Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (12): 1873-1894.doi: 10.1007/s11442-021-1927-8
Previous Articles Next Articles
SUN Jiaqi1,2(), WANG Xiaojun2,3, Shamsuddin SHAHID4, LI Hongyan5,6
Received:
2020-08-19
Accepted:
2021-03-09
Online:
2021-12-25
Published:
2022-02-25
About author:
Sun Jiaqi (1992‒), PhD, specialized in hydrology and water resources. E-mail: jqsun@hhu.edu.cn
Supported by:
SUN Jiaqi, WANG Xiaojun, Shamsuddin SHAHID, LI Hongyan. An optimized baseflow separation method for assessment of seasonal and spatial variability of baseflow and the driving factors[J].Journal of Geographical Sciences, 2021, 31(12): 1873-1894.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Statistics of baseflow index estimated using different methods
Year | HYSEP (Fixed) | HYSEP (Slide) | HYSEP (Local min) | BFI (F) | BFI (K) | F1 | F2 | F3 | F4 | IERDF |
---|---|---|---|---|---|---|---|---|---|---|
2003 | 0.13 | 0.13 | 0.15 | 0.15 | 0.15 | 0.24 | 0.21 | 0.22 | 0.33 | 0.26 |
2004 | 0.28 | 0.28 | 0.29 | 0.32 | 0.32 | 0.39 | 0.33 | 0.34 | 0.49 | 0.41 |
2005 | 0.20 | 0.17 | 0.10 | 0.21 | 0.22 | 0.32 | 0.30 | 0.31 | 0.44 | 0.35 |
2006 | 0.01 | 0.01 | 0.10 | 0.07 | 0.07 | 0.20 | 0.18 | 0.20 | 0.32 | 0.23 |
2007 | 0.15 | 0.15 | 0.14 | 0.19 | 0.19 | 0.30 | 0.27 | 0.28 | 0.41 | 0.32 |
2008 | 0.27 | 0.26 | 0.29 | 0.28 | 0.30 | 0.38 | 0.34 | 0.36 | 0.48 | 0.40 |
2009 | 0.39 | 0.37 | 0.36 | 0.41 | 0.41 | 0.45 | 0.37 | 0.40 | 0.51 | 0.45 |
2010 | 0.07 | 0.08 | 0.07 | 0.09 | 0.09 | 0.21 | 0.19 | 0.21 | 0.33 | 0.23 |
2011 | 0.61 | 0.62 | 0.73 | 0.72 | 0.73 | 0.69 | 0.48 | 0.57 | 0.69 | 0.67 |
2012 | 0.48 | 0.46 | 0.45 | 0.47 | 0.55 | 0.57 | 0.46 | 0.47 | 0.62 | 0.57 |
2013 | 0.17 | 0.18 | 0.17 | 0.22 | 0.22 | 0.32 | 0.27 | 0.29 | 0.45 | 0.35 |
2014 | 0.55 | 0.54 | 0.56 | 0.61 | 0.61 | 0.64 | 0.46 | 0.50 | 0.66 | 0.61 |
2015 | 0.67 | 0.67 | 0.60 | 0.76 | 0.77 | 0.66 | 0.44 | 0.48 | 0.68 | 0.62 |
2016 | 0.24 | 0.23 | 0.20 | 0.31 | 0.31 | 0.34 | 0.29 | 0.31 | 0.43 | 0.36 |
Average | 0.30 | 0.30 | 0.30 | 0.34 | 0.35 | 0.41 | 0.33 | 0.35 | 0.49 | 0.42 |
Maximum | 0.67 | 0.67 | 0.73 | 0.76 | 0.77 | 0.69 | 0.48 | 0.57 | 0.69 | 0.67 |
Minimum | 0.01 | 0.01 | 0.07 | 0.07 | 0.07 | 0.20 | 0.18 | 0.20 | 0.32 | 0.23 |
Extremum | 67 | 67 | 10.28 | 11.08 | 11.32 | 3.45 | 2.67 | 2.85 | 2.16 | 2.96 |
Variance | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.03 | 0.01 | 0.01 | 0.02 | 0.02 |
CV | 0.69 | 0.70 | 0.70 | 0.65 | 0.65 | 0.41 | 0.31 | 0.33 | 0.26 | 0.35 |
Table 3
Annual runoff separation results at Baishan station
Year | River runoff (m3/s) | Direct runoff (m3/s) | Underground runoff (m3/s) | BFI |
---|---|---|---|---|
2000 | 212.12 | 87.05 | 125.08 | 0.59 |
2001 | 221.24 | 85.70 | 135.54 | 0.61 |
2002 | 147.64 | 63.20 | 84.44 | 0.57 |
2003 | 142.57 | 59.84 | 82.73 | 0.58 |
2004 | 202.75 | 86.72 | 116.03 | 0.57 |
2005 | 296.11 | 137.73 | 158.38 | 0.53 |
2006 | 156.60 | 73.85 | 82.75 | 0.53 |
2007 | 190.82 | 101.37 | 89.45 | 0.47 |
2008 | 140.72 | 75.43 | 65.29 | 0.46 |
2009 | 155.20 | 79.26 | 75.94 | 0.49 |
2010 | 373.55 | 174.17 | 199.38 | 0.53 |
2011 | 177.43 | 84.45 | 92.98 | 0.52 |
2012 | 228.51 | 108.85 | 119.66 | 0.52 |
2013 | 358.62 | 172.61 | 186.01 | 0.52 |
2014 | 160.14 | 81.48 | 78.66 | 0.49 |
2015 | 147.36 | 61.89 | 85.47 | 0.58 |
2016 | 262.21 | 111.76 | 150.45 | 0.57 |
Table 4
Annual runoff separation results at Fengman station
Year | River runoff (m3/s) | Direct runoff (m3/s) | Underground runoff (m3/s) | BFI |
---|---|---|---|---|
2000 | 284.55 | 172.28 | 112.27 | 0.39 |
2001 | 398.51 | 208.49 | 190.02 | 0.48 |
2002 | 245.58 | 136.75 | 108.83 | 0.44 |
2003 | 213.15 | 118.43 | 94.72 | 0.44 |
2004 | 343.99 | 210.92 | 133.08 | 0.39 |
2005 | 549.18 | 349.21 | 199.98 | 0.36 |
2006 | 274.16 | 176.16 | 98.00 | 0.36 |
2007 | 281.44 | 168.43 | 113.01 | 0.40 |
2008 | 254.71 | 151.23 | 103.48 | 0.41 |
2009 | 265.89 | 154.38 | 111.51 | 0.42 |
2010 | 766.54 | 447.31 | 319.23 | 0.42 |
2011 | 301.06 | 185.50 | 115.56 | 0.38 |
2012 | 363.10 | 194.37 | 168.73 | 0.46 |
2013 | 738.79 | 450.25 | 288.54 | 0.39 |
2014 | 275.52 | 200.50 | 75.02 | 0.27 |
2015 | 243.12 | 134.52 | 108.60 | 0.45 |
2016 | 409.15 | 249.05 | 160.10 | 0.39 |
Table 5
Annual runoff separation results at Songhuajiang station
Year | River runoff (m3/s) | Direct runoff (m3/s) | Underground runoff (m3/s) | BFI |
---|---|---|---|---|
2000 | 357.85 | 64.27 | 293.58 | 0.82 |
2001 | 388.99 | 69.45 | 319.54 | 0.82 |
2002 | 332.28 | 53.96 | 278.32 | 0.84 |
2003 | 241.76 | 41.97 | 199.79 | 0.83 |
2004 | 373.34 | 64.65 | 308.69 | 0.83 |
2005 | 641.87 | 124.66 | 517.21 | 0.81 |
2006 | 419.45 | 78.95 | 340.50 | 0.81 |
2007 | 343.32 | 68.38 | 274.94 | 0.80 |
2008 | 329.22 | 64.11 | 265.11 | 0.81 |
2009 | 338.13 | 61.01 | 277.12 | 0.82 |
2010 | 745.48 | 142.37 | 603.11 | 0.81 |
2011 | 478.52 | 86.57 | 391.95 | 0.82 |
2012 | 325.96 | 65.96 | 260.00 | 0.80 |
2013 | 885.01 | 166.49 | 718.52 | 0.81 |
2014 | 441.38 | 89.71 | 351.67 | 0.80 |
2015 | 217.09 | 38.60 | 178.49 | 0.82 |
2016 | 542.17 | 111.12 | 431.05 | 0.80 |
Table 6
Annual runoff separation results at Fuyu station
Year | River runoff (m3/s) | Direct runoff (m3/s) | Underground runoff (m3/s) | BFI |
---|---|---|---|---|
2000 | 289.64 | 45.40 | 244.23 | 0.84 |
2001 | 359.52 | 57.27 | 302.25 | 0.84 |
2002 | 355.19 | 52.25 | 302.94 | 0.85 |
2003 | 258.60 | 39.81 | 218.79 | 0.85 |
2004 | 369.24 | 55.71 | 313.53 | 0.85 |
2005 | 674.09 | 113.41 | 560.68 | 0.83 |
2006 | 455.33 | 74.04 | 381.29 | 0.84 |
2007 | 362.28 | 60.68 | 301.60 | 0.83 |
2008 | 398.15 | 71.29 | 326.86 | 0.82 |
2009 | 379.31 | 59.86 | 319.45 | 0.84 |
2010 | 890.99 | 147.28 | 743.71 | 0.83 |
2011 | 489.15 | 83.64 | 405.51 | 0.83 |
2012 | 316.98 | 63.14 | 253.85 | 0.80 |
2013 | 950.16 | 170.08 | 780.08 | 0.82 |
2014 | 456.20 | 97.57 | 358.63 | 0.79 |
2015 | 200.56 | 40.73 | 159.83 | 0.80 |
2016 | 541.10 | 101.06 | 440.04 | 0.81 |
Table 7
Rainfall infiltration supply coefficient during 2000-2009 at Baishan station
Year | Average rainfall Amount (mm) | Baseflow amount (mm) | Precipitation infiltration supply coefficient |
---|---|---|---|
2000 | 838 | 208.17 | 0.25 |
2001 | 717 | 224.96 | 0.31 |
2002 | 714.1 | 140.15 | 0.20 |
2003 | 605.3 | 137.31 | 0.23 |
2004 | 777.1 | 193.12 | 0.25 |
2005 | 866.4 | 262.87 | 0.30 |
2006 | 676.8 | 137.35 | 0.20 |
2007 | 759 | 148.48 | 0.20 |
2008 | 628.2 | 108.66 | 0.17 |
2009 | 717.9 | 126.05 | 0.18 |
2000-2009 | 729.98 | 168.71 | 0.23 |
Table 8
Rainfall infiltration supply coefficient during 2000-2009 at Fengman station
Year | Average rainfall Amount (mm) | Baseflow amount (mm) | Precipitation infiltration supply coefficient |
---|---|---|---|
2000 | 650.00 | 83.54 | 0.13 |
2001 | 646.00 | 141.00 | 0.22 |
2002 | 640.00 | 80.75 | 0.13 |
2003 | 696.00 | 70.29 | 0.10 |
2004 | 712.00 | 99.02 | 0.14 |
2005 | 873.00 | 148.39 | 0.17 |
2006 | 671.06 | 72.72 | 0.11 |
2007 | 705.13 | 83.86 | 0.12 |
2008 | 662.00 | 76.99 | 0.12 |
2009 | 624.10 | 82.74 | 0.13 |
2000-2009 | 687.93 | 93.93 | 0.14 |
Table 9
Rainfall infiltration supply coefficient during 2000-2009 at Songhuajiang station
Year | Average rainfall Amount (mm) | Baseflow amount (mm) | Precipitation infiltration supply coefficient |
---|---|---|---|
2000 | 326.1 | 180.27 | 0.55 |
2001 | 309.4 | 196.21 | 0.63 |
2002 | 722.9 | 170.89 | 0.24 |
2003 | 605.9 | 122.68 | 0.20 |
2004 | 427.7 | 189.54 | 0.44 |
2005 | 591.3 | 317.58 | 0.54 |
2006 | 477 | 209.08 | 0.44 |
2007 | 319.5 | 168.82 | 0.53 |
2008 | 516.3 | 162.78 | 0.32 |
2009 | 423.1 | 170.16 | 0.40 |
2000-2009 | 471.92 | 188.80 | 0.43 |
Table 10
Rainfall infiltration supply coefficient during 2000-2009 at Fuyu station
Year | Average rainfall amount (mm) | Base low amount (mm) | Precipitation infiltration supply coefficient |
---|---|---|---|
2000 | 363.2 | 107.59 | 0.30 |
2001 | 272.9 | 132.79 | 0.49 |
2002 | 531.2 | 133.09 | 0.25 |
2003 | 437.3 | 96.12 | 0.22 |
2004 | 296 | 138.12 | 0.47 |
2005 | 498 | 246.32 | 0.49 |
2006 | 338.4 | 167.51 | 0.50 |
2007 | 273.6 | 132.50 | 0.48 |
2008 | 621.8 | 143.99 | 0.23 |
2009 | 394.2 | 140.34 | 0.36 |
2000-2009 | 402.66 | 143.84 | 0.38 |
[1] |
Ahiablame L, Chaubey I, Engel B et al., 2013. Estimation of annual baseflow at ungauged sites in Indiana USA. Journal of Hydrology, 476: 13-27.
doi: 10.1016/j.jhydrol.2012.10.002 |
[2] |
Chapman T G, 1991. Comment on “Evaluation of automated techniques for base flow and recession analyses” by R J Nathan and T A McMahon. Water Resources Research, 27(7): 1783-1784.
doi: 10.1029/91WR01007 |
[3] | Chapman T, 1999. A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes, 13(5): 701-714. |
[4] | Chapman T G, Maxwell I A, 1996. Baseflow separation-comparison of numerical methods with tracer experiments. National Conference Publication--Institute of Engineers Australia NCP. Institute of Engineers, Australia, 2: 539-546. |
[5] | Chen L Q, Liu C M, Li F D, 2006. Reviews on base flow researches. Progress in Geography, 25(1): 1-15. (in Chinese) |
[6] |
Collischonn W, Fan F M, 2013. Defining parameters for Eckhardt’s digital baseflow filter. Hydrological Processes, 27(18): 2614-2622.
doi: 10.1002/hyp.v27.18 |
[7] | Dong W W, Ding Y J, Wei X, 2014. Variation of the base flow and its causes in the upper reaches of the Shule River in the Qilian mountains. Journal of Glaciology and Geocryology, 36(3): 661-669. (in Chinese) |
[8] | Eckhardt K, 2005. How to construct recursive digital filters for baseflow separation. Hydrological Processes: An International Journal, 19(2): 507-515. |
[9] | Eckhardt K, 2008. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. Journal of Hydrology, 352(1/2): 168-173. |
[10] |
Furey P R, Gupta V K, 2001. A physically based filter for separating base flow from streamflow time series. Water Resources Research, 37(11): 2709-2722.
doi: 10.1029/2001WR000243 |
[11] | Gao D D, Wu Y, Chen M et al., 2015. Baseflow separation and rainfall infiltration caculation of small watershed in Gongga mountain forest system. Resources and Environment in the Yangtze Basin, 24(6): 949-955. (in Chinese) |
[12] | Gao L, 2018. Digital filter method with parameter uncertainty in the baseflow separation of Meijiang basin. Guangdong Water Resources and Hydropower, (7): 8-12. (in Chinese) |
[13] | Hu G, Li X, 2019. Subsurface Flow. In: Li X, Vereecken H (eds). Observation and Measurement of Ecohydrological Processes. Ecohydrology, Vol 2. Berlin and Heidelberg: Springer. |
[14] | Kissel M, Schmalz B, 2020. Comparison of baseflow separation methods in the German low mountain range. Water, 12(6): 1740. |
[15] |
Klaus J, McDonnell J J, 2013. Hydrograph separation using stable isotopes: Review and evaluation. Journal of Hydrology, 505: 47-64.
doi: 10.1016/j.jhydrol.2013.09.006 |
[16] | Koskelo A I, Fisher T R, Utz R M et al., 2012. A new precipitation-based method of baseflow separation and event identification for small watersheds (< 50 km2). Journal of Hydrology, 450: 267-278. |
[17] | Li H Y, Zhang L, Zheng L Q et al., 2013. Application of recursive digital filtering method in groundwater flow separation in Nenjiang River Basin. Journal of Beijing Normal University (Natural Science), 49(6): 631-635. (in Chinese) |
[18] | Liu X Y, Xie F F, 2017. Spatial-temporal differentiation of base flow in Nujiang River Basin based on digital filtering method. Water Resources Protection, 33(1): 18-23. (in Chinese) |
[19] |
Liu Z, Liu S, Ye J et al., 2019. Application of a digital filter method to separate baseflow in the small watershed of Pengchongjian in southern China. Forests, 10(12): 1065.
doi: 10.3390/f10121065 |
[20] | Lyne V, Hollick M, 1979. Stochastic time-variable rainfall-runoff modeling. Institute of Engineers Australia National Conference. Barton, Australia: Institute of Engineers Australia, 79(10): 89-93. |
[21] |
Novita E, Wahyuningsih S, 2016. Preliminary study on baseflow separation at watersheds in East Java regions. Agriculture and Agricultural Science Procedia, 9: 538-550.
doi: 10.1016/j.aaspro.2016.02.174 |
[22] | Pettyjohn W A, Henning R, 1979. Preliminary estimate of groundwater recharge rates, related streamflow and water quality in Ohio. Ohio State University Water Resources Center Project Completion Report, 552. |
[23] | Price K, 2011. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review. Progress in Physical Geography, 35(4): 465-492. |
[24] |
Rumsey C A, Miller M P, Susong D D et al., 2015. Regional scale estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin. Journal of Hydrology: Regional Studies, 4: 91-107.
doi: 10.1016/0022-1694(66)90070-9 |
[25] |
Shao G, Zhang D, Guan Y et al., 2020. Application of different separation methods to investigate the baseflow characteristics of a semi-arid sandy area, northwestern China. Water, 12(2): 434.
doi: 10.3390/w12020434 |
[26] |
Stewart M K, 2015. Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment, New Zealand. Hydrology and Earth System Sciences, 19(6): 2587-2603.
doi: 10.5194/hess-19-2587-2015 |
[27] |
Wang M, Lei X, Liao W et al., 2018. Analysis of changes in flood regime using a distributed hydrological model: A case study in the Second Songhua River Basin, China. International Journal of Water Resources Development, 34(3): 386-404.
doi: 10.1080/07900627.2018.1440538 |
[28] |
Watson A, Miller J, Fink M et al., 2019. Distributive rainfall-runoff modelling to understand runoff-to-baseflow proportioning and its impact on the determination of reserve requirements of the Verlorenvlei estuarine lake, West Coast, South Africa. Hydrology and Earth System Sciences, 23(6): 2679-2697.
doi: 10.5194/hess-23-2679-2019 |
[29] |
Wels C, Cornett R J, Lazerte B D, 1991. Hydrograph separation: A comparison of geochemical and isotopic tracers. Journal of Hydrology, 122(1-4): 253-274.
doi: 10.1016/0022-1694(91)90181-G |
[30] |
Wittenberg H, 1999. Baseflow recession and recharge as nonlinear storage processes. Hydrological Processes, 13(5): 715-726.
doi: 10.1002/(ISSN)1099-1085 |
[31] | Xie J, Liu X, Wang K et al., 2020. Evaluation of typical methods for baseflow separation in the contiguous United States. Journal of Hydrology, 583: 124628. |
[32] | Zhang J, Song J, Cheng L et al., 2019. Baseflow estimation for catchments in the Loess Plateau, China. Journal of Environmental Management, 233: 264-270. |
[33] | Zhang J, Zhang Y, Song J et al., 2017. Evaluating relative merits of four baseflow separation methods in Eastern Australia. Journal of Hydrology, 549: 252-263. |
[34] |
Zhang R, Li Q, Chow T L et al., 2013. Baseflow separation in a small watershed in New Brunswick, Canada, using a recursive digital filter calibrated with the conductivity mass balance method. Hydrological Processes, 27(18): 2659-2665.
doi: 10.1002/hyp.v27.18 |
No related articles found! |
|