Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (10): 1419-1436.doi: 10.1007/s11442-021-1904-2
• Research Articles • Previous Articles Next Articles
WU Xue1,2(), PAUDEL Basanta1, ZHANG Yili1,3,*(
), LIU Linshan1, WANG Zhaofeng1,3, XIE Fangdi1, GAO Jungang4, SUN Xiaomin2
Received:
2020-11-27
Accepted:
2021-08-10
Online:
2021-10-25
Published:
2021-12-25
Contact:
ZHANG Yili
E-mail:wuxuexxl@163.com;zhangyl@igsnrr.ac.cn
About author:
Wu Xue (1989-), Postdoctoral Researcher, specialized in land use and land cover change and its ecological effect.E-mail: wuxuexxl@163.com
Supported by:
WU Xue, PAUDEL Basanta, ZHANG Yili, LIU Linshan, WANG Zhaofeng, XIE Fangdi, GAO Jungang, SUN Xiaomin. Vertical distribution changes in land cover between 1990 and 2015 within the Koshi River Basin, Central Himalayas[J].Journal of Geographical Sciences, 2021, 31(10): 1419-1436.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Altitudinal distributions of different land cover types in the Koshi River Basin on the northern and southern slopes (m)
Land cover | Southern slope | Northern slope | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1990 | 2015 | 1990 | 2015 | |||||||||
Altitude range | Core distribution zone | Dominant belt | Altitude range | Core distribution zone | Dominant belt | Altitude range | Core distribution zone | Dominant belt | Altitude range | Core distribution zone | Dominant belt | |
Cropland | 96-4300 | 800-1800 | 100-700 | 96-4300 | 600-1800 | 100-1000 | 2300-4600 | 4100-4400 | - | 2200-4600 | 4100-4400 | - |
Forest | 96-4200 | 800-3000 | 700-2000 | 96-4200 | 900-2700 | 1000-3900 | 2100-4200 | 3200-4100 | 2100-4000 | 2100-4200 | 3200-4100 | 2100-3900 |
Shrub land | 100-5100 | 600-2200 3400-4500 | 2000-3700 | 100-5100 | 2100-4500 | - | 2300-5000 | 4200-4900 | 4000-4100 | 2400-4800 | 4200-4900 | 3900-4100 |
Grassland | 200-5300 | 3700-5300 | 3700-4000 | 1400-5300 | 4300-5100 | - | 2500-5300 | 4400-5000 | 4100-5300 | 2600-5300 | 4400-5000 | 4100-5100 |
Sparse vegetation | 2100-5500 | 4800-5500 | - | 2100-5500 | 4700-5500 | - | 2500-5500 | 5000-5500 | - | 2500-5500 | 5000-5300 | 5100-5300 |
Waterbody | 100-5600 | 200-800 5000-5300 | - | 100-5600 | 200-1000 4800-5600 | - | 2200-5600 | 4100-4500 | - | 2200-5600 | 4100-4600 | - |
Built-up area | 400-700 1400-2400 | 1400-1600 2200-2400 | - | 400-4400 | 1000-2000 | - | 4200-4400 | 4200-4400 | - | 3500-4400 | 4200-4400 | - |
Bare land | Over 200 | 4300-5600 | 4000-5400 | Over 200 | 4400-5700 | 3900-5700 | Over 2200 | 5000-5900 | - | Over 2200 | 4900-5900 | - |
Wetland | Less than 5400 | 200-1700 | - | Less than 5500 | 200-1800 | - | 3500-5700 | 4100-4400 | 5300-5900 | 3500-5700 | 4200-4500 | 5500-6000 |
Glacier and snow cover | Over 3700 | 5000-5900 | Over 5400 | Over 4000 | 5000-6000 | Over 5700 | Over 3600 | 5500-6500 | Over 5900 | Over 3600 | 5600-6500 | Over 6000 |
Table 2
Summary of the variables of logistic regression model for land cover change in the Koshi River Basin
Land cover on southern slope | Variable | β | S.E. | Wald | Sig (p) | Odds ratio |
---|---|---|---|---|---|---|
Glacier and snow cover | TMP | 70.084 | 28.101 | 6.220 | 0.013 | 2.735 |
TMX | 458.526 | 152.815 | 9.003 | 0.003 | 1.366 | |
TMN | -705.254 | 216.345 | 10.627 | 0.001 | 0.000 | |
Forest | PRE | -0.008 | 0.012 | 0.508 | 0.047 | 0.992 |
TMN | 93.948 | 72.954 | 1.658 | 0.019 | 6.326 | |
Cropland | PRE | 0.138 | 0.034 | 16.884 | 0.000 | 1.148 |
TMP | 305.274 | 93.714 | 10.611 | 0.001 | 3.790 | |
TMN | -219.798 | 100.111 | 4.820 | 0.028 | 0.000 | |
TMX | -877.120 | 240.970 | 13.249 | 0.000 | 0.000 | |
Bare land | TMN | -120.064 | 61.371 | 3.827 | 0.050 | 0.000 |
TMX | 187.431 | 93.069 | 4.056 | 0.044 | 2.513 | |
Land cover on northern slope | Variable | β | S.E. | Wald | Sig (p) | Odds ratio |
Glacier and snow cover | TMN | 454.324 | 139.590 | 10.593 | 0.001 | 2.043 |
TMX | -759.591 | 180.584 | 17.693 | 0.000 | 0.000 | |
Grassland | TMP | -76.096 | 14.043 | 29.365 | 0.000 | 0.000 |
TMN | -271.772 | 155.047 | 3.072 | 0.080 | 0.000 |
[1] |
Brunschon C, Behling H, 2010. Reconstruction and visualization of upper forest line and vegetation changes in the Andean depression region of southeastern Ecuador since the last glacial maximum: A multi-site synthesis. Review of Palaeobotany and Palynology, 163: 139-152.
doi: 10.1016/j.revpalbo.2010.10.005 |
[2] |
Bryn A, Potthoff K, 2018, Elevational treeline and forest line dynamics in Norwegian mountain areas: A review. Landscape Ecology, 33: 1225-1245.
doi: 10.1007/s10980-018-0670-8 |
[3] | Bu Z K, Wang S Z, Lang H Q et al., 2003. Vegetation vertical zone spectrum and its features on southern slope of Laobai Mountain in Huangnihe Nature Reserve. Journal of Mountain Science, 21(1): 80-84. (in Chinese) |
[4] | Cavieres L A, Penaloza A, Arroyo M K, 2000. Altitudinal vegetation belts in the high-Andes of central Chile (33 degrees S). Revista Chilena De Historia Natural, 73: 331-344. |
[5] | Cidan L Z, 1997. General situation of Mount Qomolangma Nature Reserve. China Tibetology, (1): 3-20. (in Chinese) |
[6] | Fang C S, Meng Y, Liu X X et al., 2015. Driving force factors of LUCC of the Jilin section of Liaohe River based on principle analysis. Journal of Jilin University, 53(3): 577-581. (in Chinese) |
[7] |
Fang J Y, Yoda K, 1989. Climate and vegetation in China II: Distribution of main vegetation types and thermal climate. Ecological Research, 4(1): 71-83.
doi: 10.1007/BF02346944 |
[8] |
Gao J G, Zhang Y L, Liu L S et al., 2014. Climate change as the major driver of alpine grasslands expansion and contraction: A case study in the Mt. Qomolangma (Everest) National Nature Preserve, southern Tibetan Plateau. Quaternary International, 336: 108-116.
doi: 10.1016/j.quaint.2013.09.035 |
[9] | Gay A, Cerdan O, Mardhel V et al., 2016. Application of an index of sediment connectivity in a lowland area. Journal of Soils & Sediments, 16(1): 280-293. |
[10] | Guo S Z, Bai H Y, Huang X Y et al., 2019. Remote sensing phenology of Larix chinensis forest in response to climate change in Qinling Mountains. Chinese Journal of Ecology, 38(4): 1123-1132. (in Chinese) |
[11] | He W H, Zhang B P, Pang Y et al., 2015. Effect of slope aspect on the distribution of mountain forest in the northern flank of the central Tianshan Mountains. Mountain Research, 33(5): 546-552. (in Chinese) |
[12] |
Hu Z Y, Dietz A J, Kuenzer C, 2019. Deriving regional snow line dynamics during the ablation seasons 1984-2018 in European mountains. Remote Sensing, 11(8): 933.
doi: 10.3390/rs11080933 |
[13] | Ji X Y, Luo L, Wang X Y et al., 2018. Identification and change analysis of mountain altitudinal zone in Tianshan Bogda Natural Heritage Site based on “DEM-NDVI-Land Cover Classification”. Journal of Geo-Information Science, 20(9): 1350-1360. (in Chinese) |
[14] |
Li L H, Zhang Y L, Liu L S et al., 2018. Current challenges in distinguishing climatic and anthropogenic contributions to alpine grassland variation on the Tibetan Plateau. Ecology and Evolution, 8: 5949-5963.
doi: 10.1002/ece3.4099 |
[15] |
Li L H, Zhang Y L, Liu L S et al., 2018. Spatiotemporal patterns of vegetation greenness change and associated climatic and anthropogenic drivers on the Tibetan Plateau during 2000-2015. Remote Sensing, 10(10), 1525.
doi: 10.3390/rs10101525 |
[16] |
Li L H, Zhang Y L, Wu J S et al., 2019. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Science of The Total Environment, 678: 21-29.
doi: 10.1016/j.scitotenv.2019.04.399 |
[17] |
Liu J Y, Shao Q Q, Yan X D et al., 2016. The climatic impacts of land use and land cover change compared among countries. Journal of Geographical Sciences, 26(7): 889-903.
doi: 10.1007/s11442-016-1305-0 |
[18] | Mansur S, Yusup M, Nasima N, 2016. Landscape characteristics of the vertical natural zones of Tianshan Tomur Nature Reserve. Journal of Glaciology and Geocryology, 38(5): 1425-1431. (in Chinese) |
[19] |
Mohapatra J, Singh C P, Tripathi O P et al., 2019. Remote sensing of alpine treeline ecotone dynamics and phenology in Arunachal Pradesh Himalaya. International Journal of Remote Sensing, 40: 7986-8009.
doi: 10.1080/01431161.2019.1608383 |
[20] |
Nie Y, Zhang Y L, Ding M J et al., 2013. Lake change and its implication in the vicinity of Mt. Qomolangma (Everest), Central High Himalayas, 1970-2009. Environmental Earth Sciences, 68(1): 251-265.
doi: 10.1007/s12665-012-1736-6 |
[21] | Nie Y, Zhang Y L, Liu L S et al., 2010. Monitoring glacier change based on remote sensing in the Mt. Qomolangma National Nature Preserve. Acta Geographica Sinica, 65(1): 13-28. (in Chinese) |
[22] |
Paudel B, Gao J G, Zhang Y L et al., 2016. Changes in cropland status and their driving factors in the Koshi River Basin of the Central Himalayas, Nepal. Sustainability, 8(9): 1-17.
doi: 10.3390/su8010001 |
[23] |
Paudel B, Wu X, Zhang Y L et al., 2020. Farmland abandonment and its determinants in the different ecological villages of the Koshi River Basin, Central Himalayas: Synergy of high-resolution remote sensing and social surveys. Environmental Research, 188: 109711.
doi: 10.1016/j.envres.2020.109711 |
[24] | Peters M K, Hemp A, Appelhans T et al., 2019. Climate land use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568(7750): 1-5. |
[25] |
Qi W, Zhang Y L, Gao J G et al., 2013. Climate change on the southern slope of Mt. Qomolangma (Everest) Region in Nepal since 1971. Journal of Geographical Sciences, 23(4): 595-611.
doi: 10.1007/s11442-013-1031-9 |
[26] |
Rastner P, Prinz R, Notarnicola C et al., 2019. On the automated mapping of snow cover on glaciers and calculation of snow line altitudes from multi-temporal Landsat data. Remote Sensing, 11: 1410.
doi: 10.3390/rs11121410 |
[27] |
Ren P, Neron V, Rossi S et al., 2020. Warming counteracts defoliation-induced mismatch by increasing herbivore-plant phenological synchrony. Global Change Biology, 26: 2072-2080.
doi: 10.1111/gcb.v26.4 |
[28] |
Sieg B, Danie J, Fred J A, 2005. Altitudinal zonation of vegetation in continental West Greenland with special reference to snowbeds. Phytocoenologia, 35(4): 887-908.
doi: 10.1127/0340-269X/2005/0035-0887 |
[29] | Sigdel S R, Wang Y, Camarero J J et al., 2018. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Global Change Biology, 24. |
[30] | Sun J, Cheng G W, 2014. Mountain altitudinal belt: A review. Ecology and Environmental Sciences, 23(9): 1544-1550. (in Chinese) |
[31] | Sun R H, 2008. Digital identification and analysis of mountain altitudinal belts[D]. Beijing: Institute of Geographic Sciences and Resources, CAS. (in Chinese) |
[32] |
Wu X, Gao J G, Zhang Y L et al., 2017. Land cover status in the Koshi River Basin, Central Himalayas. Journal of Resources and Ecology, 8(1): 10-19.
doi: 10.5814/j.issn.1674-764x.2017.01.003 |
[33] |
Wu X, Sun X M, Wang Z F et al., 2020. Vegetation changes and their response to climate change in the Koshi River Basin of Central Himalayas since 2000. Sustainability, 12(16): 1-15.
doi: 10.3390/su12010001 |
[34] |
Xiao F, Ling F, Du Y et al., 2010. Digital extraction of altitudinal belt spectra in the West Kunlun Mountains using SPOT-VGT NDVI and SRTM DEM. Journal of Mountain Science, 7(2): 133-145.
doi: 10.1007/s11629-010-1068-5 |
[35] |
Xie F D, Wu X, Liu L S et al., 2021. Land use and land cover change within the Koshi River Basin of the Central Himalayas since 1990. Journal of Mountain Science, 18(1): 159-177.
doi: 10.1007/s11629-019-5944-3 |
[36] | Xu J, Zhang B P, Tan J et al., 2009. Spatial relationship between altitudinal vegetation belts and climatic factors in the Qinghai-Tibetan Plateau. Journal of Mountain Science, 27(6): 663-670. (in Chinese) |
[37] | Xu J, Zhang B P, Zhu Y H et al., 2006. Distribution and geographical analysis of altitudinal belts in the Altun-Qilian Mountains. Geographical Research, 25(6): 977-984. (in Chinese) |
[38] | Yu P, Yao Y H, Zhao F et al., 2012. A method for identifying slope aspect information of mountain altitudinal belts. Journal of Mountain Science, 30(3): 290-298. (in Chinese) |
[39] |
Zhang B P, Mo S G, Wu H Z et al., 2004. Digital spectra and analysis of altitudinal belts in Tianshan Mountains, China. Journal of Mountain Science, 1: 18-28.
doi: 10.1007/BF02919356 |
[40] | Zhang J W, Jiang S, 1973. A primary study on the vertical vegetation belt of Mt. Jolmo-Lungma (Everest) Region and its relationship with horizontal zone. Acta Botanica Sinica, 15(2): 221-236. (in Chinese) |
[41] | Zhang W, Zhang Y L, Wang Z F et al., 2006. Analysis of vegetation change in Mt. Qomolangma Natural Reserve. Progress in Geography, 25(3): 12-21. (in Chinese) |
[42] |
Zhang Y L, Gao J G, Liu L S et al., 2013. NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas. Global and Planetary Change, 108: 139-148.
doi: 10.1016/j.gloplacha.2013.06.012 |
[43] | Zhang Y L, Liu L S, Li B Y et al., 2021. Boundary data of the Tibetan Plateau (2021 version). Digital Journal of of Global Change Data Repository, https://doi.org/10.3974/geodb.2021.07.10.V1. |
[44] |
Zhang Y L, Wu X, Zheng D, 2020. Vertical differentiation of land cover in the Central Himalayas. Journal of Geographical Sciences, 30(6): 969-987.
doi: 10.1007/s11442-020-1765-0 |
[45] |
Zhao F, Liu J J, Zhu W B et al., 2020. Spatial variation of altitudinal belts as dividing index between warm temperate and subtropical zones in the Qinling-Daba Mountains. Journal of Geographical Sciences, 30(4): 642-656.
doi: 10.1007/s11442-020-1747-2 |
[1] | YIN Yunhe, DENG Haoyu, MA Danyang, WU Shaohong. Intensified risk to ecosystem productivity under climate change in the arid/humid transition zone in northern China [J]. Journal of Geographical Sciences, 2021, 31(9): 1261-1282. |
[2] | ZHANG Yuhang, YE Aizhong, YOU Jinjun, JING Xiangyang. Quantification of human and climate contributions to multi-dimensional hydrological alterations: A case study in the Upper Minjiang River, China [J]. Journal of Geographical Sciences, 2021, 31(8): 1102-1122. |
[3] | Ilan STAVI, Eli ZAADY, Alexander GUSAROV, Hezi YIZHAQ. Dead shrub patches as ecosystem engineers in degraded drylands [J]. Journal of Geographical Sciences, 2021, 31(8): 1187-1204. |
[4] | LI Yu, HAN Qin, HAO Lu, ZHANG Xinzhong, CHEN Dawei, ZHANG Yuxin, XU Lingmei, YE Wangting, PENG Simin, LI Yichan, FENG Zhuowen, LIU Hebin. Paleoclimatic proxies from global closed basins and the possible beginning of Anthropocene [J]. Journal of Geographical Sciences, 2021, 31(6): 765-784. |
[5] | HUANG Chang, ZHANG Shiqiang, DONG Linyao, WANG Zucheng, LI Linyi, CUI Luming. Spatial and temporal variabilities of rainstorms over China under climate change [J]. Journal of Geographical Sciences, 2021, 31(4): 479-496. |
[6] | FAN Zemeng, LI Saibo, FANG Haiyan. Explicating the mechanisms of land cover change in the New Eurasian Continental Bridge Economic Corridor region in the 21st century [J]. Journal of Geographical Sciences, 2021, 31(10): 1403-1418. |
[7] | ZHANG Chi, WU Shaohong, LENG Guoyong. Possible NPP changes and risky ecosystem region identification in China during the 21st century based on BCC-CSM2 [J]. Journal of Geographical Sciences, 2020, 30(8): 1219-1232. |
[8] | ZHANG Yili, WU Xue, ZHENG Du. Vertical differentiation of land cover in the central Himalayas [J]. Journal of Geographical Sciences, 2020, 30(6): 969-987. |
[9] | LIU Haimeng, FANG Chuanglin, FANG Kai. Coupled Human and Natural Cube: A novel framework for analyzing the multiple interactions between humans and nature [J]. Journal of Geographical Sciences, 2020, 30(3): 355-377. |
[10] | LIU Juan, YAO Xiaojun, LIU Shiyin, GUO Wanqin, XU Junli. Glacial changes in the Gangdisê Mountains from 1970 to 2016 [J]. Journal of Geographical Sciences, 2020, 30(1): 131-144. |
[11] | BA Wulong, DU Pengfei, LIU Tie, BAO Anming, CHEN Xi, LIU Jiao, QIN Chengxin. Impacts of climate change and agricultural activities on water quality in the Lower Kaidu River Basin, China [J]. Journal of Geographical Sciences, 2020, 30(1): 164-176. |
[12] | FAN Zemeng, BAI Ruyu, YUE Tianxiang. Scenarios of land cover in Eurasia under climate change [J]. Journal of Geographical Sciences, 2020, 30(1): 3-17. |
[13] | CHEN Qihui, CHEN Hua, ZHANG Jun, HOU Yukun, SHEN Mingxi, CHEN Jie, XU Chongyu. Impacts of climate change and LULC change on runoff in the Jinsha River Basin [J]. Journal of Geographical Sciences, 2020, 30(1): 85-102. |
[14] | Martha Elizabeth APPLE, Macy Kara RICKETTS, Alice Caroline MARTIN. Plant functional traits and microbes vary with position on striped periglacial patterned ground at Glacier National Park, Montana [J]. Journal of Geographical Sciences, 2019, 29(7): 1127-1141. |
[15] | Yuan ZHANG, Shuying ZANG, Li SUN, Binghe YAN, Tianpeng YANG, Wenjia YAN, E Michael MEADOWS, Cuizhen WANG, Jiaguo QI. Characterizing the changing environment of cropland in the Songnen Plain, Northeast China, from 1990 to 2015 [J]. Journal of Geographical Sciences, 2019, 29(5): 658-674. |
|