Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (12): 1852-1872.doi: 10.1007/s11442-021-1926-9
Previous Articles Next Articles
ZHANG Xuhui1,2(), LI Huan1,2,*(
), GONG Zheng1,2, ZHOU Zeng1,2, DAI Weiqi3, WANG Lizhu4, Samuel DARAMOLA2
Received:
2021-03-05
Accepted:
2021-08-17
Online:
2021-12-25
Published:
2022-02-25
Contact:
LI Huan
E-mail:zhangxuhui_hhu@163.com;anuolihuan@163.com
About author:
Zhang Xuhui (1996-), Master Candidate, specialized in tidal flats and remote sensing, E-mail: zhangxuhui_hhu@163.com
Supported by:
ZHANG Xuhui, LI Huan, GONG Zheng, ZHOU Zeng, DAI Weiqi, WANG Lizhu, Samuel DARAMOLA. Method for UAV-based 3D topography reconstruction of tidal creeks[J].Journal of Geographical Sciences, 2021, 31(12): 1852-1872.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Akay S S, Ozcan O, Sen O L, 2019. Modeling morphodynamic processes in a meandering river with unmanned aerial vehicle-based measurements. Journal of Applied Remote Sensing, 13(4): 1-18. |
[2] |
Allen, J R L, 2000. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19(12): 1155-1231.
doi: 10.1016/S0277-3791(99)00034-7 |
[3] | Bearman J A, Friedrichs C T, Jaffe B E et al., 2010. Spatial trends in tidal flat shape and associated environmental parameters in South San Francisco Bay. Journal of Coastal Research, 26(2): 342-349. |
[4] |
Brunier G, Fleury J, Anthony E J et al., 2016. Close-range airborne Structure-from-Motion photogrammetry for high-resolution beach morphometric surveys: Examples from an embayed rotating beach. Geomorphology, 261: 76-88.
doi: 10.1016/j.geomorph.2016.02.025 |
[5] |
Chen L C, 1998. Detection of shoreline changes for tideland areas using multi-temporal satellite images. International Journal of Remote Sensing, 19(17): 3383-3397.
doi: 10.1080/014311698214055 |
[6] |
Coco G, Zhou Z, van Maanen B et al., 2013. Morphodynamics of tidal networks: Advances and challenges. Marine Geology, 346: 1-16.
doi: 10.1016/j.margeo.2013.08.005 |
[7] | Dai W, Li H, Gong Z et al., 2019. Application of unmanned aerial vehicle technology in geomorphological evolution of tidal flat. Advances in Water Science, 30(3): 359-372. (in Chinese) |
[8] | D’Alpaos A, Lanzoni S, Marani M et al., 2005. Tidal network ontogeny: Channel initiation and early development. Journal of Geophysical Research, 110: F02001. |
[9] |
Dash J, Pearse G, Watt M, 2018. UAV multispectral imagery can complement satellite data for monitoring forest health. Remote Sensing, 10(8): 1216.
doi: 10.3390/rs10081216 |
[10] | Davies G, Woodroffe C D, 2010. Tidal estuary width convergence: Theory and form in North Australian estuaries. Earth Surface Processes and Landforms, 35(7): 737-749. |
[11] |
Dietrich J T, 2017. Bathymetric Structure-from-Motion: Extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surface Processes and Landforms, 42(2): 355-364.
doi: 10.1002/esp.v42.2 |
[12] |
Elgar S, Raubenheimer B, 2011. Currents in a small channel on a sandy tidal flat. Continental Shelf Research, 31(1): 9-14.
doi: 10.1016/j.csr.2010.10.007 |
[13] | Fagherazzi S, Mariotti G, 2012. Mudflat runnels: Evidence and importance of very shallow flows in intertidal morphodynamics. Geophysical Research Letters, 39(14): L14402. |
[14] |
Fruergaard M, Andersen T J, Nielsen L H et al., 2011. Punctuated sediment record resulting from channel migration in a shallow sand-dominated micro-tidal lagoon, Northern Wadden Sea, Denmark. Marine Geology, 280: 91-104.
doi: 10.1016/j.margeo.2010.12.003 |
[15] |
Gomez C, Hayakawa Y, Obanawa H, 2015. A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology, 242: 11-20.
doi: 10.1016/j.geomorph.2015.02.021 |
[16] | Gong Z, Wang Z B, Stive M J F et al., 2012. Process-based morphodynamic modeling of a schematized mudflat dominated by a long-shore tidal current at the Central Jiangsu Coast, China. Journal of Coastal Research, 28(6): 1381-1392. |
[17] |
Hayakawa Y S, Obanawa H, 2020. Volumetric change detection in bedrock coastal cliffs using terrestrial laser scanning and UAS-based SfM. Sensors, 20(12): 3403.
doi: 10.3390/s20123403 |
[18] |
Hibma A, Stive M J F, Wang Z B, 2004. Estuarine morphodynamics. Coastal Engineering, 51: 765-778.
doi: 10.1016/j.coastaleng.2004.07.008 |
[19] |
Hood W G, 2010. Tidal channel meander formation by depositional rather than erosional processes: Examples from the prograding Skagit River Delta (Washington, USA). Earth Surface Processes and Landforms, 35(3): 319-330.
doi: 10.1002/esp.v35:3 |
[20] | Hughes Z J, 2012. Tidal channels on tidal flats and marshes. In: Richard A Fuller, Robert W Dalrymple eds. Principles of Tidal Sedimentology. Dordrecht, Netherlands: Springer 269-300. |
[21] |
Ichoku C, Chorowicz J, 1994. A numerical approach to the analysis and classification of channel network patterns. Water Resources Research, 30(2): 161-174.
doi: 10.1029/93WR02279 |
[22] |
van Iersel W, Straatsma M, Middelkoop H et al., 2018. Multitemporal classification of river floodplain vegetation using time series of UAV images. Remote Sensing, 10(7): 1144.
doi: 10.3390/rs10071144 |
[23] |
Ishiguro S, Yamano H, Oguma H, 2016. Evaluation of DSMs generated from multi-temporal aerial photographs using emerging structure from motion-multi-view stereo technology. Geomorphology, 268: 64-71.
doi: 10.1016/j.geomorph.2016.05.029 |
[24] |
Kasvi E, Salmela J, Lotsari E et al., 2019. Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers. Geomorphology, 333: 180-197.
doi: 10.1016/j.geomorph.2019.02.017 |
[25] |
Lanzoni S, D’Alpaos A, 2015. On funneling of tidal channels. Journal of Geophysical Research: Earth Surface, 120(3): 433-452.
doi: 10.1002/2014JF003203 |
[26] |
Li C X, Z J Q, Fan D et al., 2001. Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, East China. Marine Geology, 173: 97-120.
doi: 10.1016/S0025-3227(00)00169-9 |
[27] |
Liu Y X, Zhou M X, Zhao S S et al., 2015. Automated extraction of tidal creeks from airborne laser altimetry data. Journal of Hydrology, 527: 1006-1020.
doi: 10.1016/j.jhydrol.2015.05.058 |
[28] |
Magolan, J L, Halls J N, 2020. A multi-decadal investigation of tidal creek wetland changes, water level rise, and ghost forests. Remote Sensing, 12(7): 1141.
doi: 10.3390/rs12071141 |
[29] |
Mallin M A, Lewitus A J, 2004. The importance of tidal creek ecosystems. Journal of Experimental Marine Biology and Ecology, 298(2): 145-149.
doi: 10.1016/S0022-0981(03)00356-3 |
[30] |
Mancini F, Dubbini M, Gattelli M et al., 2013. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sensing, 5(12): 6880-6898.
doi: 10.3390/rs5126880 |
[31] | Mariotti G, Fagherazzi S, 2012. Channels-tidal flat sediment exchange: The channel spillover mechanism. Journal of Geophysical Research: Oceans, 117: C03032. |
[32] |
Mason D C, Davenport I J, Flather R A, 1997. Interpolation of an intertidal digital elevation model from heighted shorelines: A case study in the Western Wash. Estuarine, Coastal and Shelf Science, 45(5): 599-612.
doi: 10.1016/S0272-7714(97)90001-9 |
[33] |
Mason D C, Davenport I J, Flather R A et al., 1998. A digital elevation model of the inter-tidal areas of the Wash, England, produced by the waterline method. International Journal of Remote Sensing, 19(8): 1455-1460.
doi: 10.1080/014311698215289 |
[34] | Mason D C, Scott T R, H-J Wang. 2006. Extraction of tidal channel networks from airborne scanning laser altimetry. ISPRS Journal of Photogrammetry & Remote Sensing, 61: 67-83. |
[35] |
Meinen B U, Robinson D T, 2020. Mapping erosion and deposition in an agricultural landscape: Optimization of UAV image acquisition schemes for SfM-MVS. Remote Sensing of Environment, 239: 111666.
doi: 10.1016/j.rse.2020.111666 |
[36] |
Mohamad N, Abdul Khanan M F, Ahmad A et al., 2019. Evaluating water level changes at different tidal phases using UAV photogrammetry and GNSS vertical data. Sensors, 19(17): 3778.
doi: 10.3390/s19173778 |
[37] |
d’Oleire-Oltmanns S, Marzolff I, Peter K et al., 2012. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sensing, 4(11): 3390-3416.
doi: 10.3390/rs4113390 |
[38] | Perillo G M E, 2009. Tidal courses: Classification, origin and functionality. In: Coastal Wetlands: An Integrated Ecosystem Approach. New York: Elsevier Science, 185-209. |
[39] |
Rao W B, Mao C P, Wang Y G et al., 2015. Geochemical constraints on the provenance of surface sediments of radial sand ridges off the Jiangsu coastal zone, East China. Marine Geology, 359: 35-49.
doi: 10.1016/j.margeo.2014.11.007 |
[40] |
Shi B W, Cooper J R, Pratolongo P D et al., 2017. Erosion and accretion on a mudflat: The importance of very shallow‐water effects. Journal of Geophysical Research: Oceans, 122(12): 9476-9499.
doi: 10.1002/jgrc.v122.12 |
[41] |
Snavely N, Seitz S M, Szeliski R, 2008. Modeling the world from internet photo collections. International Journal of Computer Vision, 80(2): 189-210.
doi: 10.1007/s11263-007-0107-3 |
[42] | Stefanon L, Carniello L, D’Alpaos A et al., 2012. Signatures of sea level changes on tidal geomorphology: Experiments on network incision and retreat. Geophysical Research Letters, 39: L12402. |
[43] |
Stevenson J A, Sun X F, Mitchell N C, 2010. Despeckling SRTM and other topographic data with a denoising algorithm. Geomorphology, 114: 238-252.
doi: 10.1016/j.geomorph.2009.07.006 |
[44] |
Tong X H, Liu X F, Chen P et al., 2015. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sensing, 7(6): 6635-6662.
doi: 10.3390/rs70606635 |
[45] |
Um I, Park S, Kim H T et al., 2020. Configuring RTK-GPS architecture for system redundancy in multi-drone operations. IEEE Access, 8: 76228-76242.
doi: 10.1109/Access.6287639 |
[46] |
Vandenbruwaene W, Meire P, Temmerman S, 2012. Formation and evolution of a tidal channel network within a constructed tidal marsh. Geomorphology, 151/152: 114-125.
doi: 10.1016/j.geomorph.2012.01.022 |
[47] |
Vlaswinkel B M, Cantelli A, 2011. Geometric characteristics and evolution of a tidal channel network in experimental setting. Earth Surface Processes and Landforms, 36: 739-752.
doi: 10.1002/esp.2099 |
[48] |
Wang X Y, Ke X K, 1997. Grain-size characteristics of the extant tidal flat sediments along the Jiangsu coast, China. Sedimentary Geology, 112: 105-122.
doi: 10.1016/S0037-0738(97)00026-2 |
[49] | Wang Y, Zhu D K, You K Y et al., 1999. Evolution of radiative sand ridge field of the South Yellow Sea and its sedimentary characteristics. Science in China Series D Earth Sciences, 42: 97-112. |
[50] | Wang, Y P, Gao S, Jia J J et al., 2012. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Marine Geology, 291- 294: 147-161. |
[51] |
Watts A C, Ambrosia V G, Hinkley E A, 2012. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sensing, 4(6): 1671-1692.
doi: 10.3390/rs4061671 |
[52] |
Westoby M J, Alfieri J, Glasser N F et al., 2012. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179: 300-314.
doi: 10.1016/j.geomorph.2012.08.021 |
[53] |
Xing F, Wang Y P, Wang H V, 2012. Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea. Marine Geology, 291-294: 192-210.
doi: 10.1016/j.margeo.2011.06.006 |
[54] | Yin Y H, 1997. Actuality and advances in tidal creeks. Marine Geology Letters, 1-4. (in Chinese) |
[55] | Zhang C K, Xu M P, Zhou Z et al., 2018. Advances in cross-shore profile characteristics and sediment sorting dynamics of tidal flats. Advances in Water Science, 29(2): 269-282. (in Chinese) |
[56] |
Zhang R S, 1992. Suspended sediment transport processes on tidal mud flat in Jiangsu Province, China. Estuarine, Coastal and Shelf Science, 35(3): 225-233.
doi: 10.1016/S0272-7714(05)80045-9 |
[57] |
Zhang S M, Zhao G X, 2019. A harmonious satellite-unmanned aerial vehicle-ground measurement inversion method for monitoring salinity in coastal saline soil. Remote Sensing, 11(14): 1700.
doi: 10.3390/rs11141700 |
[58] |
Zhao B X, Liu Y X, Xu W X et al., 2019. Morphological characteristics of tidal creeks in the central coastal region of Jiangsu, China, using LiDAR. Remote Sensing, 11(20): 2426.
doi: 10.3390/rs11202426 |
[59] |
Zhou Z, Stefanon L, Olabarrieta M et al., 2014. Analysis of the drainage density of experimental and modelled tidal networks. Earth Surface Dynamics, 2: 105-116.
doi: 10.5194/esurf-2-105-2014 |
[1] | XIONG Liyang, TANG Guoan, YANG Xin, LI Fayuan. Geomorphology-oriented digital terrain analysis: Progress and perspectives [J]. Journal of Geographical Sciences, 2021, 31(3): 456-476. |
[2] | ZHAO Fei, XIONG Liyang, WANG Chun, WEI Hong, MA Junfei, TANG Guoan. Clustering stream profiles to understand the geomorphological features and evolution of the Yangtze River by using DEMs [J]. Journal of Geographical Sciences, 2021, 31(11): 1555-1574. |
[3] | ZHOU Yi, YANG Caiqin, LI Fan, CHEN Rong. Spatial distribution and influencing factors of Surface Nibble Degree index in the severe gully erosion region of China's Loess Plateau [J]. Journal of Geographical Sciences, 2021, 31(11): 1575-1597. |
[4] | MOU Kuinan, GONG Zhaoning, QIU Huachang. Spatiotemporal differentiation and development process of tidal creek network morphological characteristics in the Yellow River Delta [J]. Journal of Geographical Sciences, 2021, 31(11): 1633-1654. |
[5] | Cunjian YANG, Guanghong XU, Hechao LI, Defei YANG, He HUANG, Jing NI, Xiao LI, Xiao XIANG. Measuring the area of cultivated land reclaimed from rural settlements using an unmanned aerial vehicle [J]. Journal of Geographical Sciences, 2019, 29(5): 846-860. |
[6] | Guoan TANG, Xiaodong SONG, Fayuan LI, Yong ZHANG, Liyang XIONG. Slope spectrum critical area and its spatial variation in the Loess Plateau of China [J]. Journal of Geographical Sciences, 2015, 25(12): 1452-1466. |
[7] | Li WANG, Xinfa QIU, Peifa WANG, Xiaoying WANG, Aili LIU. Influence of complex topography on global solar radiation in the Yangtze River Basin [J]. Journal of Geographical Sciences, 2014, 24(6): 980-992. |
[8] | ZENG Yan, QIU Xinfa, LIU Changming, JIANG Aijun. Distributed modeling of direct solar radiation on rugged terrain of the Yellow River Basin [J]. Journal of Geographical Sciences, 2005, 15(4): 439-447. |
[9] | FAN Hui, HUANG Haijun. Spatial-temporal changes of tidal flats in the Huanghe River Delta using Landsat TM/ETM+ images [J]. Journal of Geographical Sciences, 2004, 14(3): 366-374. |
[10] | QIU Xinfa, ZENG Yan, LIU Changming, WU Xianfeng. Simulation of astronomical solar radiation over Yellow River Basin based on DEM [J]. Journal of Geographical Sciences, 2004, 14(1): 63-69. |
|