Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (11): 1555-1574.doi: 10.1007/s11442-021-1911-3
• Special Issue: Fluvial and Geomorphological Features • Next Articles
ZHAO Fei1,2,3(), XIONG Liyang1,2,3,*(
), WANG Chun4, WEI Hong1,2,3, MA Junfei1,2,3, TANG Guoan1,2,3
Received:
2020-12-18
Accepted:
2021-08-10
Online:
2021-11-25
Published:
2021-11-25
Contact:
XIONG Liyang
E-mail:191360001@njnu.edu.cn;xiongliyang@njnu.edu.cn
About author:
Zhao Fei, PhD Candidate, specialized in digital terrain analysis. E-mail: 191360001@njnu.edu.cn
Supported by:
ZHAO Fei, XIONG Liyang, WANG Chun, WEI Hong, MA Junfei, TANG Guoan. Clustering stream profiles to understand the geomorphological features and evolution of the Yangtze River by using DEMs[J].Journal of Geographical Sciences, 2021, 31(11): 1555-1574.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 5
Sequence of the stream profile clusters in the Yangtze River. Stream profile clusters of the (a) Jinsha River Basin, (b) Minjiang River Basin, (c) Yuanjiang River Basin, (g) Hanshui River Basin, (h) Ganjiang River Basin, and (i) Lower Reaches of the Yangtze River Basin. Stream knickpoints and erosion base derived from stream profile clusters of the (d) Jinsha River Basin, (e) Minjiang River Basin, (f) Yuanjiang River Basin, (j) Hanshui River Basin, (k) Ganjiang River Basin, and (l) Lower Reaches of the Yangtze River Basin.
Table 1
Statistics of the stream evolution index in sub-basins of the Yangtze River; basins were sorted from the upper reaches to the lower reaches
Basin name | Slope* | Mean | Median | Standard deviation |
---|---|---|---|---|
Jinsha River | 1.76*10‒1 | 0.33 | 0.33 | 0.12 |
Minjiang River | 3.62*10‒1 | 0.29 | 0.28 | 0.10 |
Yuanjiang River | 6.71*10‒2 | 0.21 | 0.22 | 0.08 |
Hanshui River | 5.9*10‒2 | 0.22 | 0.20 | 0.07 |
Ganjiang River | 3.07*10‒2 | 0.15 | 0.15 | 0.06 |
Lower Reach | 1.86*10‒2 | 0.14 | 0.12 | 0.04 |
[1] |
Alain D, 1998. Testing the tectonic significance of some parameters of longitudinal river profiles: The case of the Ardenne (Belgium, NW Europe). Geomorphology, 24: 189-208.
doi: 10.1016/S0169-555X(98)00016-6 |
[2] |
Ambili V, Narayana A C, 2014. Tectonic effects on the longitudinal profiles of the Chaliyar River and its tributaries, southwest India. Geomorphology, 217: 37-47.
doi: 10.1016/j.geomorph.2014.04.013 |
[3] |
Anton L, Vicente G D, Munoz-Martin A et al., 2014. Using river long profiles and geomorphic indices to evaluate the geomorphological signature of continental scale drainage capture, Duero basin (NW Iberia). Geomorphology, 206: 250-261.
doi: 10.1016/j.geomorph.2013.09.028 |
[4] |
Baker V R, Hamilton C W, Burr D M et al., 2015. Fluvial geomorphology on Earth-like planetary surfaces: A review. Geomorphology, 245: 149-182.
doi: 10.1016/j.geomorph.2015.05.002 |
[5] | Bookhagen B, Burbank D W, 2010. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface, 115: F03019. |
[6] |
Chen J, Zhang W, 2020. Impacts of tidal species on water level variations in Pearl River Delta channel networks. Regional Studies in Marine Science, 35: 101110.
doi: 10.1016/j.rsma.2020.101110 |
[7] |
Chen S A, Michaelides K, Grieve S W D et al., 2019. Aridity is expressed in river topography globally. Nature, 573: 573-577.
doi: 10.1038/s41586-019-1558-8 |
[8] |
Chen Z, Li J, Shen H et al., 2001a. Yangtze River of China: Historical analysis of discharge variability and sediment flux. Geomorphology, 41: 77-91.
doi: 10.1016/S0169-555X(01)00106-4 |
[9] |
Chen Z, Song B, Wang Z et al., 2000. Late Quaternary evolution of the sub-aqueous Yangtze Delta, China: Sedimentation, stratigraphy, palynology, and deformation. Marine Geology, 162: 423-441.
doi: 10.1016/S0025-3227(99)00064-X |
[10] |
Chen Z, Yu L, Gupta A, 2001b. Yangtze River: An introduction. Geomorphology, 41: 73-75.
doi: 10.1016/S0169-555X(01)00105-2 |
[11] | Chun Y, Wang W, Winston C et al., 2003. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications. Journal of Geophysical Research: Solid Earth, 108(B9): 2442. |
[12] |
Coleman M, Hodges K, 1995. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374: 49-52.
doi: 10.1038/374049a0 |
[13] |
Dai Y, Feng L, Hou X et al., 2019. Policy-driven changes in enclosure fisheries of large lakes in the Yangtze Plain: Evidence from satellite imagery. Science of The Total Environment, 688: 1286-1297.
doi: 10.1016/j.scitotenv.2019.06.179 |
[14] |
Deng Q, Qin F, Zhang B et al., 2015. Characterizing the morphology of gully cross-sections based on PCA: A case of Yuanmou dry-hot valley. Geomorphology, 228: 703-713.
doi: 10.1016/j.geomorph.2014.10.032 |
[15] |
Deng S, Xia J, Zhou M, 2019. Coupled two-dimensional modeling of bed evolution and bank erosion in the Upper Jingjiang Reach of Middle Yangtze River. Geomorphology, 344: 10-24.
doi: 10.1016/j.geomorph.2019.07.010 |
[16] |
Enkelmann E, Ratschbacher L, Jonckheere R et al., 2006. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin? Geological Society of America Bulletin, 118(5/6): 651-671.
doi: 10.1130/B25805.1 |
[17] |
Frankl A, Stal C, Abraha A et al., 2015. Detailed recording of gully morphology in 3D through image-based modelling. Catena, 127: 92-101.
doi: 10.1016/j.catena.2014.12.016 |
[18] |
Gao Y, Jia J, Lu Y et al., 2020. Progress in watershed geography in the Yangtze River Basin and the affiliated ecological security perspective in the past 20 years, China. Journal of Geographical Sciences, 30(6): 867-880.
doi: 10.1007/s11442-020-1759-y |
[19] |
Gu Z, Fan H, Yang K, 2020. GIS and DEM based analysis of incision and drainage reorganization of the Buyuan River basin in the upper Lancang-Mekong of China since the Late Pleistocene. Journal of Geographical Sciences, 30(9): 1495-1506.
doi: 10.1007/s11442-020-1795-7 |
[20] |
Gurnell A M, Bertoldi W, Corenblit D J, 2012. Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews, 111(1/2): 129-141.
doi: 10.1016/j.earscirev.2011.11.005 |
[21] |
Harmar O P, Clifford N J, 2007. Geomorphological explanation of the long profile of the Lower Mississippi River. Geomorphology, 84(3/4): 222-240.
doi: 10.1016/j.geomorph.2006.01.045 |
[22] |
He M, Zheng H, Huang X et al., 2013. Yangtze River sediments from source to sink traced with clay mineralogy. Journal of Asian Earth Sciences, 69: 60-69.
doi: 10.1016/j.jseaes.2012.10.001 |
[23] | Hou Z, Yang Y, Qu X et al., 2004. Tectonic evolution and mineralization systems of the Yidun arc orogen in Sanjiang region, China. Acta Geologica Sinica, 78(1): 109-120. (in Chinese) |
[24] | Huang D, 1986. Distribution characteristics of permafrost and development trend of melting zone in Tongtianhe Basin, Qinghai-Tibet Plateau. Frozen Soil Glacier, 8(1): 29-39. (in Chinese) |
[25] | Huang J, Ren J, Jiang C et al., 1977. An outline of the tectonic characteristics of China. Acta Geologica Sinica, 51(2): 117-135. (in Chinese) |
[26] | Jiang Y, Lin L, Ni H et al., 2018. An overview of the resources and environment conditions and major geological problems in the Yangtze River Economic Zone, China. China Geology, 1(3): 435-449. |
[27] |
Kirby E, Whipple K X, Burchfiel B C et al., 2000. Neotectonics of the Min Shan, China: Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau. Geological Society of America Bulletin, 112(3): 375-393.
doi: 10.1130/0016-7606(2000)112<375:NOTMSC>2.0.CO;2 |
[28] |
Lai X, Yin D, Finlayson B et al., 2017. Will river erosion below the Three Gorges Dam stop in the middle Yangtze? Journal of Hydrology, 554: 24-31.
doi: 10.1016/j.jhydrol.2017.08.057 |
[29] |
Langbein W B, Leopold L B, 1964. Quasi-equilibrium states in channel morphology. American Journal of Science, 262(6): 782-794.
doi: 10.2475/ajs.262.6.782 |
[30] |
Leviandier T, Alber A, Le B F et al., 2012. Comparison of statistical algorithms for detecting homogeneous river reaches along a longitudinal continuum. Geomorphology, 138(1): 130-144.
doi: 10.1016/j.geomorph.2011.08.031 |
[31] |
Li J, Xie S, Kuang M, 2001. Geomorphic evolution of the Yangtze Gorges and the time of their formation. Geomorphology, 41(2/3): 125-135.
doi: 10.1016/S0169-555X(01)00110-6 |
[32] | Li J, Xiong L, Tang G, 2019. Combined gully profiles for expressing surface morphology and evolution of gully landforms. Frontier of Earth Science, 13(3): 551-562. |
[33] |
Li S, Li Y, Yuan J et al., 2018. The impacts of the Three Gorges Dam upon dynamic adjustment mode alterations in the Jingjiang reach of the Yangtze River, China. Geomorphology, 318: 230-239.
doi: 10.1016/j.geomorph.2018.06.020 |
[34] |
Li S, Lu X, He M et al., 2011. Major element chemistry in the upper Yangtze River: A case study of the Longchuanjiang River. Geomorphology, 129(1/2): 29-42.
doi: 10.1016/j.geomorph.2011.01.010 |
[35] |
Li S, Xiong L, Tang G et al., 2020a. Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery. Geomorphology, 354:107045.
doi: 10.1016/j.geomorph.2020.107045 |
[36] |
Li Z, Lu H, Gao P et al., 2020b. Characterizing braided rivers in two nested watersheds in the source region of Yangtze River on the Qinghai-Tibet Plateau. Geomorphology, 351: 106945.
doi: 10.1016/j.geomorph.2019.106945 |
[37] |
Lin F, Zhou M, Lu J et al., 2017. Morphological adjustments in a meandering reach of the middle Yangtze River caused by severe human activities. Geomorphology, 285: 325-332.
doi: 10.1016/j.geomorph.2017.02.022 |
[38] |
Lin Z, Oguchi T, 2009. Longitudinal and transverse profiles of hilly and mountainous watersheds in Japan. Geomorphology, 111(1/2): 17-26.
doi: 10.1016/j.geomorph.2007.12.022 |
[39] |
Luo W, Wang Z, Lu J et al., 2019. Mega-blowouts in Qinghai-Tibet Plateau: Morphology, distribution and initiation. Earth Surface Processes and Landforms, 44(2): 449-458.
doi: 10.1002/esp.v44.2 |
[40] |
Lv G, Xiong L, Chen M et al., 2017. Chinese progress in geomorphometry. Journal of Geographical Sciences, 27(11): 1389-1412.
doi: 10.1007/s11442-017-1442-0 |
[41] |
Martins A A, Cobral J, Cunha P P et al., 2017. Tectonic and lithological controls on fluvial landscape development in central-eastern Portugal: Insights from long profile tributary stream analyses. Geomorphology, 276: 144-163.
doi: 10.1016/j.geomorph.2016.10.012 |
[42] |
Milliman J D, Meade R H, 1983. World-wide delivery of river sediment to the oceans. The Journal of Geology, 91(1): 1-21.
doi: 10.1086/628741 |
[43] | Notteboom T, Yang D, Xu H, 2020. Container barge network development in inland rivers: A comparison between the Yangtze River and the Rhine River. Transportation Research Part A: Policy and Practice, 132: 587-605. |
[44] | O'Callaghan J F, Mark D M, 1984. The extraction of drainage networks from digital elevation data. Graphical Models and Image Processing, 28(3): 323-344. |
[45] |
Qu S, Wang L, Lin A et al., 2020. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecological Indicators, 108: 105724.
doi: 10.1016/j.ecolind.2019.105724 |
[46] |
Rana V K, Suryanarayana T M V, 2020. GIS-based multi criteria decision making method to identify potential runoff storage zones within watershed. Annals of GIS, 26(2): 149-168.
doi: 10.1080/19475683.2020.1733083 |
[47] |
Reuter H I, Nelson A, Jarvis A, 2007. An evaluation of void-filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9): 983-1008.
doi: 10.1080/13658810601169899 |
[48] |
Roerdink J B, Meijster A, 2000. The watershed transform: Definitions, algorithms and parallelization strategies. Fundamenta Informaticae, 41(1/2): 187-228.
doi: 10.3233/FI-2000-411207 |
[49] |
Shahzad F, Gloaguen R, 2011. TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 1: Drainage network preprocessing and stream profile analysis. Computers & Geosciences, 37(2): 250-260.
doi: 10.1016/j.cageo.2010.06.008 |
[50] | Shu L, 2012. An analysis of principal features of tectonic evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053. (in Chinese) |
[51] |
Shi X, Yang Z, Dong Y et al., 2020. Geomorphic indices and longitudinal profile of the Daba Shan, northeastern Sichuan Basin: Evidence for the Late Cenozoic eastward growth of the Tibetan Plateau. Geomorphology, 353: 107031.
doi: 10.1016/j.geomorph.2020.107031 |
[52] |
Sonam, Jain V, 2018. Geomorphic effectiveness of a long profile shape and the role of inherent geological controls in the Himalayan hinterland area of the Ganga River basin, India. Geomorphology, 304: 15-29.
doi: 10.1016/j.geomorph.2017.12.022 |
[53] | Song P, Teng J, Zhang X et al., 2018. Flyover crustal structures beneath the Qinling Orogenic Belt and its tectonic implications. Journal of Geophysical Research: Solid Earth, 123: 6703-6718. |
[54] |
Strahler A H, 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11): 1117-1142.
doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2 |
[55] |
Suhail H A, Yang R, Chen H et al., 2020. The impact of river capture on the landscape development of the Dadu River drainage basin, eastern Tibetan Plateau. Journal of Asian Earth Sciences, 198(15): 104377.
doi: 10.1016/j.jseaes.2020.104377 |
[56] |
Tian Y, Kohn B P, Zhu C et al., 2012. Post-orogenic evolution of the Mesozoic Micangshan Foreland Basin system, central China. Basin Research, 24(1): 70-90.
doi: 10.1111/bre.2011.24.issue-1 |
[57] | Wang C, Han W, Wu J et al., 2007. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. Journal of Geophysical Research Solid Earth, 112(B7): B07307. |
[58] |
Wang Q, Zhang Q, Liu Y et al., 2020. Characterizing the spatial distribution of typical natural disaster vulnerability in China from 2010 to 2017. Natural Hazards, 100(1): 3-15.
doi: 10.1007/s11069-019-03656-7 |
[59] |
Wang Y J, Qin C Z, Zhu A X, 2019a. Review on algorithms of dealing with depressions in grid DEM. Annals of GIS, 25(2): 83-97.
doi: 10.1080/19475683.2019.1604571 |
[60] | Wang Z, Fu G, She Y, 2018. Crustal density structure, lithosphere flexure mechanism, and isostatic state throughout the Qinling Orogen revealed by in situ dense gravity observations. Journal of Geophysical Research: Solid Earth, 123(11): 10026-10039. |
[61] |
Wang Z, Li R, Yang S et al., 2019b. Comparison of detrital mineral compositions between stream sediments of the Yangtze River (Changjiang) and the Yellow River (Huanghe) and their provenance implication. China Geology, 2(2): 169-178.
doi: 10.31035/cg2018065 |
[62] |
Wu W, Xu S, Lu H et al., 2011. Mineralogy, major and trace element geochemistry of riverbed sediments in the headwaters of the Yangtze, Tongtian River and Jinsha River. Journal of Asian Earth Sciences, 40(2): 611-621.
doi: 10.1016/j.jseaes.2010.10.013 |
[63] |
Xiang F, Zhu L, Wang C et al., 2007. Quaternary sediment in the Yichang area: Implications for the formation of the Three Gorges of the Yangtze River. Geomorphology, 85(3/4): 249-258.
doi: 10.1016/j.geomorph.2006.03.027 |
[64] |
Xiong L, Tang G, Li F et al., 2014. Modeling the evolution of loess-covered landforms in the Loess Plateau of China using a DEM of underground bedrock surface. Geomorphology, 209: 18-26.
doi: 10.1016/j.geomorph.2013.12.009 |
[65] |
Xiong L, Tang G, Strobl J et al., 2016. Paleotopographic controls on loess deposition in the Loess Plateau of China. Earth Surface Processes and Landforms, 41(9): 1155-1168.
doi: 10.1002/esp.v41.9 |
[66] |
Xiong L, Tang G, Zhu A et al., 2017. Paleotopographic controls on modern gully evolution in the loess landforms of China. Science China-Earth Sciences, 60(3): 438-451.
doi: 10.1007/s11430-016-0211-5 |
[67] |
Xiong L, Tang G, Yang X et al., 2021. Geomorphology-oriented digital terrain analysis: Progress and perspectives. Journal of Geographical Sciences, 31(3): 456-476.
doi: 10.1007/s11442-021-1853-9 |
[68] |
Xu J, Zhu G, Tong W et al., 1987. Formation and evolution of the Tancheng-Lujiang wrench fault system: A major shear system to the northwest of the Pacific Ocean. Tectonophysics, 134(4): 273-310.
doi: 10.1016/0040-1951(87)90342-8 |
[69] |
Yang G, Chen Z, Yu F et al., 2007. Sediment rating parameters and their implications: Yangtze River, China. Geomorphology, 85(3/4): 166-175.
doi: 10.1016/j.geomorph.2006.03.016 |
[70] |
Yang S, Jung H, Li C, 2004. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: Geochemical evidence from river sediments. Sedimentary Geology, 164(1/2): 19-34.
doi: 10.1016/j.sedgeo.2003.08.001 |
[71] | Yang Z, Shen C, Ratschbacher L et al., 2017. Sichuan Basin and beyond: Eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous‐Cenozoic fission track and (U‐Th)/He ages of the eastern Tibetan Plateau, Qinling, and Dabashan. Journal of Geophysical Research, 122(6): 4712-4740. |
[72] |
Yu X, Guo Z, Chen Y, 2020. River system reformed by the Eastern Kunlun Fault: Implications from geomorphological features in the eastern Kunlun Mountains, northern Tibetan Plateau. Geomorphology, 350: 106876.
doi: 10.1016/j.geomorph.2019.106876 |
[73] |
Yu Y, W X, Li Y, 2018. Relationship between water pattern evolution and tectonic activity in the Tongtian Reach in the Yangtze River basin. Acta Geographica Sinica, 73(7): 1338-1351. (in Chinese)
doi: 10.11821/dlxb201807012 |
[74] |
Yue W, Jin B, Zhao B, 2018. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: Implication for provenance evolution of the Yangtze Delta. Sedimentary Geology, 364: 42-52.
doi: 10.1016/j.sedgeo.2017.12.006 |
[75] | Zhan L, Chen J, Zhang S et al., 2015. Relationship between Dongting Lake and surrounding rivers under the operation of the Three Gorges Reservoir, China. Isotopes in Environmental & Health Studies, 51(2): 255-270. |
[76] |
Zhang M, Townend I, Zhou Y et al., 2019. An examination of estuary stability in response to human interventions in the South Branch of Yangtze (Changjiang) estuary, China. Estuarine, Coastal and Shelf Science, 228: 106383.
doi: 10.1016/j.ecss.2019.106383 |
[77] |
Zhang Q, Chen Y, Jiang T, 2007. Channel changes of the Makou-Tianjiazhen reach in the middle Yangtze River during the past 40 years. Journal of Geographical Sciences, 17(4): 442-452.
doi: 10.1007/s11442-007-0442-x |
[78] |
Zheng H, Wei X, Wang P et al., 2017. The past and present of the Yangtze River. Scientia Sinica Terrae, 47(4): 385-393. (in Chinese)
doi: 10.1360/N072017-00003 |
[79] |
Zhu H, Zhao Y, Liu H, 2018. Scale characters analysis for gully structure in the watersheds of loess landforms based on digital elevation models. Frontiers of Earth Science, 12(2): 431-443.
doi: 10.1007/s11707-018-0696-x |
[80] |
Zimmermann A, Church M, 2001. Channel morphology, gradient profiles and bed stresses during flood in a step-pool channel. Geomorphology, 40(3/4): 311-327.
doi: 10.1016/S0169-555X(01)00057-5 |
[81] |
Zimmermann A, Church M, Hassan M A, 2008. Identification of steps and pools from stream longitudinal profile data. Geomorphology, 102(3/4): 395-406.
doi: 10.1016/j.geomorph.2008.04.009 |
[1] | XIONG Liyang, TANG Guoan, YANG Xin, LI Fayuan. Geomorphology-oriented digital terrain analysis: Progress and perspectives [J]. Journal of Geographical Sciences, 2021, 31(3): 456-476. |
[2] | ZHOU Yi, YANG Caiqin, LI Fan, CHEN Rong. Spatial distribution and influencing factors of Surface Nibble Degree index in the severe gully erosion region of China's Loess Plateau [J]. Journal of Geographical Sciences, 2021, 31(11): 1575-1597. |
[3] | HUANG Sheng, XIA Jun, ZENG Sidong, WANG Yueling, SHE Dunxian. Effect of Three Gorges Dam on Poyang Lake water level at daily scale based on machine learning [J]. Journal of Geographical Sciences, 2021, 31(11): 1598-1614. |
[4] | HA Lin, TU Jianjun, YANG Jianping, XU Chunhai, PANG Jiaxing, LU Debin, YAO Zuolin, ZHAO Wenyu. Regional eco-efficiency evaluation and spatial pattern analysis of the Yangtze River Economic Zone [J]. Journal of Geographical Sciences, 2020, 30(7): 1117-1139. |
[5] | GAO Yang, JIA Junjie, LU Yao, SUN Xiaomin, WEN Xuefa, HE Nianpeng, YANG Tiantian. Progress in watershed geography in the Yangtze River Basin and the affiliated ecological security perspective in the past 20 years, China [J]. Journal of Geographical Sciences, 2020, 30(6): 867-880. |
[6] | SUN Zhaohua, FAN Jiewei, YAN Xin, XIE Cuisong. Analysis of critical river discharge for saltwater intrusion control in the upper South Branch of the Yangtze River Estuary [J]. Journal of Geographical Sciences, 2020, 30(5): 823-842. |
[7] | LUO Jing, CHEN Siyun, SUN Xuan, ZHU Yuanyuan, ZENG Juxin, CHEN Guangping. Analysis of city centrality based on entropy weight TOPSIS and population mobility: A case study of cities in the Yangtze River Economic Belt [J]. Journal of Geographical Sciences, 2020, 30(4): 515-534. |
[8] | LUO Xiang, AO Xinhe, ZHANG Zuo, WAN Qing, LIU Xingjian. Spatiotemporal variations of cultivated land use efficiency in the Yangtze River Economic Belt based on carbon emission constraints [J]. Journal of Geographical Sciences, 2020, 30(4): 535-552. |
[9] | ZHENG Liang, LIU Hai, HUANG Yuefei, YIN Shoujing, JIN Gui. Assessment and analysis of ecosystem services value along the Yangtze River under the background of the Yangtze River protection strategy [J]. Journal of Geographical Sciences, 2020, 30(4): 553-568. |
[10] | XIA Shaoxia, YU Xiubo, LEI Jinyu, HEARN Richard, SMITH Bena, LEI Gang, XIE Ping. Priority sites and conservation gaps of wintering waterbirds in the Yangtze River floodplain [J]. Journal of Geographical Sciences, 2020, 30(10): 1617-1632. |
[11] | CHAI Yuanfang, YANG Yunping, DENG Jinyun, SUN Zhaohua, LI Yitian, ZHU Lingling. Evolution characteristics and drivers of the water level at an identical discharge in the Jingjiang reaches of the Yangtze River [J]. Journal of Geographical Sciences, 2020, 30(10): 1633-1648. |
[12] | Lijie SHAN, Liping ZHANG, Jiyun SONG, Yanjun ZHANG, Dunxian SHE, Jun XIA. Characteristics of dry-wet abrupt alternation events in the middle and lower reaches of the Yangtze River Basin and the relationship with ENSO [J]. Journal of Geographical Sciences, 2018, 28(8): 1039-1058. |
[13] | Mofei CHEN, Jinyun DENG, Shaoying FAN, Yitian LI. Applying energy theory to understand the relationship between the Yangtze River and Poyang Lake [J]. Journal of Geographical Sciences, 2018, 28(8): 1059-1071. |
[14] | Gui JIN, Xiangzheng DENG, Xiaodong ZHAO, Baishu GUO, Jun YANG. Spatiotemporal patterns in urbanization efficiency within the Yangtze River Economic Belt between 2005 and 2014 [J]. Journal of Geographical Sciences, 2018, 28(8): 1113-1126. |
[15] | Yunping YANG, Mingjin ZHANG, Zhaohua SUN, Jianqiao HAN, Jianjun Wang. The relationship between water level change and river channel geometry adjustment in the downstream of the Three Gorges Dam [J]. Journal of Geographical Sciences, 2018, 28(12): 1975-1993. |
|