Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (11): 1598-1614.doi: 10.1007/s11442-021-1913-1
• Special Issue: Fluvial and Geomorphological Features • Previous Articles Next Articles
HUANG Sheng1,2(), XIA Jun1,2,3,*(
), ZENG Sidong4, WANG Yueling3, SHE Dunxian1,2
Received:
2021-02-08
Accepted:
2021-09-02
Online:
2021-11-25
Published:
2022-01-25
Contact:
XIA Jun
E-mail:2015huangsheng@whu.edu.cn;xiajun666@whu.edu.cn
About author:
Huang Sheng (1996-), PhD Candidate, specialized in hydrology and water resources. E-mail: 2015huangsheng@whu.edu.cn
Supported by:
HUANG Sheng, XIA Jun, ZENG Sidong, WANG Yueling, SHE Dunxian. Effect of Three Gorges Dam on Poyang Lake water level at daily scale based on machine learning[J].Journal of Geographical Sciences, 2021, 31(11): 1598-1614.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Performances of the three models at simulating the streamflow and water level
Variables | Models | Training | Testing | ||
---|---|---|---|---|---|
NSE | MAE | NSE | MAE | ||
Dongting ( | ANN | 0.7205 | 1780.8 | 0.7154 | 1914.4 |
NARX | 0.9412 | 899.8 | 0.9206 | 1035.0 | |
GRU | 0.9612 | 750.1 | 0.9410 | 942.6 | |
Poyang ( | ANN | 0.8654 | 0.9511 | 0.8251 | 1.0735 |
NARX | 0.9790 | 0.3745 | 0.9604 | 0.4806 | |
GRU | 0.9849 | 0.3207 | 0.9746 | 0.4264 |
[1] |
Aharon-Rotman Y, McEvoy J, Zheng Z J et al., 2017. Water level affects availability of optimal feeding habitats for threatened migratory waterbirds. Ecology and Evolution, 7(23): 10440-10450.
doi: 10.1002/ece3.3566 |
[2] |
Bonakdari H, Ebtehaj I, Samui P et al., 2019. Lake water-level fluctuations forecasting using minimax probability machine regression, relevance vector machine, Gaussian process regression, and extreme learning machine. Water Resources Management, 33(11): 3965-3984.
doi: 10.1007/s11269-019-02346-0 |
[3] | Chen L G, Chen L M, Jia J W et al., 2019. Quantitative effects of water level variation on the habitat area of wintering waterfowl in dry season of the Poyang Lake. Journal of Hydraulic Engineering, 50(12): 1502-1509. (in Chinese) |
[4] | Cho K, Van Merriënboer B, Gulcehre C et al., 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. EMNLP 2014-2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 1724-1734. |
[5] |
Dai X, Wan R R, Yang G S, 2015. Non-stationary water-level fluctuation in China's Poyang Lake and its interactions with Yangtze River. Journal of Geographical Sciences, 25(3): 274-288.
doi: 10.1007/s11442-015-1167-x |
[6] |
Feng L, Han X X, Hu C M et al., 2016. Four decades of wetland changes of the largest freshwater lake in China: Possible linkage to the Three Gorges Dam? Remote Sensing of Environment, 176: 43-55.
doi: 10.1016/j.rse.2016.01.011 |
[7] |
Feng L, Hu C M, Chen X L, 2014. Dramatic inundation changes of China's two largest freshwater lakes: Natural process or influenced by the Three Gorges Dam? A revisit. Environmental Science and Technology, 48(3): 2088-2089.
doi: 10.1021/es500042k |
[8] |
Gao J H, Jia J J, Kettner A J et al., 2014. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China. Science of the Total Environment, 481(1): 542-553.
doi: 10.1016/j.scitotenv.2014.02.087 |
[9] |
Guo H, Hu Q, Zhang Q et al., 2012. Effects of the Three Gorges Dam on Yangtze River flow and river interaction with Poyang Lake, China: 2003-2008. Journal of Hydrology, 416/417: 19-27.
doi: 10.1016/j.jhydrol.2011.11.027 |
[10] |
Hu C H, Wu Q, Li H et al., 2018. Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water (Switzerland), 10(11): 1-16.
doi: 10.3390/w10020001 |
[11] |
Lai X J, Huang Q, Zhang Y H et al., 2014. Impact of lake inflow and the Yangtze River flow alterations on water levels in Poyang Lake, China. Lake and Reservoir Management, 30(4): 321-330.
doi: 10.1080/10402381.2014.928390 |
[12] |
Lai X J, Liang Q H, Jiang J H et al., 2014. Impoundment effects of the Three-Gorges-Dam on flow regimes in two China's largest freshwater lakes. Water Resources Management, 28(14): 5111-5124.
doi: 10.1007/s11269-014-0797-6 |
[13] | Lai X J, Shankman D, Huber C et al., 2014. Sand mining and increasing Poyang Lake's discharge ability: A reassessment of causes for lake decline in China. Journal of Hydrology, 519(PB): 1698-1706. |
[14] |
Le X H, Ho H V, Lee G et al., 2019. Application of long short-term memory (LSTM) neural network for flood forecasting. Water (Switzerland), 11(7): 1387.
doi: 10.3390/w11071387 |
[15] |
Lecun Y, Bengio Y, Hinton G, 2015. Deep learning. Nature, 521(7553): 436-444.
doi: 10.1038/nature14539 |
[16] |
Li Y K, Qian F W, Silbernagel J et al., 2019. Community structure, abundance variation and population trends of waterbirds in relation to water level fluctuation in Poyang Lake. Journal of Great Lakes Research, 45(5): 976-985.
doi: 10.1016/j.jglr.2019.08.002 |
[17] |
Liang C, Li H Q, Lei M J et al., 2018. Dongting Lake water level forecast and its relationship with the Three Gorges Dam based on a long short-term memory network. Water (Switzerland), 10(10): 1389.
doi: 10.3390/w10101389 |
[18] |
Lin T, Horne B G, Tiňo P et al., 1996. Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7(6): 1329-1338.
pmid: 18263528 |
[19] |
Liu Y B, Wu G P, 2016. Hydroclimatological influences on recently increased droughts in China's largest freshwater lake. Hydrology and Earth System Sciences, 20(1): 93-107.
doi: 10.5194/hess-20-93-2016 |
[20] |
Liu Y B, Wu G P, Guo R F et al., 2016. Changing landscapes by damming: The Three Gorges Dam causes downstream lake shrinkage and severe droughts. Landscape Ecology, 31(8): 1883-1890.
doi: 10.1007/s10980-016-0391-9 |
[21] |
Liu Y B, Wu G P, Zhao X S, 2013. Recent declines in China's largest freshwater lake: Trend or regime shift? Environmental Research Letters, 8(1): 14010-14019.
doi: 10.1088/1748-9326/8/1/014010 |
[22] |
Liu Z J, Guo S L, Guo J L et al., 2017. The impact of Three Gorges Reservoir refill operation on water levels in Poyang Lake, China. Stochastic Environmental Research and Risk Assessment, 31(4): 879-891.
doi: 10.1007/s00477-016-1209-7 |
[23] |
Ma Y, Xu N, Zhang W H et al., 2020. Increasing water levels of global lakes between 2003 and 2009. IEEE Geoscience and Remote Sensing Letters, 17(2): 187-191.
doi: 10.1109/LGRS.8859 |
[24] | Mei X F, Dai Z J, Du J J et al., 2015. Linkage between Three Gorges Dam impacts and the dramatic recessions in China's largest freshwater lake, Poyang Lake. Scientific Reports, 5(November), 1-9. |
[25] |
Menezes J M P, Barreto G A, 2008. Long-term time series prediction with the NARX network: An empirical evaluation. Neurocomputing, 71(16-18): 3335-3343.
doi: 10.1016/j.neucom.2008.01.030 |
[26] | Messager M L, Lehner B, Grill G et al., 2016. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications, 7: 1-11. |
[27] |
Mohammadi S, Kashefipour S M, 2014. Numerical modeling of flow in riverine basins using an improved dynamic roughness coefficient. Water Resources, 41(4): 412-420.
doi: 10.1134/S0097807814040149 |
[28] |
Ning L X, Zhou Y K, Cheng C X et al., 2019. Using a complex network to analyze the effects of the Three Gorges Dam on water level fluctuation in Poyang Lake. ISPRS International Journal of Geo-Information, 8(11): 470.
doi: 10.3390/ijgi8110470 |
[29] |
Roushangar K, Shahnazi S, 2020. Prediction of sediment transport rates in gravel-bed rivers using Gaussian process regression. Journal of Hydroinformatics, 22(2): 249-262.
doi: 10.2166/hydro.2019.077 |
[30] |
Song C Q, Ke L H, 2014. Recent dramatic variations of China's two largest freshwater lakes: Natural process or influenced by the Three Gorges Dam? Environmental Science and Technology, 48(3): 2086-2087.
doi: 10.1021/es405500s |
[31] |
Sun C J, Zhen L, Wang C et al., 2015. Impacts of ecological restoration and human activities on habitat of overwintering migratory birds in the wetland of Poyang Lake, Jiangxi Province, China. Journal of Mountain Science, 12(5): 1302-1314.
doi: 10.1007/s11629-014-3128-8 |
[32] |
Theuerkauf E J, Braun K N, Nelson D M et al., 2019. Coastal geomorphic response to seasonal water-level rise in the Laurentian Great Lakes: An example from Illinois Beach State Park, USA. Journal of Great Lakes Research, 45(6): 1055-1068.
doi: 10.1016/j.jglr.2019.09.012 |
[33] | Wang D, Zhang S H, Wang G L et al., 2019. Quantitative assessment of the influences of Three Gorges Dam on the water level of Poyang Lake, China. Water (Switzerland), 11(7): 1519. |
[34] |
Wang J D, Sheng Y W, Wada Y, 2017. Little impact of the Three Gorges Dam on recent decadal lake decline across China's Yangtze Plain. Water Resources Research, 53(5): 3854-3877.
doi: 10.1002/wrcr.v53.5 |
[35] |
Woodget A S, Carbonneau P E, Visser F et al., 2015. Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surface Processes and Landforms, 40(1): 47-64.
doi: 10.1002/esp.3613 |
[36] |
Wrzesiński D, Ptak M, 2016. Water level changes in Polish lakes during 1976-2010. Journal of Geographical Sciences, 26(1): 83-101.
doi: 10.1007/s11442-016-1256-5 |
[37] |
Xia S X, Liu Y, Chen B et al., 2017. Effect of water level fluctuations on wintering goose abundance in Poyang Lake wetlands of China. Chinese Geographical Science, 27(2): 248-258.
doi: 10.1007/s11769-016-0840-z |
[38] |
Xu K H, Milliman J D, 2009. Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorphology, 104(3/4): 276-283.
doi: 10.1016/j.geomorph.2008.09.004 |
[39] |
Xu X B, Tan Y, Yang G S, 2013. Environmental impact assessments of the Three Gorges Project in China: Issues and interventions. Earth-Science Reviews, 124: 115-125.
doi: 10.1016/j.earscirev.2013.05.007 |
[40] | Yang S Y, Yang D W, Chen J S et al., 2019. Real-time reservoir operation using recurrent neural networks and inflow forecast from a distributed hydrological model. Journal of Hydrology, 579(October): 124229. |
[41] |
Ye X C, Liu F H, Zhang Z X et al., 2020. Quantifying the impact of compounding influencing factors to the water level decline of China's largest freshwater lake. Journal of Water Resources Planning and Management, 146(6): 05020006.
doi: 10.1061/(ASCE)WR.1943-5452.0001211 |
[42] |
Ye X C, Xu C Y, Zhang Q et al., 2018. Quantifying the human induced water level decline of China's largest freshwater lake from the changing underlying surface in the lake region. Water Resources Management, 32(4): 1467-1482.
doi: 10.1007/s11269-017-1881-5 |
[43] |
Yuan Y J, Zeng G M, Liang J et al., 2015. Variation of water level in Dongting Lake over a 50-year period: Implications for the impacts of anthropogenic and climatic factors. Journal of Hydrology, 525: 450-456.
doi: 10.1016/j.jhydrol.2015.04.010 |
[44] | Zhang Q, Li L, Wang Y G et al., 2012. Has the Three-Gorges Dam made the Poyang Lake wetlands wetter and drier? Geophysical Research Letters, 39(20): L20402. |
[45] |
Zhang Q, Ye X C, Werner A D et al., 2014. An investigation of enhanced recessions in Poyang Lake: Comparison of Yangtze River and local catchment impacts. Journal of Hydrology, 517: 425-434.
doi: 10.1016/j.jhydrol.2014.05.051 |
[46] |
Zhang Z X, Chen X, Xu C Y et al., 2015. Examining the influence of river-lake interaction on the drought and water resources in the Poyang Lake basin. Journal of Hydrology, 522: 510-521.
doi: 10.1016/j.jhydrol.2015.01.008 |
[47] |
Zheng L, Liu H, Huang Y F et al., 2020. Assessment and analysis of ecosystem services value along the Yangtze River under the background of the Yangtze River protection strategy. Journal of Geographical Sciences, 30(4): 553-568.
doi: 10.1007/s11442-020-1742-7 |
[48] | Zhou Y Q, Ma J R, Zhang Y L et al., 2019. Influence of the Three Gorges Reservoir on the shrinkage of China's two largest freshwater lakes. Global and Planetary Change, 177(March): 45-55. |
[49] | Zhu S L, Hrnjica B, Ptak M et al., 2020. Forecasting of water level in multiple temperate lakes using machine learning models. Journal of Hydrology, 585(March): 124819. |
[1] | AN Lesheng, LIAO Kaihua, ZHU Lei, ZHOU Baohua. Influence of river-lake isolation on the water level variations of Caizi Lake, lower reach of the Yangtze River [J]. Journal of Geographical Sciences, 2021, 31(4): 551-564. |
[2] | ZHAO Fei, XIONG Liyang, WANG Chun, WEI Hong, MA Junfei, TANG Guoan. Clustering stream profiles to understand the geomorphological features and evolution of the Yangtze River by using DEMs [J]. Journal of Geographical Sciences, 2021, 31(11): 1555-1574. |
[3] | HA Lin, TU Jianjun, YANG Jianping, XU Chunhai, PANG Jiaxing, LU Debin, YAO Zuolin, ZHAO Wenyu. Regional eco-efficiency evaluation and spatial pattern analysis of the Yangtze River Economic Zone [J]. Journal of Geographical Sciences, 2020, 30(7): 1117-1139. |
[4] | GAO Yang, JIA Junjie, LU Yao, SUN Xiaomin, WEN Xuefa, HE Nianpeng, YANG Tiantian. Progress in watershed geography in the Yangtze River Basin and the affiliated ecological security perspective in the past 20 years, China [J]. Journal of Geographical Sciences, 2020, 30(6): 867-880. |
[5] | TANG Zhipeng, MEI Ziao, LIU Weidong, XIA Yan. Identification of the key factors affecting Chinese carbon intensity and their historical trends using random forest algorithm [J]. Journal of Geographical Sciences, 2020, 30(5): 743-756. |
[6] | DERDOURI Ahmed, MURAYAMA Yuji. A comparative study of land price estimation and mapping using regression kriging and machine learning algorithms across Fukushima prefecture, Japan [J]. Journal of Geographical Sciences, 2020, 30(5): 794-822. |
[7] | SUN Zhaohua, FAN Jiewei, YAN Xin, XIE Cuisong. Analysis of critical river discharge for saltwater intrusion control in the upper South Branch of the Yangtze River Estuary [J]. Journal of Geographical Sciences, 2020, 30(5): 823-842. |
[8] | LUO Jing, CHEN Siyun, SUN Xuan, ZHU Yuanyuan, ZENG Juxin, CHEN Guangping. Analysis of city centrality based on entropy weight TOPSIS and population mobility: A case study of cities in the Yangtze River Economic Belt [J]. Journal of Geographical Sciences, 2020, 30(4): 515-534. |
[9] | LUO Xiang, AO Xinhe, ZHANG Zuo, WAN Qing, LIU Xingjian. Spatiotemporal variations of cultivated land use efficiency in the Yangtze River Economic Belt based on carbon emission constraints [J]. Journal of Geographical Sciences, 2020, 30(4): 535-552. |
[10] | ZHENG Liang, LIU Hai, HUANG Yuefei, YIN Shoujing, JIN Gui. Assessment and analysis of ecosystem services value along the Yangtze River under the background of the Yangtze River protection strategy [J]. Journal of Geographical Sciences, 2020, 30(4): 553-568. |
[11] | XIA Shaoxia, YU Xiubo, LEI Jinyu, HEARN Richard, SMITH Bena, LEI Gang, XIE Ping. Priority sites and conservation gaps of wintering waterbirds in the Yangtze River floodplain [J]. Journal of Geographical Sciences, 2020, 30(10): 1617-1632. |
[12] | CHAI Yuanfang, YANG Yunping, DENG Jinyun, SUN Zhaohua, LI Yitian, ZHU Lingling. Evolution characteristics and drivers of the water level at an identical discharge in the Jingjiang reaches of the Yangtze River [J]. Journal of Geographical Sciences, 2020, 30(10): 1633-1648. |
[13] | Lijie SHAN, Liping ZHANG, Jiyun SONG, Yanjun ZHANG, Dunxian SHE, Jun XIA. Characteristics of dry-wet abrupt alternation events in the middle and lower reaches of the Yangtze River Basin and the relationship with ENSO [J]. Journal of Geographical Sciences, 2018, 28(8): 1039-1058. |
[14] | Mofei CHEN, Jinyun DENG, Shaoying FAN, Yitian LI. Applying energy theory to understand the relationship between the Yangtze River and Poyang Lake [J]. Journal of Geographical Sciences, 2018, 28(8): 1059-1071. |
[15] | Gui JIN, Xiangzheng DENG, Xiaodong ZHAO, Baishu GUO, Jun YANG. Spatiotemporal patterns in urbanization efficiency within the Yangtze River Economic Belt between 2005 and 2014 [J]. Journal of Geographical Sciences, 2018, 28(8): 1113-1126. |
|