Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (11): 1575-1597.doi: 10.1007/s11442-021-1912-2
• Special Issue: Fluvial and Geomorphological Features • Previous Articles Next Articles
ZHOU Yi1,2(), YANG Caiqin1,2, LI Fan1,2, CHEN Rong1,2
Received:
2021-05-17
Accepted:
2021-08-19
Online:
2021-11-25
Published:
2021-11-25
About author:
Zhou Yi (1984-), Associate Professor, specialized in loess landform digital terrain analysis.E-mail: zhouyilucky@snnu.edu.cn
Supported by:
ZHOU Yi, YANG Caiqin, LI Fan, CHEN Rong. Spatial distribution and influencing factors of Surface Nibble Degree index in the severe gully erosion region of China's Loess Plateau[J].Journal of Geographical Sciences, 2021, 31(11): 1575-1597.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Statistics of different landform types for key watershed samples on the Loess Plateau
Name | P terrain (km2) | N terrain (km2) | Watershed (km2) | SND | Lon | Lat | Landform type |
---|---|---|---|---|---|---|---|
Chunhua | 30.8425 | 8.8657 | 39.7082 | 0.29 | 108.376 | 34.9018 | Loess tableland |
Yijun | 19.1229 | 7.6041 | 26.7170 | 0.40 | 109.408 | 35.4398 | Loess residual tableland |
Ganquan | 11.8106 | 7.5338 | 19.3444 | 0.64 | 109.546 | 36.2017 | Loess ridge |
Yan'an | 9.3437 | 9.0372 | 18.3809 | 0.97 | 109.430 | 36.5230 | Loess hilly-ridge |
Yanchuan | 9.4479 | 9.3030 | 18.7509 | 0.98 | 109.910 | 36.7351 | Loess hilly-ridge |
Suide | 6.6881 | 5.8591 | 12.5472 | 0.87 | 110.332 | 37.5688 | Loess hill |
Jiaxian | 6.6615 | 6.7144 | 13.3759 | 1.01 | 110.534 | 37.9655 | Loess hill |
Shenmu | 5.5759 | 6.1503 | 11.7262 | 1.10 | 110.778 | 38.5685 | Loess hilly-ridge |
Table 2
Statistics of latitude and longitude of general watershed samples on the Loess Plateau
Number | Lat | Lon | Number | Lat | Lon |
---|---|---|---|---|---|
1 | 110.033 | 37.0707 | 12 | 110.198 | 38.1848 |
2 | 107.951 | 35.3999 | 13 | 109.222 | 37.0174 |
3 | 106.835 | 35.7482 | 14 | 109.474 | 37.3572 |
4 | 107.231 | 35.4794 | 15 | 110.83 | 36.8835 |
5 | 110.279 | 36.2634 | 16 | 110.495 | 37.3494 |
6 | 110.248 | 36.1131 | 17 | 110.915 | 37.4759 |
7 | 110.802 | 38.772 | 18 | 111.382 | 39.1953 |
8 | 110.953 | 38.3863 | 19 | 110.758 | 36.5699 |
9 | 109.305 | 37.0718 | 20 | 109.894 | 36.4359 |
10 | 110.472 | 37.1896 | 21 | 107.331 | 35.1658 |
11 | 109.81 | 37.2797 | 22 | 111.117 | 39.1658 |
Number | Lat | Lon | Number | Lat | Lon |
23 | 109.984 | 38.0775 | 68 | 108.402 | 35.3774 |
24 | 111.052 | 37.8289 | 69 | 111.9215 | 39.2664 |
25 | 110.956 | 37.094 | 70 | 108.608 | 34.8039 |
26 | 109.837 | 37.4431 | 71 | 108.087 | 35.2474 |
27 | 110.713 | 38.9347 | 72 | 110.318 | 37.4710 |
28 | 110.65 | 37.9804 | 73 | 110.700 | 37.3854 |
29 | 110.771 | 37.8817 | 74 | 109.429 | 37.7926 |
30 | 110.758 | 37.0093 | 75 | 110.834 | 38.9883 |
31 | 110.746 | 38.1056 | 76 | 110.918 | 36.4765 |
32 | 106.763 | 36.0591 | 77 | 106.964 | 35.3487 |
33 | 106.554 | 35.6681 | 78 | 110.379 | 38.0940 |
34 | 106.931 | 36.6177 | 79 | 108.403 | 36.4414 |
35 | 107.137 | 36.5798 | 80 | 107.818 | 35.5294 |
36 | 106.513 | 35.9951 | 81 | 107.225 | 36.8137 |
37 | 107.0 | 35.7445 | 82 | 110.584 | 36.0768 |
38 | 110.384 | 36.4940 | 83 | 111.294 | 38.8903 |
39 | 107.070 | 35.9556 | 84 | 109.696 | 35.6187 |
40 | 107.309 | 36.1977 | 85 | 110.174 | 36.2950 |
41 | 107.278 | 36.7339 | 86 | 109.767 | 36.4583 |
42 | 107.320 | 35.5627 | 87 | 110.722 | 36.6932 |
43 | 107.502 | 35.3238 | 88 | 109.793 | 37.2528 |
44 | 107.688 | 35.8767 | 89 | 111.491 | 38.8743 |
45 | 107.807 | 35.6414 | 90 | 108.942 | 37.0613 |
46 | 107.780 | 35.2545 | 91 | 109.081 | 37.2824 |
47 | 109.478 | 35.8585 | 92 | 109.287 | 37.5356 |
48 | 108.143 | 35.0713 | 93 | 109.502 | 37.7438 |
49 | 107.817 | 36.1229 | 94 | 111.186 | 38.9767 |
50 | 107.695 | 36.3004 | 95 | 111.017 | 37.178 |
51 | 107.906 | 36.5821 | 96 | 110.241 | 36.8861 |
52 | 108.025 | 36.9507 | 97 | 109.559 | 37.8908 |
53 | 108.005 | 35.8717 | 98 | 108.712 | 37.2122 |
54 | 107.179 | 37.0657 | 99 | 108.594 | 37.2009 |
55 | 107.623 | 37.1344 | 100 | 108.407 | 37.2424 |
56 | 107.778 | 37.2294 | 101 | 108.712 | 36.7946 |
57 | 109.625 | 37.5820 | 102 | 108.171 | 37.0806 |
58 | 107.553 | 35.2536 | 103 | 107.394 | 36.9248 |
59 | 109.049 | 35.6990 | 104 | 109.59 | 37.0042 |
60 | 109.731 | 35.2954 | 105 | 109.3 | 36.8327 |
61 | 109.626 | 35.3987 | 106 | 108.733 | 36.976 |
62 | 107.540 | 36.0237 | 107 | 110.518 | 36.7005 |
63 | 111.236 | 37.6664 | 108 | 111.093 | 38.5642 |
64 | 110.591 | 36.4738 | 109 | 110.52 | 37.6902 |
65 | 109.551 | 36.8988 | 110 | 110.812 | 36.7609 |
66 | 108.329 | 35.1554 | 111 | 110.746 | 36.3063 |
67 | 108.254 | 35.2298 | 112 | 110.128 | 36.5689 |
Number | Lat | Lon | Number | Lat | Lon |
113 | 109.664 | 36.3772 | 139 | 110.218 | 37.7938 |
114 | 109.697 | 36.606 | 140 | 110.093 | 37.6126 |
115 | 109.322 | 36.5958 | 141 | 109.943 | 37.8034 |
116 | 109.104 | 36.7068 | 142 | 110.936 | 37.9112 |
117 | 108.275 | 36.7145 | 143 | 110.332 | 37.0434 |
118 | 108.693 | 36.4447 | 144 | 110.055 | 37.2545 |
119 | 108.899 | 36.293 | 145 | 109.138 | 35.9500 |
120 | 110.478 | 38.5782 | 146 | 109.397 | 35.2169 |
121 | 108.031 | 36.2957 | 147 | 109.647 | 37.7163 |
122 | 107.493 | 36.3935 | 148 | 110.572 | 36.4798 |
123 | 106.711 | 36.7131 | 149 | 110.693 | 38.1253 |
124 | 106.828 | 36.2325 | 150 | 111.352 | 39.0003 |
125 | 109.811 | 36.0532 | 151 | 111.451 | 39.2793 |
126 | 109.424 | 35.8032 | 152 | 109.841 | 38.2649 |
127 | 109.213 | 35.7367 | 153 | 110.302 | 37.9837 |
128 | 109.111 | 35.9684 | 154 | 110.687 | 37.5559 |
129 | 107.887 | 35.7404 | 155 | 109.563 | 35.4001 |
130 | 107.799 | 35.9819 | 156 | 111.153 | 37.4615 |
131 | 107.291 | 35.7277 | 157 | 110.331 | 36.9478 |
132 | 109.42 | 35.6105 | 158 | 108.461 | 35.7526 |
133 | 109.6 | 35.4757 | 159 | 110.415 | 35.5783 |
134 | 109.358 | 35.4727 | 160 | 108.688 | 36.4855 |
135 | 108.848 | 35.0658 | 161 | 111.830 | 39.4029 |
136 | 107.848 | 35.1926 | 162 | 111.752 | 39.5629 |
137 | 106.735 | 35.4812 | 163 | 110.829 | 38.6034 |
138 | 110.58 | 38.4604 | 164 | 110.332 | 38.0383 |
Figure 8
SND changes with the flow length in each watershed of the Yellow River Basin (a. Wuding River; b. Yanhe River; c. North-Luohe River; d. Jinghe River) SND changes with the flow length in each watershed of the Yellow River Basin (a. Wuding River; b. Yanhe River; c. North-Luohe River; d. Jinghe River)
Figure 10
The relationship between Surface Nibble Degree with LTs (a) and NDVI - AP (b) in different geographical divisions (LT -loess thickness; AP - annual precipitation; NDVI - normalized difference vegetation index; LWG - loess wide gully; SCLH - sand-covered loess hill; LH - loess hill; LR - loess ridge; LT - loess tableland; LRH - loess rocky hill)
Table 3
Statistics of land use types and areas in different geographical divisions of the Loess Plateau (SST - sandstorm transition; LWG - loess wide gully; SCLH - sand-covered loess hill; LIMB - loess inter-montane basin; LH - loess hill; LR - loess ridge; LT - loess tableland; LRH - loess rocky hill; BRM - bed-rocky mountains; RAP - river alluvial plain; HCGL - high coverage grassland; MCGL - medium coverage grassland; LCGL - low coverage grassland)
SST | LWG | SCLH | LIMB | LH | LR | LRH | LT | BRM | RAP | |
---|---|---|---|---|---|---|---|---|---|---|
Dry land (%) | 40.20 | 40.18 | 48.88 | 54.75 | 43.42 | 41.03 | 17.06 | 43.67 | 33.77 | 67.83 |
Woodland (%) | 10.34 | |||||||||
Shrubland (%) | 10.52 | 27.06 | 13.55 | |||||||
HCGL (%) | 13.01 | |||||||||
MCGL (%) | 10.81 | 42.11 | 17.30 | 20.56 | 35.87 | 21.66 | 30.53 | 24.95 | 18.47 | |
LCGL (%) | 31.21 | 11.95 | 24.47 | 16.18 | 20.50 | 14.70 | 13.62 |
[1] |
Arabameri A, Pradhan B, Rezaei K, 2019. Spatial prediction of gully erosion using ALOS PALSAR data and ensemble bivariate and data mining models. Geosciences Journal, 23(4): 669-686.
doi: 10.1007/s12303-018-0067-3 |
[2] |
Cao J J, Tang G A, Fang X et al., 2019. Terrain relief periods of loess landforms based on terrain profiles of the Loess Plateau in northern Shaanxi Province, China. Frontiers of Earth Science, 13(2): 410-421.
doi: 10.1007/s11707-018-0732-x |
[3] |
Carroll C, Merton L, Burger P, 2000. Impact of vegetative cover and slope on runoff, erosion, and water quality for field plots on a range of soil and spoil materials on central Queensland coal mines. Soil Research, 38(2): 313-328.
doi: 10.1071/SR99052 |
[4] | Chen H, Lu Z C, Zhou J X et al., 2004. Interactions of environmental factors on sediment yield in the region of the middle Yellow River basin. Journal of Sediment Research, 2004(2): 40-46. (in Chinese) |
[5] | Chen H, Wang K Z, 1999. A study on the slope gully erosion relationship on small basins in the loess areas at the middle reaches of the Yellow River. Geographical Research, 18(4): 363-372. (in Chinese) |
[6] | Chen Q B, Fei X L, 1996. New progress in the research of soil erosion forecast. Soil and Water Conservation in China, (2): 20-23. (in Chinese) |
[7] |
Clark C, 2000. Storms, floods and soil erosion: The consequences of the storm of 13 May 1998 at Hadspen, Somerset. Weather, 55(1): 17-25.
doi: 10.1002/wea.2000.55.issue-1 |
[8] | Fu B J, 2014. The integrated studies of geography: Coupling of patterns and processes. Acta Geographica Sinica, 69(8): 1052-1059. (in Chinese) |
[9] |
Feng X M, Wang Y F, Chen L D et al., 2010. Modeling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau. Geomorphology, 118(34): 239-248.
doi: 10.1016/j.geomorph.2010.01.004 |
[10] |
Gao H D, Li Z B, Jia L L,et al., 2016. Capacity of soil loss control in the Loess Plateau based on soil erosion control degree. Journal of Geographical Sciences, 26(4): 457-472.
doi: 10.1007/s11442-016-1279-y |
[11] | Jing K, 1986. A study on gully erosion on the Loess Plateau. Scientia Geographica Sinica, 6(4): 340-347. (in Chinese) |
[12] | Jing K, Zheng F L, 2004. An introduction to the typical models for soil and water conservation in China. Research of Soil and Water Conservation, 11(4): 34-39. (in Chinese) |
[13] | Jiang L, Tang G A, Zhao M W et al., 2013. Extraction and analysis of loess gully heads considering geomorphological structures. Geographical Research, 32(11): 2153-2162. (in Chinese) |
[14] | Lei X, 2020. Research on the spatial differentiation characteristics of the proximity index of the Loess Plateau in northern Shaanxi based on DEM[D]. Xi'an: Shaanxi Normal University. (in Chinese) |
[15] | Li C R, Li F Y, Ma J et al., 2017. The study of watershed topography characteristic in the middle reaches of the Yellow River. Geography and Geo-Information Science, 33(4): 107-112. (in Chinese) |
[16] |
Li C R, Li F Y, Dai Z Y et al., 2020. Spatial variation of gully development in the Loess Plateau of China based on the morphological perspective. Earth Science Informatics, 13(4): 1103-1117.
doi: 10.1007/s12145-020-00491-4 |
[17] |
Li Z, Zhang Y, Zhu Q K et al., 2015. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology, 228(1): 462-469.
doi: 10.1016/j.geomorph.2014.10.005 |
[18] |
Li Z, Zhang Y, Zhu Q K et al., 2017. A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area. Catena, 148(2): 195-203.
doi: 10.1016/j.catena.2016.04.018 |
[19] | Li Z B, Zhu B B, Li P, 2008. Advancement in study on soil erosion and soil and water conservation. Acta Pedologica Sinica, 45(5): 802-809. (in Chinese) |
[20] | Li Z S, Yang L, Wang G L et al., 2019. The management of soil and water conservation on the Loess Plateau of China: Present situations, problems, and counter-solutions. Acta Ecologica Sinica, 39(20): 7398-7409. (in Chinese) |
[21] | Liu G B, Shangguan Z P, Yao W Y et al., 2017. Ecological effects of soil conservation in Loess Plateau. Bulletin of Chinese Academy of Sciences, 32(1): 11-19. (in Chinese) |
[22] | Liu K, 2017. Gully features extraction and the regional difference analysis in the severe soil erosion region of Loess Plateau of China based on multisource data. Nanjing: Nanjing Normal University. (in Chinese) |
[23] | Liu L M, Liu P, 1993. Study on methodology and models of quantifying soil erosion in the hilly-gully loess regions. Journal of Soil and Water Conservation, 7(3): 73-79. (in Chinese) |
[24] | Liu T S, Sun J M, Wu W X, 2001. Past, present and future of the Chinese loess research: A discussion on the reality facts and math. Quaternary Sciences, 21(3): 185-207. (in Chinese) |
[25] | Liu X D, Wu Q X, Zhao H Y, 1994. The vertical interception function of forest vegetation and soil and water conservation. Research of Soil and Water Conservation, 1(3): 8-13. (in Chinese) |
[26] | Luo L X, 1956. A tentative classification of landforms in the Loess Plateau. Acta Geographica Sinica, 22(3): 201-222. (in Chinese) |
[27] |
Lv G N, Xiong L Y, Chen M et al., 2017. Chinese progress in geomorphometry. Journal of Geographical Sciences, 27(11): 1389-1412.
doi: 10.1007/s11442-017-1442-0 |
[28] | Magdoff F, 2011. Ecological civilization. Monthly Review, 62(8): 1-25. |
[29] |
Ochoa P A, Fries A, Mejía D et al., 2016. Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena, 140: 31-42.
doi: 10.1016/j.catena.2016.01.011 |
[30] | Rajbanshi J, Bhattacharyaa S, 2020. Assessment of soil erosion, sediment yield and basin specific controlling factors using RUSLE-SDR and PLSR approach in Konar River Basin, India. Journal of Hydrology, 587(C): 1-55. |
[31] | Song G Q, Li L T, Li R, 1990. Approach on proportions between gullied-land and ridge-land in the rolling loess area, northern Shaanxi. Bulletin of Soil and Water Conservation, 10(3): 37-44.. (in Chinese) |
[32] | Tian J, Tang G A, Zhou Y et al., 2013. Spatial variation of gully density in the Loess Plateau. Scientia Geographica Sinica, 33(5): 622-628.. (in Chinese) |
[33] |
Tucker C, 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2): 127-150.
doi: 10.1016/0034-4257(79)90013-0 |
[34] |
Vanmaercke M, Poesen J, Van M B et al., 2016. How fast do gully headcuts retreat? Earth Science Reviews, 154: 336-355.
doi: 10.1016/j.earscirev.2016.01.009 |
[35] |
Wang B, Zheng F L, Mathias J M et al., 2013. Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology, 187: 1-10.
doi: 10.1016/j.geomorph.2013.01.018 |
[36] |
Wang N, Jiao J Y, Bai L C et al., 2020. Magnitude of soil erosion in small catchments with different land use patterns under an extreme rainstorm event over the northern Loess Plateau, China. Catena, 195: 104780.
doi: 10.1016/j.catena.2020.104780 |
[37] |
Wang Z J, Jiao J Y, Rayburg S et al., 2016. Soil erosion resistance of “Grain for Green” vegetation types under extreme rainfall conditions on the Loess Plateau, China. Catena, 141: 109-116.
doi: 10.1016/j.catena.2016.02.025 |
[38] | Wu X L, Xiong L Y, Hu E L, 2017. An adaptive approach to selecting accumulation threshold for gully networks extraction from DEMs. Geography and Geo-Information Science, 33(4): 93-98. (in Chinese) |
[39] | Xiao C C, Tang G A, 2007. Classification of valley shoulder line in loess relief. Arid Land Geography, 30(5): 646-653. (in Chinese) |
[40] |
Xiong L Y, Tang G A, Strobl J et al., 2016. Paleotopographic controls on loess deposition in the Loess Plateau of China. Earth Surface Processes Landforms, 41(9): 1155-1168.
doi: 10.1002/esp.v41.9 |
[41] |
Xiong L Y, Tang G A, Yang Xin et al., 2021. Geomorphology-oriented digital terrain analysis: Progress and perspectives. Journal of Geographical Sciences, 31(3): 456-476.
doi: 10.1007/s11442-021-1853-9 |
[42] | Yan J S, Tang G A, Li F Y et al., 2011. An edge detection based method for extraction of loess shoulder-line from grid DEM. Geomatics and Information Science of Wuhan University, 36(3): 363-367. (in Chinese) |
[43] |
Yang L, Wei W, Chen L D et al., 2014. Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. Catena, 115: 123-133.
doi: 10.1016/j.catena.2013.12.005 |
[44] |
Yang X, Dai W, Tang G A et al., 2017. Deriving ephemeral gullies from VHR image in loess hilly areas through directional edge detection. ISPRS International Journal of Geo-Information, 6(11): 371-389.
doi: 10.3390/ijgi6110371 |
[45] |
Yang X Na, J M, Tang G A et al., 2019. Bank gully extraction from DEMs utilizing the geomorphologic features of a loess hilly area in China. Frontiers of Earth Science, 13(1): 151-168.
doi: 10.1007/s11707-018-0700-5 |
[46] |
Yuan X F, Han J C, Shao Y J et al., 2019. Geodetection analysis of the driving forces and mechanisms of erosion in the hilly-gully region of northern Shaanxi Province. Journal of Geographical Sciences, 29(5): 779-790.
doi: 10.1007/s11442-019-1627-9 |
[47] | Zhang J C, 2012. Policy research on ecological environment management in western China[D]. Yangling: Institute of Soil and Water Conservation, Northwest A&F University. (in Chinese) |
[48] | Zhang L, 2013. Spatial pattern of the loess landforms based on core topographic factor analysis[D]. Nanjing: Nanjing Normal University. (in Chinese) |
[49] | Zheng F L, Kang S Z, 1998. Erosion and sediment yield in different zones of loess slopes. Acta Geographica Sinica, 53(5): 428-435. (in Chinese) |
[50] | Zheng F L, Xu X M, Qin C, 2016. A review of gully erosion process research. Transactions of the Chinese Society for Agricultural Machinery, 47(8): 48-59, 116. (in Chinese) |
[51] |
Zhou C H, Cheng W M, Qian J K et al., 2009. Research on the classification system of digital land geomorphology of 1: 1000000 in China. Journal of Geo-Information Science, 11(6): 707-724. (in Chinese)
doi: 10.3724/SP.J.1047.2009.00707 |
[52] | Zhou Y, 2011. DEM based research on positive-negative terrains and their spatial variation on Loess Plateau[D]. Nanjing: Nanjing Normal University. (in Chinese) |
[53] |
Zhou Y, Lei X, Yang F et al., 2019. Characteristics and influencing factors of proximity distance index on the northern Shaanxi Loess Plateau in China. Journal of Mountain Science, 16(12): 2844-2855.
doi: 10.1007/s11629-019-5610-9 |
[54] | Zhou Y, Tang G A, Xi Y et al., 2013. A shoulder-lines connection algorithm using improved Snake Model. Geomatics and Information Science of Wuhan University, 38(1): 82-85. (in Chinese) |
[55] |
Zhou Y, Yang X, Xiao C C et al., 2010. Positive and negative terrains on northern Shaanxi Loess Plateau. Journal of Geographical Sciences, 20(1): 64-76.
doi: 10.1007/s11442-010-0064-6 |
[1] | XIONG Liyang, TANG Guoan, YANG Xin, LI Fayuan. Geomorphology-oriented digital terrain analysis: Progress and perspectives [J]. Journal of Geographical Sciences, 2021, 31(3): 456-476. |
[2] | ZHAO Fei, XIONG Liyang, WANG Chun, WEI Hong, MA Junfei, TANG Guoan. Clustering stream profiles to understand the geomorphological features and evolution of the Yangtze River by using DEMs [J]. Journal of Geographical Sciences, 2021, 31(11): 1555-1574. |
[3] | WANG Xueqin, LIU Shenghe, QI Wei. Mega-towns in China: Their spatial distribution features and growth mechanisms [J]. Journal of Geographical Sciences, 2020, 30(7): 1060-1082. |
[4] | Chenzhi WANG, Zhao ZHANG, Jing ZHANG, Fulu TAO, Yi CHEN, Hu DING. The effect of terrain factors on rice production: A case study in Hunan Province [J]. Journal of Geographical Sciences, 2019, 29(2): 287-305. |
[5] | Meifeng ZHAO, Shenghe LIU, Wei QI. Exploring the differential impacts of urban transit system on the spatial distribution of local and floating population in Beijing [J]. Journal of Geographical Sciences, 2017, 27(6): 731-751. |
[6] | Guonian LV, Liyang XIONG, Min CHEN, Guoan TANG, Yehua SHENG, Xuejun LIU, Zhiyao SONG, Yuqi LU, Zhaoyuan YU, Ka ZHANG, Meizhen WANG. Chinese progress in geomorphometry [J]. Journal of Geographical Sciences, 2017, 27(11): 1389-1412. |
[7] | Jiajia XU, Yulian *JIA, Chunmei MA, Cheng *ZHU, Li WU, Yuyuan LI, Xinhao WANG. Geographic distribution of archaeological sites and their response to climate and environmental change between 10.0-2.8 ka BP in the Poyang Lake Basin, China [J]. Journal of Geographical Sciences, 2016, 26(5): 603-618. |
[8] | Lu WANG, Zhiming FENG, Yanzhao YANG. The change in population density from 2000 to 2010 and its influencing factors in China at the county scale [J]. Journal of Geographical Sciences, 2015, 25(4): 485-496. |
[9] | Guoan TANG, Xiaodong SONG, Fayuan LI, Yong ZHANG, Liyang XIONG. Slope spectrum critical area and its spatial variation in the Loess Plateau of China [J]. Journal of Geographical Sciences, 2015, 25(12): 1452-1466. |
[10] | Li WANG, Xinfa QIU, Peifa WANG, Xiaoying WANG, Aili LIU. Influence of complex topography on global solar radiation in the Yangtze River Basin [J]. Journal of Geographical Sciences, 2014, 24(6): 980-992. |
[11] | Zhixin HAO, Huan WANG, Jingyun ZHENG. Spatial and temporal distribution of large volcanic eruptions from 1750 to 2010 [J]. Journal of Geographical Sciences, 2014, 24(6): 1060-1068. |
[12] | Qiliang MAO, Fei WANG, Jun LI, Suocheng DONG. Evolving a core-periphery pattern of manufacturing industries across Chinese provinces [J]. Journal of Geographical Sciences, 2014, 24(5): 924-942. |
[13] | LI Kaifeng, ZHU Cheng, JIANG Fengqing, LI Bing, WANG Xinhao, CAO Bo, ZHAO Xiaofan. Archaeological sites distribution and its physical environmental settings between ca 260-2.2 ka BP in Guizhou, Southwest China [J]. , 2014, 24(3): 526-538. |
[14] | YU Guo-an, LIU Le, LI Zhiwei, LI Yanfu, HUANG Heqing, Gary BRIERLEY, Brendon BLUE, WANG Zhaoyin, PAN Baozhu. Fluvial diversity in relation to valley setting in the source region of the Yangtze and Yellow Rivers [J]. , 2013, 23(5): 817-832. |
[15] | HE Fanneng, LI Shicheng, ZHANG Xuezhen. Reconstruction of cropland area and spatial distribution in the mid-Northern Song Dynasty (AD1004-1085) [J]. Journal of Geographical Sciences, 2012, 22(2): 359-370. |
|