Journal of Geographical Sciences ›› 2022, Vol. 32 ›› Issue (1): 65-78.doi: 10.1007/s11442-022-1936-2
Previous Articles Next Articles
Received:
2020-11-05
Accepted:
2021-08-10
Online:
2022-01-25
Published:
2022-03-25
About author:
Xin Liangjie (1979-), PhD and Associate Professor, specialized in land use change and its effects. E-mail: xinlj@igsnrr.ac.cn
Supported by:
XIN Liangjie. Chemical fertilizer rate, use efficiency and reduction of cereal crops in China, 1998-2018[J].Journal of Geographical Sciences, 2022, 32(1): 65-78.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Common FUE terms and their applications
Term | Formula | Note |
---|---|---|
Partial factor productivity | PFP = Y/F | Y = Yield of harvested portion of crops with nutrients applied F = Amount of nutrients applied Y0 = Yield with no nutrients applied UH = Nutrient content of harvested portion of crops U = Total nutrient uptake in aboveground crop biomass with nutrient applied U0 = Nutrient uptake in aboveground crop biomass with no nutrients applied |
Agronomic efficiency | AE = (Y-Y0)/F | |
Partial nutrient balance | PNB = UH/F | |
Apparent recovery efficiency by difference | RE = (U-U0)/F | |
Internal utilization efficiency | IE = Y/U | |
Physiological efficiency | PE = (Y-Y0)/(U-U0) |
Table 2
Harvest indices and root/shoot ratios among nine agricultural regions of China (%)
Indices | Crop | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | Ⅶ | Ⅷ | Ⅸ |
---|---|---|---|---|---|---|---|---|---|---|
Harvest index | Corn | 0.48 | 0.43 | 0.51 | 0.51 | 0.48 | 0.56 | 0.48 | 0.44 | 0.54 |
Rice | 0.52 | 0.50 | 0.37 | 0.46 | 0.57 | 0.58 | 0.50 | 0.49 | 0.55 | |
Wheat | 0.50 | 0.45 | 0.50 | 0.42 | 0.45 | 0.34 | 0.46 | 0.54 | 0.42 | |
Root/shoot ratio | Corn | 0.11 | 0.14 | 0.13 | 0.16 | 0.12 | 0.13 | 0.15 | 0.11 | 0.16 |
Rice | 0.13 | 0.18 | 0.06 | 0.25 | 0.17 | 0.11 | 0.20 | 0.19 | 0.14 | |
Wheat | 0.20 | 0.15 | 0.20 | 0.15 | 0.24 | 0.14 | 0.28 | 0.16 | 0.06 |
Table 3
The N, P, and K contents in the grains and straw/roots of rice, wheat and corn in China (%)
Crop | Nutrient contents in grain | Nutrient contents in straw/roots | ||||
---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | |
Rice | 1.46 | 0.62 | 1.92 | 0.83 | 0.27 | 2.06 |
Wheat | 2.46 | 0.85 | 2.77 | 0.62 | 0.16 | 1.23 |
Corn | 2.58 | 0.98 | 2.78 | 0.87 | 0.31 | 1.34 |
Table 4
The FRs and FUEs for rice, wheat and corn in 1998, 2008, and 2018 (%)
Zone | 1998 | 2008 | 2018 | Growth rate 1998-2018 | |||||
---|---|---|---|---|---|---|---|---|---|
FR | FUE | FR | FUE | FR | FUE | FR | FUE | ||
![]() | I-1 | 215.1 | 36.3 | 289.1 | 45.6 | 344.1 | 41.5 | 60.0 | 14.3 |
I-2 | 313.5 | 39.6 | 345.8 | 43 | 380.6 | 44.6 | 21.4 | 12.6 | |
II-1 | 208.3 | 47.7 | 271.5 | 48.8 | 276.6 | 54.4 | 32.8 | 14.0 | |
II-2 | 288.5 | 41.3 | 311.5 | 41.1 | 364.4 | 43.6 | 26.3 | 5.6 | |
II-3 | 320.1 | 36.9 | 335.3 | 38.6 | 407.6 | 39 | 27.3 | 5.7 | |
III-1 | 306.4 | 31.3 | 295.2 | 35.3 | 309.6 | 38.4 | 1.0 | 22.7 | |
III-2 | 301.9 | 32.1 | 302.4 | 32.1 | 364.2 | 32.3 | 20.6 | 0.6 | |
IV | 267.8 | 39.9 | 315.6 | 37.5 | 324 | 40.2 | 21.0 | 0.8 | |
V-1 | 446.6 | 34 | 504.6 | 34 | 483.2 | 39.1 | 8.2 | 15.0 | |
V-2 | 452.1 | 38.8 | 390 | 40 | 467.4 | 41.8 | 3.4 | 7.7 | |
V-3 | 456.9 | 34.2 | 504.6 | 34.7 | 483.2 | 40.7 | 5.8 | 19.0 | |
![]() | I-1 | 222 | 42 | 233.7 | 44.1 | 338 | 43.5 | 52.3 | 3.6 |
I-2 | 398.4 | 34.3 | 342 | 26.2 | 449.4 | 38.6 | 12.8 | 12.5 | |
I-3 | 378.8 | 35.7 | 329.3 | 29.7 | 422.4 | 39.9 | 11.5 | 11.8 | |
I-4 | 324.2 | 38.6 | 317.4 | 29 | 370.5 | 40.8 | 14.3 | 5.7 | |
II-1 | 231.6 | 38.8 | 296.9 | 38.6 | 338.6 | 40.6 | 46.2 | 4.6 | |
II-2 | 234.5 | 29.4 | 302 | 31.2 | 382.4 | 33.7 | 63.1 | 14.6 | |
III-1 | 277.6 | 35.7 | 301.4 | 31.8 | 314.5 | 33.7 | 13.3 | -5.6 | |
III-2 | 359.1 | 32.8 | 316.7 | 33.2 | 395.4 | 45.4 | 10.1 | 38.4 | |
III-3 | 454.5 | 26.3 | 381.2 | 30.5 | 496.6 | 34.4 | 9.3 | 30.8 | |
IV-1 | 276 | 25.3 | 302.4 | 34.9 | 320.4 | 44.5 | 16.1 | 75.9 | |
IV-2 | 293.8 | 23.6 | 315.5 | 37 | 333.6 | 36.1 | 13.5 | 53.0 | |
IV-3 | 320.6 | 23 | 368.9 | 26.6 | 387.8 | 31.2 | 21.0 | 35.7 | |
![]() | I | 328.8 | 15.3 | 443.9 | 18.7 | 562.2 | 20 | 71.0 | 30.7 |
II-1 | 235.8 | 29.1 | 335.2 | 30.1 | 413.4 | 36.9 | 75.3 | 26.8 | |
II-2 | 365.8 | 22.3 | 322.9 | 24.5 | 420.1 | 25 | 14.8 | 12.1 | |
III-1 | 374.9 | 29.7 | 382.1 | 35.2 | 429.5 | 34.8 | 14.6 | 17.2 | |
III-2 | 351.3 | 23.8 | 355.5 | 34.5 | 430.2 | 31.7 | 22.5 | 33.2 | |
IV | 298.2 | 25.8 | 310.3 | 34.1 | 367.6 | 35.8 | 23.3 | 38.8 | |
V | 189.5 | 40.2 | 191.1 | 38.4 | 201.1 | 42.1 | 6.1 | 4.7 |
Table 5
FORs for rice, corn and wheat in 1998, 2008, and 2018
Crop | Zone | Recommended rate (kg/ha) | Overuse rate (%) | ||
---|---|---|---|---|---|
1998 | 2008 | 2018 | |||
Rice | I-1 | 228.1 | -5.7 | 26.7 | 50.9 |
I-2 | 265.2 | 18.2 | 30.4 | 43.5 | |
II-1 | 272.7 | -23.6 | -0.4 | 1.4 | |
II-2 | 290.9 | -0.8 | 7.1 | 25.3 | |
II-3 | 364.6 | -12.2 | -8.0 | 11.8 | |
III-1 | 285.2 | 7.4 | 3.5 | 8.6 | |
III-2 | 269.1 | 12.2 | 12.4 | 35.3 | |
IV | 275.0 | -2.6 | 14.8 | 17.8 | |
V-1 | 364.6 | 22.5 | 38.4 | 32.5 | |
V-2 | 364.6 | 24.0 | 7.0 | 28.2 | |
V-3 | 364.6 | 25.3 | 38.4 | 32.5 | |
Average | 304.1 | 5.9 | 15.5 | 26.2 | |
Corn | I-1 | 254.9 | -12.9 | -8.3 | 32.6 |
I-2 | 314.6 | 26.6 | 8.7 | 42.8 | |
I-3 | 278.6 | 36.0 | 18.2 | 51.6 | |
I-4 | 286.4 | 13.2 | 10.8 | 29.4 | |
II-1 | 251.9 | -8.1 | 17.9 | 34.4 | |
II-2 | 288.8 | -18.8 | 4.6 | 32.4 | |
III-1 | 275.5 | 0.8 | 9.4 | 14.2 | |
III-2 | 302.6 | 18.7 | 4.7 | 30.7 | |
III-3 | 331.2 | 37.2 | 15.1 | 49.9 | |
IV-1 | 295.4 | -6.6 | 2.4 | 8.5 | |
IV-2 | 261.6 | 12.3 | 20.6 | 27.5 | |
IV-3 | 271.7 | 18.0 | 35.8 | 42.7 | |
Average | 284.4 | 9.7 | 11.6 | 33.1 | |
Wheat | I | 234.6 | 40.2 | 89.2 | 139.6 |
II-1 | 192.4 | 22.6 | 74.2 | 114.9 | |
II-2 | 238.2 | 53.6 | 35.6 | 76.4 | |
III-1 | 290.4 | 29.1 | 31.6 | 47.9 | |
III-2 | 288.5 | 21.8 | 23.2 | 49.1 | |
IV | 250.2 | 19.2 | 24.0 | 46.9 | |
V | 185.7 | 2.0 | 2.9 | 8.3 | |
Average | 240.0 | 26.9 | 40.1 | 69.0 |
[1] |
Bai X, Wang Y, Huo X et al., 2019. Assessing fertilizer use efficiency and its determinants for apple production in China. Ecological Indicators, 104: 268-278.
doi: 10.1016/j.ecolind.2019.05.006 |
[2] |
Bouwman A F, Beusen A H W, Lassaletta L et al., 2017. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Scientific Reports, 7(1): 1-11.
doi: 10.1038/s41598-016-0028-x |
[3] |
Chen C, Pan J J, Shu K L et al., 2014. A review of precision fertilization research. Environmental Earth Sciences, 71(9): 4073-4080.
doi: 10.1007/s12665-013-2792-2 |
[4] | Chen T, Zeng X, Hu Q, 2002. Utilization efficiency of chemical fertilizers among different counties in China. Acta Geographica Sinica, 57(5): 531-538. (in Chinese) |
[5] |
Chen X, Ma L, Ma W, 2018. What has caused the use of fertilizers to skyrocket in China? Nutrient Cycling in Agroecosystems, 110(2): 241-255.
doi: 10.1007/s10705-017-9895-1 |
[6] |
Cui Z, Chen X, Zhang F, 2010. Current nitrogen management status and measures to improve the intensive wheat-maize system in China. Ambio, 39(5/6): 376-384.
doi: 10.1007/s13280-010-0076-6 |
[7] |
Dai H, Sun T, Zhang K et al., 2015. Research on rural nonpoint source pollution in the process of urban-rural integration in the economically-developed area in China based on the improved STIRPAT model. Sustainability, 7(1): 782-793. https://doi.org/10.3390/su7010782.
doi: 10.3390/su7010782 |
[8] |
Dhillon J, Torres G, Driver E et al., 2017. World phosphorus use efficiency in cereal crops. Agronomy Journal, 109(4): 1670-1677.
doi: 10.2134/agronj2016.08.0483 |
[9] | Drechsel P, Heffer P, Magen H et al., 2015. Managing water and fertilizer for sustainable agricultural intensification. International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI), and International Potash Institute (IPI). Paris, France. |
[10] | Fixen P, Brentrup F, Bruulsema T et al., 2015. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. In: International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI), and International Potash Institute (IPI). Managing Water and Fertilizer for Sustainable Agricultural Intensification. Paris, Chapter 2, 8-38. |
[11] |
He R, Shao C F, Shi R G, et al., 2020. Development trend and driving factors of agricultural chemical fertilizer efficiency in China. Sustainability, 12(11): 4607. doi: 10.3390/su12114607.
doi: 10.3390/su12114607 |
[12] | Huang J K, Hu R, Cao J et al., 2008. Training programs and in-the-field guidance to reduce China’s overuse of fertilizer without hurting profitability. Journal of Soil and Water Conservation, 63(5): 165-167. |
[13] |
Huang W, Jiang L, 2019. Efficiency performance of fertilizer use in arable agricultural production in China. China Agricultural Economic Review, 11(1): 52-69.
doi: 10.1108/CAER-12-2017-0238 |
[14] |
Jiang J Y, Jiang S, Xu J, 2020. Lowering nitrogen inputs and optimizing fertilizer types can reduce direct and indirect greenhouse gas emissions from rice-wheat rotation systems. European Journal of Soil Biology, 97: doi: 10.1016/j.ejsobi.2020.103152.
doi: 10.1016/j.ejsobi.2020.103152 |
[15] |
Kusano E, Yin C, Chien H, 2019. Fertilizer-use efficiency of farmers using manure in Liaozhong County, China. Jarq-Japan Agricultural Research Quarterly, 53(2): 127-133.
doi: 10.6090/jarq.53.127 |
[16] |
Lassaletta L, Billen G, Grizzetti B et al., 2014. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environmental Research Letters, 9(10): doi: 10.1088/1748-9326/9/10/105011.
doi: 10.1088/1748-9326/9/10/105011 |
[17] |
Li J, Li S, Liu Y, 2009. Effects of increased ammonia on root/shoot ratio, grain yield and nitrogen use efficiency of two wheat varieties with various N supply. Plant Soil and Environment, 55(7): 273-280.
doi: 10.17221/PSE |
[18] |
Li W, Ou Q, Chen Y, 2014. Decomposition of China’s CO2 emissions from agriculture utilizing an improved Kaya identity. Environmental Science and Pollution Research, 21(22): 13000-13006.
doi: 10.1007/s11356-014-3250-8 |
[19] |
Li Y, Zhang W, Ma L et al., 2013. An analysis of China’s fertilizer policies: Impacts on the industry, food security, and the environment. Journal of Environmental Quality, 42(4): 972-981.
doi: 10.2134/jeq2012.0465 |
[20] | Li Z, Wang X, Wei J et al., 2010. Life cycle assessment of fertilization in corn production in different regions of China. Acta Scientiae Circumstantiae, 30(9): 1912-1920. (in Chinese) |
[21] |
Liu X, Wang H, Zhou J et al., 2016. Effect of N fertilization pattern on rice yield, N use efficiency and fertilizer-N fate in the Yangtze River Basin, China. Plos One, 11(11). doi: 10.1371/journal.pone.0166002.
doi: 10.1371/journal.pone.0166002 |
[22] |
Long X L, Luo Y S, Sun H P et al., 2018. Fertilizer using intensity and environmental efficiency for China’s agriculture sector from 1997 to 2014. Natural Hazards, 92(3): 1573-1591.
doi: 10.1007/s11069-018-3265-4 |
[23] | Lv S, Wang X, Liu G, 2015. A simple and reasonable calculation equation of balanced fertilization. Agronomy-Basel, 52: 180-187. |
[24] | Ma F L, Zhang S Y, Gao D Q et al., 2020. The problems and countermeasures of fertilization for corn in the eastern mountainous area of Jilin Province. Modern Agricultural Science and Technology, 24: 147-148, 152. (in Chinese) |
[25] |
Ma S, Li F, Xu B et al., 2010. Effect of lowering the root/shoot ratio by pruning roots on water use efficiency and grain yield of winter wheat. Field Crops Research, 115(2): 158-164.
doi: 10.1016/j.fcr.2009.10.017 |
[26] | Omara P, Aula L, Oyebiyi F et al., 2019. World cereal nitrogen use efficiency trends: Review and current knowledge. Agrosystems, Geosciences & Environment, 2(1): 1-8. |
[27] | Purnomo J, Subiksa I G M, 2021. Effect of P fertilizer formula to the growth and yield of sweet corn on peatland. IOP Conference Series: Earth and Environmental Science, 648(1): 012194. |
[28] |
Quan Z, Li S, Zhang X et al., 2020. Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: Field N-15 tracer studies. Soil & Tillage Research, 197: doi: 10.1016/j.still.2019.104498.
doi: 10.1016/j.still.2019.104498 |
[29] | Shi K, Shang J, 2018. Research on the fertilizer application behavior and agricultural non-point source pollution control in green agricultural planting. Boletin De Malariologia Y Salud Ambiental, 58(1): 12-19. |
[30] |
Shi P, Guo M, Ou S et al., 2020. Formula fertilization of nitrogen and potassium fertilizers reduces cadmium accumulation in Panax notoginseng. Archives of Agronomy and Soil Science, 66(3): 343-357.
doi: 10.1080/03650340.2019.1616176 |
[31] | Song D, Hou S, Wang X, 2018. Nutrient resource quantity of crop straw and its potential of substituting. Journal of Plant Nutrition and Fertilizers, 24(1): 1-21. (in Chinese) |
[32] |
Swaney D P, Howarth R W, Hong B, 2018. Nitrogen use efficiency and crop production: Patterns of regional variation in the United States, 1987-2012. Science of the Total Environment, 635: 498-511.
doi: 10.1016/j.scitotenv.2018.04.027 |
[33] |
Wang L, Zheng H, Zhao H et al., 2017. Nitrogen balance dynamics during 2000-2010 in the Yangtze River Basin croplands, with special reference to the relative contributions of cropland area and synthetic fertilizer N application rate changes. Plos One, 12(7). doi: 10.1371/journal.pone.0180613.
doi: 10.1371/journal.pone.0180613 |
[34] |
Wang S, Tan Y, Fan H et al., 2015. Responses of soil microarthropods to inorganic and organic fertilizers in a poplar plantation in a coastal area of eastern China. Applied Soil Ecology, 89: 69-75.
doi: 10.1016/j.apsoil.2015.01.004 |
[35] | Wang Y, Wang M, Shi X et al., 2016. Spatial patterns of net primary productivity of crops in China. Acta Ecologica Sinica, 36(19): 6318-6327. (in Chinese) |
[36] |
Wehmeyer H, de Guia Annalyn H, Melanie C, 2020. Reduction of fertilizer use in South China: Impacts and implications on smallholder rice farmers. Sustainability, 12(6): doi: 10.3390/su12062240.
doi: 10.3390/su12062240 |
[37] |
Williams J, McCool D, Reardon C et al., 2013. Root: Shoot ratios and belowground biomass distribution for Pacific Northwest dryland crops. Journal of Soil and Water Conservation, 68(5): 349-360.
doi: 10.2489/jswc.68.5.349 |
[38] |
Wu H, Ge Y, 2019. Excessive application of fertilizer, agricultural non-point source pollution, and farmers’ policy choice. Sustainability, 11(4): doi: 10.3390/su11041165.
doi: 10.3390/su11041165 |
[39] |
Wu Y, Wang E, Miao C, 2019. Fertilizer use in China: The role of agricultural support policies. Sustainability, 11(16): doi: 10.3390/su11164391.
doi: 10.3390/su11164391 |
[40] |
Xin L J, Li X B, Tan M H, 2012. Temporal and regional variations of China’s fertilizer consumption by crops during 1998-2008. Journal of Geographical Sciences, 22(4): 643-652.
doi: 10.1007/s11442-012-0953-y |
[41] |
Zeng X M, Fan B J, Xu F S et al., 2012. Effects of modified fertilization technology on the grain yield and nitrogen use efficiency of midseason rice. Field Crops Research, 137: 203-212.
doi: 10.1016/j.fcr.2012.08.012 |
[42] |
Zhang X, Davidson E, Mauzerall D et al., 2015. Managing nitrogen for sustainable development. Nature, 528(7580): 51-59.
doi: 10.1038/nature15743 |
[43] |
Zhou J, Xia F, Liu X et al., 2014. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China. Journal of Soils and Sediments, 14(2): 415-422.
doi: 10.1007/s11368-013-0695-1 |
[1] | NIU Fangqu, JIANG Yanpeng. Economic sustainability of China's growth from the perspective of its resource and environmental supply system: National scale modeling and policy analysis [J]. Journal of Geographical Sciences, 2021, 31(8): 1171-1186. |
[2] | WANG Xue, LI Xiubin. China's agricultural land use change and its underlying drivers: A literature review [J]. Journal of Geographical Sciences, 2021, 31(8): 1222-1242. |
[3] | ZHANG Tongyan, WANG Yingjie, ZHANG Shengrui, WANG Yingying, YU Hu. Evaluation of ontological value of regional tourism resources: A case study of Hainan Island, China [J]. Journal of Geographical Sciences, 2021, 31(7): 1015-1038. |
[4] | TENG Jialing, TIAN Jing, YU Guirui. Biogeographical patterns of arbuscular mycorrhizal fungi diversity in China’s grasslands [J]. Journal of Geographical Sciences, 2021, 31(7): 965-976. |
[5] | XIA Xingsheng, PAN Yaozhong, ZHU Xiufang, ZHANG Jinshui. Monthly calibration and optimization of Ångström-Prescott equation coefficients for comprehensive agricultural divisions in China [J]. Journal of Geographical Sciences, 2021, 31(7): 997-1014. |
[6] | ZHANG Huijie, AN Li, BILSBORROW Richard, CHUN Yongwan, YANG Shuang, DAI Jie. Neighborhood impacts on household participation in payments for ecosystem services programs in a Chinese nature reserve: A methodological exploration [J]. Journal of Geographical Sciences, 2021, 31(6): 899-922. |
[7] | SONG Tao, SUN Man, LIANG Yutian, Soavapa NGAMPRAMUAN, WUZHATI Yeerken, ZHOU Keyang. Variegated transnational partnerships: Multi-scalar actor networks in China’s overseas industrial parks [J]. Journal of Geographical Sciences, 2021, 31(5): 664-680. |
[8] | LIU Hui, GU Weinan, LIU Weidong, WANG Jiaoe. The influence of China-Europe Railway Express on the production system of enterprises: A case study of TCL Poland Plant [J]. Journal of Geographical Sciences, 2021, 31(5): 699-711. |
[9] | LIANG Yutian, ZENG Jiaqi, KUIK Cheng-Chwee, ZHOU Zhengke, ZHOU Keyang. Policy transfer and scale reconstruction of China’s overseas industrial parks: A case study of the Malaysia-China Kuantan Industrial Park [J]. Journal of Geographical Sciences, 2021, 31(5): 733-746. |
[10] | Seth SCHINDLER, Mustafa Kemal BAYIRBAĞ, GAO Boyang. Incorporating the Istanbul-Ankara high-speed railway into the Belt and Road Initiative: Negotiation, institutional alignment and regional development [J]. Journal of Geographical Sciences, 2021, 31(5): 747-762. |
[11] | FAN Zemeng. Spatial identification and scenario simulation of the ecological transition zones under the climate change in China [J]. Journal of Geographical Sciences, 2021, 31(4): 497-517. |
[12] | HUANG Lin, NING Jia, ZHU Ping, ZHENG Yuhan, ZHAI Jun. The conservation patterns of grassland ecosystem in response to the forage-livestock balance in North China [J]. Journal of Geographical Sciences, 2021, 31(4): 518-534. |
[13] | ZHANG Xiaoping, LIN Meihan, WANG Zhenbo, JIN Fengjun. The impact of energy-intensive industries on air quality in China’s industrial agglomerations [J]. Journal of Geographical Sciences, 2021, 31(4): 584-602. |
[14] | ZHANG Xinghang, ZHANG Baiping, WANG Jing, YU Fuqin, ZHAO Chao, YAO Yonghui. North-south vegetation transition in the eastern Qinling-Daba Mountains [J]. Journal of Geographical Sciences, 2021, 31(3): 350-368. |
[15] | JIN Fengjun, YAO Zuolin, CHEN Zhuo. Development characteristics and construction prospects for a multi-integrated economic zone in the South China Sea Region [J]. Journal of Geographical Sciences, 2021, 31(3): 403-422. |
|