 0.182** | 0.710 |
70-80 | 0.680** | 2.652 | 20-10 | 0.141** | 0.550 |
60-70 | 0.484** | 1.888 | 30-20 | 0.150** | 0.585 |
50-60 | 0.270** | 1.053 | 40-30 | 0.105** | 0.410 |
40-50 | 0.289** | 1.127 | 50-40 | 0.02 | 0.078 |
30-40 | 0.328** | 1.279 | 60-50 | 0.004 | 0.016 |
20-30 | 0.316** | 1.232 | |||
10-20 | 0.242** | 0.944 | |||
0-10 | 0.191** | 0.745 |
Table 4
Correlation coefficients for the rates of change of temperature for the seven datasets (bold) and correlation coefficients for the countries (by serial number)
CRU | NCEP/NCAR | NCEP/DOE | ERA5 | GHCN | CFSR | JRA55 | |
---|---|---|---|---|---|---|---|
CRU | 1 | 0.529** | 0.574** | 0.488** | 0.856** | 0.827** | 0.673** |
NCEP/NCAR | 0.586** | 1 | 0.492** | 0.437** | 0.537** | 0.490** | 0.475** |
NCEP/DOE | 0.591** | 0.534** | 1 | 0.910** | 0.525** | 0.390** | 0.438** |
ERA5 | 0.514** | 0.446** | 0.873** | 1 | 0.470** | 0.349** | 0.405** |
GHCN | 0.830** | 0.588** | 0.591** | 0.512** | 1 | 0.868** | 0.569** |
CFSR | 0.814** | 0.529** | 0.488** | 0.424** | 0.859** | 1 | 0.626** |
JRA55 | 0.666** | 0.546** | 0.494** | 0.404** | 0.641** | 0.687** | 1 |
Table 5
Rates of temperature changes for major countries and regions (℃/10a)
Country/Region | CRU | GHCN | NCEP/NCAR | NCEP/DOE | ERA5 | JRA55 | CFSR | MEAN |
---|---|---|---|---|---|---|---|---|
Greenland | 0.526** | 0.894** | 0.71** | 0.743** | 0.542** | 0.711** | 0.455** | 0.654** |
Ukraine | 0.528** | 0.586** | 0.55** | 0.458** | 0.564** | 0.624** | 0.424** | 0.533** |
Russia | 0.557** | 0.542** | 0.489** | 0.551** | 0.578** | 0.563** | 0.385** | 0.523** |
Romania | 0.571** | 0.574** | 0.536** | 0.377** | 0.509** | 0.583** | 0.471** | 0.517** |
Slovakia | 0.466** | 0.622** | 0.457** | 0.405** | 0.51** | 0.535** | 0.582** | 0.511** |
Hungary | 0.523** | 0.449** | 0.509** | 0.462** | 0.491** | 0.564** | 0.528** | 0.504** |
Finland | 0.485** | 0.553** | 0.485** | 0.555** | 0.507** | 0.508** | 0.431** | 0.503** |
Serbia | 0.551** | 0.529** | 0.525** | 0.527** | 0.443** | 0.496** | 0.442** | 0.502** |
Armenia | 0.426** | 0.642** | 0.699** | 0.593** | 0.44** | 0.459** | 0.056 | 0.474** |
Bosnia and Herzegovina | 0.523** | 0.495** | 0.443** | 0.369** | 0.436** | 0.59** | 0.452** | 0.473** |
Norway | 0.537** | 0.535** | 0.427** | 0.3** | 0.579** | 0.648** | 0.272** | 0.471** |
Bulgaria | 0.533** | 0.659** | 0.382** | 0.16 | 0.454** | 0.518** | 0.508** | 0.459** |
Azerbaijan | 0.438** | 0.608** | 0.477** | 0.43** | 0.438** | 0.439** | 0.358** | 0.455** |
Kyrgyzstan | 0.388** | 0.632** | 0.701** | 0.797** | 0.291** | 0.26** | 0.109 | 0.454** |
Syria | 0.468** | 0.537** | 0.383** | 0.338** | 0.5** | 0.6** | 0.342** | 0.453** |
Turkey | 0.466** | 0.524** | 0.388** | 0.473** | 0.487** | 0.532** | 0.25** | 0.446** |
Belarus | 0.458** | 0.527** | 0.411** | 0.419** | 0.445** | 0.514** | 0.33** | 0.444** |
Jordan | 0.505** | 0.665** | 0.236** | 0.255** | 0.448** | 0.575** | 0.411** | 0.442** |
Saudi Arabia | 0.406** | 0.633** | 0.304** | 0.35** | 0.443** | 0.591** | 0.362** | 0.441** |
Iran | 0.482** | 0.435** | 0.346** | 0.37** | 0.441** | 0.644** | 0.361** | 0.44** |
Poland | 0.447** | 0.496** | 0.36** | 0.39** | 0.444** | 0.474** | 0.436** | 0.435** |
Iraq | 0.496** | 0.408** | 0.391** | 0.373** | 0.491** | 0.617** | 0.262** | 0.434** |
Czech Republic | 0.471** | 0.458** | 0.29* | 0.343* | 0.454** | 0.502** | 0.516** | 0.433** |
United Arab Emirates | 0.41** | 0.601** | 0.29** | 0.288** | 0.4** | 0.527** | 0.422** | 0.42** |
Iceland | 0.462** | 0.517** | 0.348** | 0.364** | 0.477** | 0.395** | 0.297** | 0.408** |
Eritrea | 0.348** | 0.995** | 0.281** | 0.373** | 0.303** | 0.326** | 0.215** | 0.406** |
Egypt | 0.45** | 0.529** | 0.26** | 0.378** | 0.445** | 0.411** | 0.341** | 0.402** |
Germany | 0.42** | 0.38** | 0.297** | 0.344** | 0.417** | 0.462** | 0.492** | 0.402** |
Sweden | 0.415** | 0.451** | 0.436** | 0.353** | 0.428** | 0.422** | 0.299* | 0.401** |
Canada | 0.286** | 0.452** | 0.421** | 0.436** | 0.374** | 0.435** | 0.346** | 0.393** |
Estonia | 0.427** | 0.378** | 0.323* | 0.427** | 0.397** | 0.385** | 0.391** | 0.39** |
Austria | 0.457** | 0.476** | 0.189 | 0.062 | 0.462** | 0.512** | 0.554** | 0.387** |
Netherlands | 0.411** | 0.377** | 0.376** | 0.393** | 0.377** | 0.398** | 0.377** | 0.387** |
Country/Region | CRU | GHCN | NCEP/NCAR | NCEP/DOE | ERA5 | JRA55 | CFSR | MEAN |
Niger | 0.243** | 0.323** | 0.343** | 0.646** | 0.385** | 0.355** | 0.405** | 0.386** |
Libya | 0.26** | 0.404** | 0.321** | 0.498** | 0.41** | 0.469** | 0.309** | 0.381** |
Lithuania | 0.419** | 0.435** | 0.263* | 0.307* | 0.393** | 0.425** | 0.318* | 0.366** |
Georgia | 0.429** | 0.495** | 0.3** | 0.254* | 0.489** | 0.511** | 0.08 | 0.365** |
Croatia | 0.519** | 0.344** | 0.187* | 0.03 | 0.436** | 0.584** | 0.453** | 0.365** |
Latvia | 0.414** | 0.403** | 0.293* | 0.325* | 0.378** | 0.403** | 0.321* | 0.363** |
Denmark | 0.414** | 0.416** | 0.304** | 0.261* | 0.373** | 0.371** | 0.386** | 0.361** |
Belgium | 0.427** | 0.325** | 0.306** | 0.351** | 0.369** | 0.407** | 0.304** | 0.356** |
Mongolia | 0.435** | 0.436** | 0.226* | 0.265* | 0.391** | 0.422** | 0.133 | 0.33** |
Sudan | 0.31** | 0.384** | 0.285** | 0.372** | 0.435** | 0.335** | 0.18** | 0.329** |
Afghanistan | 0.354** | 0.39** | 0.181* | 0.333** | 0.395** | 0.407** | 0.24** | 0.329** |
Djibouti | 0.305** | 0.793** | 0.234** | 0.103 | 0.22** | 0.301** | 0.334** | 0.327** |
Greece | 0.422** | 0.374** | 0.346** | 0.217** | 0.365** | 0.273** | 0.287** | 0.326** |
Montenegro | 0.517** | 0.363** | 0.141 | -0.102 | 0.434** | 0.509** | 0.396** | 0.323** |
Algeria | 0.207** | 0.349** | 0.307** | 0.478** | 0.326** | 0.288** | 0.297** | 0.322** |
Bhutan | 0.232** | 0.693** | 0.468* | 0.412** | 0.184** | 0.132* | 0.116 | 0.32** |
Kosovo | 0.511** | 0.276** | 0.201* | 0.01 | 0.465** | 0.394** | 0.36** | 0.317** |
United States of America | 0.33** | 0.359** | 0.306** | 0.305** | 0.326** | 0.358** | 0.228** | 0.316** |
Chad | 0.24** | 0.309** | 0.222** | 0.29** | 0.395** | 0.472** | 0.235** | 0.309** |
Ethiopia | 0.265** | 0.586** | 0.258** | 0.26** | 0.281** | 0.249** | 0.17* | 0.296** |
China | 0.255** | 0.394** | 0.266** | 0.236** | 0.303** | 0.315** | 0.28** | 0.293** |
Nepal | 0.295** | 0.42** | 0.587** | 0.639** | 0.18** | -0.174 | 0.102 | 0.293** |
Yemen | 0.199** | 0.676** | 0.19** | 0.113* | 0.261** | 0.279** | 0.298** | 0.288** |
Switzerland | 0.4** | 0.501** | -0.083 | -0.081 | 0.354** | 0.408** | 0.443** | 0.278** |
Turkmenistan | 0.352** | 0.406** | 0.042 | 0.084 | 0.4** | 0.401** | 0.249* | 0.276** |
Kenya | 0.21** | 0.229** | 0.379** | 0.447** | 0.223** | 0.244** | 0.195** | 0.275** |
Mali | 0.15** | 0.267** | 0.302** | 0.402** | 0.301** | 0.192** | 0.312** | 0.275** |
Mauritania | 0.182** | 0.34** | 0.272** | 0.381** | 0.268** | 0.153* | 0.287** | 0.269** |
Italy | 0.369** | 0.392** | 0.172** | 0.04 | 0.327** | 0.262** | 0.286** | 0.264** |
South Korea | 0.303** | 0.511** | 0.192** | 0.17* | 0.297** | 0.216** | 0.158** | 0.264** |
Uzbekistan | 0.349** | 0.368** | -0.02 | 0.039 | 0.437** | 0.358** | 0.306** | 0.263** |
Pakistan | 0.319** | 0.259** | 0.34** | 0.361** | 0.204** | 0.23** | 0.121 | 0.262** |
Mexico | 0.278** | 0.325** | 0.213** | 0.193** | 0.282** | 0.391** | 0.152** | 0.262** |
DPRK | 0.257** | 0.41** | 0.217** | 0.206* | 0.299** | 0.297** | 0.148 | 0.262** |
France | 0.327** | 0.316** | 0.259** | 0.184** | 0.276** | 0.284** | 0.183** | 0.261** |
Albania | 0.447** | 0.325** | 0.182* | -0.111 | 0.375** | 0.373** | 0.179** | 0.253** |
Somaliland | 0.178** | 0.557** | 0.175** | 0.206** | 0.226** | 0.131** | 0.277** | 0.25** |
Tajikistan | 0.309** | 0.444** | 0.181 | 0.173 | 0.332** | 0.205 | 0.101 | 0.249** |
Oman | 0.326** | 0.221** | 0.173** | 0.144** | 0.206** | 0.358** | 0.281** | 0.244** |
Japan | 0.329** | 0.39** | 0.04 | 0.056 | 0.324** | 0.349** | 0.215** | 0.243** |
Country/Region | CRU | GHCN | NCEP/NCAR | NCEP/DOE | ERA5 | JRA55 | CFSR | MEAN |
Tunisia | 0.298** | 0.363** | 0.175** | 0.165** | 0.282** | 0.29** | 0.059 | 0.233** |
Western Sahara | 0.234** | 0.246** | 0.233** | 0.337** | 0.238** | 0.125 | 0.213** | 0.232** |
Myanmar | 0.169** | 0.302** | 0.366** | 0.259** | 0.133** | 0.222** | 0.172** | 0.232** |
Kazakhstan | 0.301** | 0.295** | 0.099 | 0.101 | 0.348** | 0.291** | 0.178 | 0.23* |
Cote d'Ivoire | 0.171** | 0.392** | 0.199** | 0.073* | 0.195** | 0.27** | 0.312** | 0.23** |
Central African Republic | 0.205** | 0.312** | 0.27** | 0.099 | 0.357** | 0.332** | 0.001 | 0.225** |
Uganda | 0.204** | 0.489** | 0.361** | 0.322** | 0.268** | 0.122** | -0.245 | 0.217** |
Laos | 0.199** | 0.271** | 0.193** | 0.162** | 0.153** | 0.328** | 0.195** | 0.214** |
Cameroon | 0.173** | 0.522** | 0.132** | 0.024 | 0.244** | 0.215** | 0.171** | 0.211** |
Tanzania | 0.167** | 0.25** | 0.316** | 0.317** | 0.215** | 0.146** | 0.064 | 0.211** |
India | 0.225** | 0.409** | 0.185** | 0.206** | 0.104** | 0.176** | 0.145** | 0.207** |
Guinea | 0.202** | 0.48** | 0.193** | 0.132** | 0.143** | 0.135** | 0.163 | 0.207** |
Gabon | 0.166** | 0.363** | 0.119** | 0.182** | 0.204** | 0.287** | 0.096* | 0.203** |
United Kingdom | 0.262** | 0.157* | 0.21** | 0.13 | 0.224** | 0.209** | 0.204** | 0.199** |
Cambodia | 0.199** | 0.233** | 0.184** | 0.12** | 0.157** | 0.303** | 0.193** | 0.199** |
Thailand | 0.197** | 0.354** | 0.193** | 0.138** | 0.111* | 0.17** | 0.218** | 0.197** |
Somalia | 0.116** | 0.404** | 0.295** | 0.167** | 0.171** | -0.003 | 0.224** | 0.196** |
Spain | 0.265** | 0.429** | 0.091 | 0.03 | 0.239** | 0.252** | 0.045 | 0.193** |
South Sudan | 0.188** | 0.299** | 0.25** | 0.236** | 0.464** | 0.266** | -0.356 | 0.192** |
Madagascar | 0.237** | 0.011 | 0.192** | 0.208** | 0.199** | 0.245** | 0.252** | 0.192** |
Namibia | 0.179** | 0.374** | 0.035 | 0.016 | 0.207** | 0.396** | 0.129* | 0.191** |
Burundi | 0.14** | 0.342** | 0.332** | 0.293** | 0.19** | 0.056 | -0.026 | 0.19** |
Brazil | 0.262** | 0.327** | 0.154** | 0.131** | 0.216** | 0.189** | 0.03 | 0.187** |
Morocco | 0.26** | 0.278** | 0.151* | 0.15* | 0.215** | 0.168** | 0.084 | 0.187** |
Burkina Faso | 0.179** | 0.303** | 0.092* | 0.05 | 0.215** | 0.214** | 0.233** | 0.184** |
Senegal | 0.227** | 0.353** | 0.209** | 0.186** | 0.14** | 0.131** | 0.031 | 0.182** |
Malawi | 0.173** | 0.269** | 0.215** | 0.213** | 0.14** | 0.152** | 0.108 | 0.181** |
Republic of the Congo | 0.124** | 0.309** | 0.183** | 0.15** | 0.264** | 0.212** | 0.025 | 0.181** |
Guatemala | 0.221** | 0.298** | 0.11* | 0.076 | 0.219** | 0.313** | 0.026 | 0.18** |
Nigeria | 0.186** | 0.426** | 0.11** | -0.044 | 0.194** | 0.168** | 0.216** | 0.18** |
Vietnam | 0.161** | 0.143** | 0.174** | 0.175** | 0.139** | 0.299** | 0.157** | 0.178** |
Ghana | 0.165** | 0.334** | 0.079* | -0.037 | 0.204** | 0.265** | 0.222** | 0.176** |
Liberia | 0.154** | 0.401** | 0.201** | 0.097** | 0.114** | 0.042 | 0.209** | 0.174** |
Guinea-Bissau | 0.234** | 0.428** | 0.196** | 0.135* | 0.107** | 0.033 | 0.083 | 0.174** |
Mozambique | 0.23** | 0.301** | 0.169** | 0.224** | 0.158** | 0.117** | 0.015 | 0.174** |
Australia | 0.162** | 0.179** | 0.15** | 0.229** | 0.203** | 0.1* | 0.192** | 0.174** |
Venezuela | 0.221** | 0.231** | 0.19** | 0.135* | 0.176** | 0.212** | 0.038 | 0.172** |
Benin | 0.176** | 0.343** | 0.079* | -0.077 | 0.211** | 0.236** | 0.229** | 0.171** |
South Africa | 0.264** | 0.254** | 0.116* | 0.106 | 0.217** | 0.135* | 0.09 | 0.169** |
Country/Region | CRU | GHCN | NCEP/NCAR | NCEP/DOE | ERA5 | JRA55 | CFSR | MEAN |
Democratic Republic of the Congo | 0.075* | 0.336** | 0.266** | 0.22** | 0.275** | 0.129** | -0.13 | 0.167** |
Sierra Leone | 0.176** | 0.456** | 0.185** | 0.098** | 0.106** | -0.073 | 0.218** | 0.167** |
Ecuador | 0.053 | 0.685** | 0.06 | 0.036 | 0.098* | -0.029 | 0.234** | 0.162** |
Dominica | 0.107** | 0.223** | 0.198** | 0.143** | 0.186** | 0.071 | 0.175** | 0.158** |
Zambia | 0.113* | 0.261** | 0.208** | 0.156* | 0.136* | 0.162** | 0.032 | 0.153** |
Angola | 0.042 | 0.458** | 0.186** | 0.178** | 0.177** | 0.087 | -0.078 | 0.15** |
Peru | 0.066 | 0.327** | 0.047 | 0.004 | 0.18** | 0.158** | 0.242** | 0.146** |
Malaysia | 0.168** | 0.265** | 0.067** | 0.026 | 0.1** | 0.192** | 0.206** | 0.146** |
Ireland | 0.148* | 0.206** | 0.141** | 0.138* | 0.13* | 0.149* | 0.106 | 0.145* |
Guyana | 0.192** | 0.306** | 0.048 | 0.19** | 0.097* | 0.215** | -0.043 | 0.144** |
Suriname | 0.175** | 0.238** | 0.099 | 0.212** | 0.074 | 0.104* | 0.093 | 0.142** |
Botswana | 0.219** | 0.234** | 0.125 | 0.121 | 0.115 | 0.078 | 0.101 | 0.142 |
Portugal | 0.219** | 0.339** | 0.046 | 0.022 | 0.173** | 0.159** | 0.027 | 0.141* |
Zimbabwe | 0.229** | 0.142* | 0.125* | 0.211 | 0.105 | 0.148* | -0.036 | 0.132* |
Cuba | 0.19** | 0.097* | 0.182** | 0.162** | 0.196** | -0.038 | 0.119* | 0.13** |
Colombia | 0.173** | 0.099* | 0.175** | 0.14** | 0.178** | 0.144** | -0.002 | 0.129** |
Sri Lanka | 0.178** | 0.239** | 0.148** | 0.102 | 0.042 | 0.042 | 0.117* | 0.124** |
Indonesia | 0.12** | 0.216** | 0.094** | 0.042 | 0.112** | 0.112** | 0.153** | 0.121** |
Bangladesh | 0.096 | 0.297** | 0.089* | 0.156** | 0.1* | 0.113** | -0.005 | 0.121** |
Costa Rica | 0.095* | 0.133* | 0.164** | 0.074 | 0.112* | 0.132* | 0.095* | 0.115** |
Belize | 0.221** | -0.002 | 0.123** | 0.061 | 0.197** | 0.187** | 0.009 | 0.114** |
Philippines | 0.13** | 0.211** | 0.062* | 0.011 | 0.114** | 0.105** | 0.102** | 0.105** |
Panama | 0.121** | 0.127* | 0.162** | 0.027 | 0.143** | 0.02 | 0.126** | 0.104* |
Lesotho | 0.248** | 0.067 | 0.067 | -0.144 | 0.29** | 0.19** | -0.047 | 0.096 |
Papua New Guinea | -0.033 | 0.344** | 0.107** | 0.018 | 0.063* | 0.044 | 0.089* | 0.09** |
Nicaragua | 0.124** | -0.056 | 0.15** | 0.115 | 0.112** | 0.13* | -0.007 | 0.081* |
New Zealand | 0.134* | 0.257** | 0.043 | -0.296 | 0.176** | 0.084 | 0.087 | 0.069 |
Honduras | 0.161** | -0.042 | 0.1* | 0.019 | 0.12** | 0.093* | -0.065 | 0.055 |
Bolivia | -0.022 | 0.313** | -0.178 | -0.24 | 0.247** | 0.235** | -0.026 | 0.047 |
Uruguay | 0.129* | 0.137* | -0.037 | -0.072 | 0.119* | 0.122* | -0.09 | 0.044 |
East Timor | 0.006 | 0.042 | 0.126** | 0.117** | 0.082* | -0.052 | -0.149 | 0.024 |
Paraguay | 0.159** | 0.331** | -0.212 | -0.356 | 0.33** | 0.26** | -0.549 | -0.005 |
Argentina | 0.112** | 0.148** | -0.245 | -0.401 | 0.195** | 0.159** | -0.121 | -0.022 |
Chile | 0.098* | 0.177** | -0.746 | -0.883 | 0.116** | 0.367** | 0.071 | -0.114 |
Table 6
Comparison of the results of different groups since the 1980s
Study area | Author(s) | Study period | Data | Rate of temperature change (℃/10a) |
---|---|---|---|---|
Foster and Rahmstorf, | 1979-2010 | GISS | 0.171 | |
GHCN | 0.175 | |||
HadCRUT3v | 0.17 | |||
RSS | 0.157 | |||
UAH | 0.141 | |||
Sun, | 1979-2015 | CMA-LASTv1.0 | 0.25 | |
CRUTEM4.1.1 | 0.254 | |||
GHCN-V3.2.0 | 0.273 | |||
Global | Wang et al., | 1979-2014 | CRUTEM4.4.0.0 | 0.304±0.060 |
Sun, | 1979-2014 | CMA-LAST | 0.272±0.025 | |
Hansen et al., | 1979-2010 | GISS | 0.254±0.049 | |
Lawrimore et al., | 1979-2010 | GHCN | 0.273±0.047 | |
Kim et al., | 1979-2012 | ERA-Interim | 0.11 | |
Chu et al., | 1981-2010 | MERRA | 0.13 | |
This study | 1981-2019 | CRU | 0.310 | |
NCEP/NCAR | 0.283 | |||
NCEP/DOE | 0.307 | |||
ERA5 | 0.347 | |||
GHCN | 0.403 | |||
CFSR | 0.231 | |||
JRA55 | 0.358 | |||
In average | 0.320 | |||
Sun, | 1979-2015 | CMA-LASTv1.0 | 0.319 | |
Xu et al., | 1979-2014 | CMA-LAST | 0.305±0.030 | |
Northern Hemisphere | Jones et al., | 1979-2010 | CRUTEM4 | 0.35 |
1979-2010 | ERA-Interim | 0.38 | ||
This study | 1981-2019 | CRU | 0.347 | |
NCEP/NCAR | 0.332 | |||
NCEP/DOE | 0.364 | |||
ERA5 | 0.380 | |||
GHCN | 0.439 | |||
CFSR | 0.271 | |||
JRA55 | 0.403 | |||
In average | 0.362 | |||
Southern Hemisphere | Sun, | 1979-2015 | CMA-LASTv1.0 | 0.142 |
Jones et al., | 1979-2010 | CRUTEM4 | 0.13 | |
1979-2010 | ERA-Interim | 0.12 | ||
Xu et al., | 1979-2014 | CMA-LAST | 0.142±0.021 | |
This study | 1981-2019 | CRU | 0.161 | |
NCEP/NCAR | 0.081 | |||
NCEP/DOE | 0.072 | |||
ERA5 | 0.211 | |||
GHCN | 0.267 | |||
CFSR | 0.066 | |||
JRA55 | 0.169 | |||
In average | 0.147 |
Table 7
Comparisons based on the temperature variations of different countries
Country/region | Author(s) | Data source | Study period | Rate of temperature change (℃/10a) | Main conclusion (℃/10a) |
---|---|---|---|---|---|
Slovenia | De Luis et al., | Meteorological stations | 1959-2008 | 0.15-0.36 | 0.23** |
Switzerland | Ceppi et al., | Meteorological stations | 1959-2008 | 0.35 | 0.28** |
Nigeria | Oguntunde et al., | CRU | 1901-2000 | 0.03 | -0.002 |
Japan | Fujibe, | Meteorological stations | 1979-2013 | 0.29 | 0.35** |
Canada | Vincent et al., | Meteorological stations | 1953-2005 | 1.2 | 1.29** |
India | Arora et al., | Meteorological stations | 1941-1999 | 0.42 | 0.57* |
South Korea | Kim et al., | Meteorological stations | 1960-2010 | 0.2 | 0.22** |
Saudi Arabia | Almazroui et al., | Meteorological stations | 1979-2009 | 0.51 | 0.407** |
Central Asia | Hu et al., | Meteorological stations | 1979-2011 | 0.41 | 0.364** |
Cambodia | Thoeun, | Meteorological stations | 1951-2001 | 0.23 | 0.147** |
Armenia | Gevorgyan et al., | Meteorological stations | 1961-2014 | 0.18 | 0.19** |
China | Ge et al., | Meteorological stations | 1951-2010 | 0.21±0.02 | 0.22** |
Du et al., | Meteorological stations | 1998-2012 | -0.221 | -0.192 |
[1] |
Almazroui M, Nazrul Islam M, Athar H et al., 2012. Recent climate change in the Arabian Peninsula: Annual rainfall and temperature analysis of Saudi Arabia for 1978-2009. Atmospheric Research, 111(32): 29-45. https://doi.org/10.1016/j.atmosres.2012.02.013.
doi: 10.1016/j.atmosres.2012.02.013 |
[2] | Arora M, Goel N K, Singh P, 2005. Evaluation of temperature trends over India/Evaluation de tendances de température en Inde. Hydrology Sciences Journal, 50(1): 81-93. https://doi.org/10.1623/hysj.50.1.81.56330. |
[3] |
Burger F, Brock B, Montecinos A, 2018. Seasonal and elevational contrasts in temperature trends in central Chile between 1979 and 2015. Global and Planetary Change, 162: 136-147. https://doi.org/10.1016/j.gloplacha.2018.01.005.
doi: 10.1016/j.gloplacha.2018.01.005 |
[4] |
Bushuk M, Msadek R, Winton M et al., 2017. Summer enhancement of Arctic Sea ice volume anomalies in the September-ice zone. Journal of Climate, 30: 2341-2362. https://doi.org/10.1175/JCLI-D-16-0470.1.
doi: 10.1175/JCLI-D-16-0470.1 |
[5] |
Ceppi P, Scherrer S C, Fischer A M et al., 2012. Revisiting Swiss temperature trends 1959-2008. International Journal of Climatology, 32(2): 203-213. https://doi.org/10.1002/joc.2260.
doi: 10.1002/joc.2260 |
[6] | Chu Duo, Yang Yong, Luobu Jianshen et al., 2016. Applicability analysis of MERRA surface air temperature over the Qinghai-Xizang Plateau. Plateau Meteorology, 35(2): 337-350. https://doi.org/10.7522/j.issn.1000-0534.2015.00018. (in Chinese) |
[7] |
De Luis M, Čufar K, Saz M A et al., 2014. Trends in seasonal precipitation and temperature in Slovenia during 1951-2007. Regional Environmental Change, 14(5): 1801-1810. https://doi.org/10.1007/s10113-012-0365-7.
doi: 10.1007/s10113-012-0365-7 |
[8] |
Dee D P, Balmaseda M, Balsamo G et al., 2014. Toward a consistent reanalysis of the climate system. Bulletin of the American Meteorological Society, 95(8): 1235-1248. https://doi.org/10.1175/BAMS-D-13-00043.1.
doi: 10.1175/BAMS-D-13-00043.1 |
[9] |
Du Q Q, Zhang M J, Wang S J et al., 2019. Changes in air temperature over China in response to the recent global warming hiatus. Journal of Geographical Sciences, 29(4): 496-516. https://doi.org/10.1007/s11442-019-1612-3.
doi: 10.1007/s11442-019-1612-3 |
[10] | Easterling D R, Wehner M F, 2009. Is the climate warming or cooling? Geophysical Research Letters, 36(8): 262-275. https://doi.org/10.1029/2009GL037810. |
[11] | Falvey M, Garreaud R D, 2009. Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979-2006). Journal of Geophysical Research: Atmospheres, 114(114): 217-221. http://dx.doi.org/10.1029/2008JD010519. |
[12] | Feng C, Wu B Y, 2015. Enhancement of winter arctic warming by the Siberian High over the past decade. Atmospheric and Oceanic Science Letters, 8(5): 257-263. https://doi.org/10.3878/AOSL20150022. |
[13] |
Foster G, Rahmstorf S, 2011. Global temperature evolution 1979-2010. Environmental Research Letters, 6(4): 044022. https://doi.org/10.1088/1748-9326/6/4/044022.
doi: 10.1088/1748-9326/6/4/044022 |
[14] |
Fujibe F, 2015. Relationship between interannual variations of extreme hourly precipitation and air/sea-surface temperature in Japan. SOLA, 11: 5-9. https://doi.org/10.2151/sola.2015-002.
doi: 10.2151/sola.2015-002 |
[15] |
Garreaud R D, Falvey M, 2010. The coastal winds off western subtropical South America in future climate scenarios. International Journal of Climatology, 29: 543-554. http://dx.doi.org/10.1002/joc.1716.
doi: 10.1002/joc.v29:4 |
[16] |
Ge Q S, Wang F, Luterbacher J et al., 2013. Improved estimation of average warming trend of China from 1951-2010 based on satellite observed land-use data. Climatic Change, 121(2): 365-379. https://doi.org/10.1007/s10584-013-0867-4.
doi: 10.1007/s10584-013-0867-4 |
[17] |
Gevorgyan A, Melkonyan H, Aleksanyan T et al., 2016. An assessment of observed and projected temperature changes in Armenia. Arabian Journal of Geosciences, 9(1): 27. https://doi.org/10.1007/s12517-015-2167-y.
doi: 10.1007/s12517-015-2167-y |
[18] |
Graversen R G, Wang M, 2009. Polar amplification in a coupled climate model with locked albedo. Climate Dynamics, 33: 629-643. https://doi.org/10.1007/s00382-009-0535-6.
doi: 10.1007/s00382-009-0535-6 |
[19] |
Gupta A S, England M H, 2006. Coupled ocean-atmosphere-ice response to variations in the southern annular mode. Journal of Climate, 19(18): 4457-4486. http://dx.doi.org/10.1175/JCLI3843.1.
doi: 10.1175/JCLI3843.1 |
[20] | Hansen J, Ruedy R, Sato M et al., 2010. Global surface temperature change. Reviews of Geophysics, 48(4): RG4004. https://doi.org/10.1029/2010RG000345. |
[21] |
Hersbach H, Bell B, Berrisford P et al., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049. https://doi.org/10.1002/qj.3803.
doi: 10.1002/qj.v146.730 |
[22] |
Hu Z, Zhang C, Hu Q et al., 2014. Temperature changes in central Asia from 1979 to 2011 based on multiple datasets. Journal of Climate, 27(3): 1143-1167. https://doi.org/10.1175/jcli-d-13-00064.1.
doi: 10.1175/JCLI-D-13-00064.1 |
[23] |
Huang J, Li G X, Liu Y et al., 2018. Projections for temperature-related years of life lost from cardiovascular diseases in the elderly in a Chinese city with typical subtropical climate. Environmental Research, 167: 614-621. https://doi.org/10.1016/j.envres.2018.08.024.
doi: S0013-9351(18)30466-3 pmid: 30172194 |
[24] | IPCC AR5 WGI, 2013. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press. |
[25] | IPCC, 2018. Special Report on Global Warming of 1.5°C. UK: Cambridge University Press. |
[26] | Jones P D, Lister D H, Osborn T J et al., 2012. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research: Atmospheres, 117(D5). https://doi.org/10.1029/2011jd017139. |
[27] |
Kalnay E, Kanamitsu M, Kistler R et al., 1996. The NCEP /NCAR 40 year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437-471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 |
[28] |
Kanamitsu M, Ebisuzaki W, Woollen J et al., 2002. NCEP-DOE AMIP-II Reanalysis (R-2). Bulletin of the American Meteorological Society, 83(11): 1631-1643. https://doi.org/10.1175/bams-83-11-1631.
doi: 10.1175/BAMS-83-11-1631 |
[29] | Kim H S, Chung Y S, Tans P P et al., 2015. Climatological variability of air temperature and precipitation observed in South Korea for the last 50 years. Air Quality Atmosphere & Health, 9(6): 645-651. https://doi.org/10.1007/s11869-015-0366-z. |
[30] |
Kim S J, Choi H S, Kim B M et al., 2013. Analysis of recent climate change over the Arctic using ERA-Interim reanalysis data. Advances in Polar Science, 24: 326-338. https://doi.org/10.3724/SP.J.1085.2013.00326.
doi: 10.3724/SP.J.1085.2013.00326 |
[31] | Kobayashi S, Ota Y, Harada Y et al., 2015. The JRA-55 Reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society of Japan, 93(1): 5-48. https://doi.org/10.2151/jmsj.2015-001. |
[32] |
Lang A, Yang S, Kaas E, 2017. Sea ice thickness and recent Arctic warming. Geophysical Research Letters, 44(1): 409-418. https://doi.org/10.1002/2016GL071274.
doi: 10.1002/2016GL071274 |
[33] |
Lawrimore J H, Menne M J, Gleason B E et al., 2011. An overview of the Global Historical Climatology Network monthly mean temperature dataset, version 3. Journal of Geophysical Research: Atmospheres, 116: D19121. https://doi.org/10.1029/2011JD016187.
doi: 10.1029/2011JD016187 |
[34] | Li X G, Hu N, 2015. Practical Meteorological Statistical Method. Beijing: China Meteorological Press. |
[35] |
Liu Y H, Key J R, 2014. Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum. Environmental Research Letters, 9(4): 044002. https://doi.org/10.1088/1748-9326/9/4/044002.
doi: 10.1088/1748-9326/9/4/044002 |
[36] |
Lizana X C, Andrea A, Tolaba A et al., 2017. Field responses of potato to increased temperature during tuber bulking: Projection for climate change scenarios, at high-yield environments of southern Chile. Agricultural and Forest Meteorology, 239: 192-201. https://doi.org/10.1016/j.agrformet.2017.03.012.
doi: 10.1016/j.agrformet.2017.03.012 |
[37] |
Morello L, Abbott A, Butler D et al., 2014. 365 days: 2014 in science. Nature, 516(7531): 300-303. https://doi.org/10.1038/516300a.
doi: 10.1038/516300a |
[38] |
Mudelsee M, 2019. Trend analysis of climate time series: A review of methods. Earth-Science Reviews, 190: 310-322. https://doi.org/10.1016/j.earscirev.2018.12.005.
doi: 10.1016/j.earscirev.2018.12.005 |
[39] | Oguntunde P G, Abiodun B J, Lischeid G, 2012. Spatial and temporal temperature trends in Nigeria, 1901-2000. Meteorology and Atmospherics Physics, 118(1/2): 95-105. https://doi.org/10.1007/s00703-012-0199-3. |
[40] |
Overland J E, Wang M, 2016. Recent extreme arctic temperatures are due to a split polar vortex. Journal of Climate, 29(15): 5609-5616. https://doi.org/10.1175/JCLI-D-16-0320.1.
doi: 10.1175/JCLI-D-16-0320.1 |
[41] |
Parker W S, 2016. Reanalyses and observations: What’s the difference? Bulletin of the American Meteorological Society, 97(9): 1565-1572. https://doi.org/10.1175/BAMS-D-14-00226.1.
doi: 10.1175/BAMS-D-14-00226.1 |
[42] |
Pontes-da-Silva E, Magnusson W E, Sinervo B et al., 2018. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard. Journal of Thermal Biology, 73: 50-60. https://doi.org/10.1016/j.jtherbio.2018.01.013.
doi: S0306-4565(17)30369-8 pmid: 29549991 |
[43] | Rossati A, 2017. Global warming and its health impact. International Journal of Occupational and Environmental Medicine, 8(1): 7-20. https://doi.org/10.15171/ijoem.2017.963. |
[44] |
Saha S, Moorthi S, Pan H L et al., 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8): 1015-1057. https://doi.org/10.1175/2010BAMS3001.1.
doi: 10.1175/2010BAMS3001.1 |
[45] |
Schneider W, Donoso D, Garcés-Vargas J et al., 2017. Water-column cooling and sea surface salinity increase in the upwelling region off central-south Chile driven by a poleward displacement of the South Pacific High. Progress in Oceanography, 151: 38-48. http://dx.doi.org/10.1016/j.pocean.2016.11.004.
doi: 10.1016/j.pocean.2016.11.004 |
[46] |
Screen J A, 2014. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nature Climate Change, 4(7): 577-582. https://doi.org/10.1038/nclimate2268.
doi: 10.1038/nclimate2268 |
[47] | Screen J A, Deser C, Simmonds I, 2014. Local and remote controls on observed Arctic warming. Geophysical Research Letters, 39(10): L10709. https://doi.org/10.1029/2012GL051598. |
[48] |
Sequeira T N, Santos M S, Magalhães M, 2018. Climate change and economic growth: A heterogeneous panel data approach. Environmental Science and Pollution Research, 25(23): 22725-22735. https://doi.org/10.1007/s11356-018-2305-7.
doi: 10.1007/s11356-018-2305-7 |
[49] |
Serreze M C, Barry R G, 2011. Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77: 85-96. https://doi.org/10.1016/j.gloplacha.2011.03.004.
doi: 10.1016/j.gloplacha.2011.03.004 |
[50] | Sun X B, 2018. Global land surface air temperature changes over the last century based on the new CMA-LAST v1.0 dataset[D]. Nanjing: Nanjing University of Information Science & Technology. (in Chinese) |
[51] |
Thoeun H C, 2015. Observed and projected changes in temperature and rainfall in Cambodia. Weather and Climate Extremes, 7: 61-71. https://doi.org/10.1016/j.wace.2015.02.001.
doi: 10.1016/j.wace.2015.02.001 |
[52] |
Thorne P W, Vose R S, 2010. Reanalyses suitable for characterizing long-term trends: Are they really achievable? Bulletin of the American Meteorological Society, 91(3): 353-361. https://doi.org/10.1175/2009BAMS2858.1.
doi: 10.1175/2009BAMS2858.1 |
[53] | Tokinaga H, Xie S, Mukougawa H, 2016. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proceedings of the National Academy of Sciences of the United States of America, 114(24): 6227-6232. https://doi.org/10.1073/pnas.1615880114. |
[54] |
Vincent L A, Van Wijngaarden W A, Hopkinson R, 2007. Surface temperature and humidity trends in Canada for 1953-2005. Journal of Climate, 20(20): 5100-5113. https://doi.org/10.1175/JCLI4293.1.
doi: 10.1175/JCLI4293.1 |
[55] |
Vuille M, Franquist E, Garreaud R et al., 2015. Impact of the global warming hiatus on Andean temperature. Journal of Geophysical Research: Atmospheres, 120(9): 3745-3757. http://dx.doi.org/10.1002/2015JD023126.
doi: 10.1002/2015JD023126 |
[56] |
Wang J F, Xu C D, Hu M G et al., 2017. Global land surface air temperature dynamics since 1880. International Journal of Climatology, 38: E466-E474. https://doi.org/10.1002/joc.5384.
doi: 10.1002/joc.2018.38.issue-S1 |
[57] | Wu F M, Li W K, Li W, 2019. Causes of Arctic amplification: Review. Advances in Earth Science, 34(3): 232-242. https://doi.org/10.11867/j.issn.1001-8166.2019.03.0232. (in Chinese) |
[58] |
Xu W H, Li Q X, Jones P et al., 2018. A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900. Climate Dynamics, 50(7): 2513-2536. https://doi.org/10.1007/s00382-017-3755-1.
doi: 10.1007/s00382-017-3755-1 |
[59] |
Zhao L Y, Ding R, Moore J C, 2016. The High Mountain Asia glacier contribution to sea-level rise from 2000 to 2050. Annals of Glaciology, 57(71): 223-231. https://doi.org/10.3189/2016AoG71A049.
doi: 10.3189/2016AoG71A049 |
No related articles found! |
|