Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (9): 1261-1282.doi: 10.1007/s11442-021-1897-x
• Research Articles • Previous Articles Next Articles
YIN Yunhe1(), DENG Haoyu1, MA Danyang2, WU Shaohong1,3,*(
)
Received:
2020-09-22
Accepted:
2021-05-31
Online:
2021-09-25
Published:
2021-09-16
Contact:
WU Shaohong
E-mail:yinyh@igsnrr.ac.cn;wush@ignsrr.ac.cn
About author:
Yin Yunhe (1979-), Professor, specialized in climate change impact and risk. E-mail: yinyh@igsnrr.ac.cn
Supported by:
YIN Yunhe, DENG Haoyu, MA Danyang, WU Shaohong. Intensified risk to ecosystem productivity under climate change in the arid/humid transition zone in northern China[J].Journal of Geographical Sciences, 2021, 31(9): 1261-1282.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 2
Regional mean temperature anomalies in the AHTZ displayed as anomalies during the 21st century (relative to 1981-2010) (Yin et al., 2018a). Solid lines indicate the ensemble means of five GCMs under the RCP scenarios. The shading indicates one standard deviation of the ensemble means. The time series were smoothed using an 11-year running mean.
Figure 10
Anomalies (upper row) in the climatic factors during 2041-2070 relative to the baseline period under the RCP8.5 scenario and their partial correlation coefficients (bottom row) with NPP in the AHTZ. Note that the shaded area indicates the statistical significance (p <0.05): (a, d) temperature, (b, e) precipitation, and (c, f) aridity index.
Figure 11
Anomalies in the climatic factors during 2071-2099 relative to the baseline period under the RCP8.5 scenario and their partial correlation coefficients with NPP in the AHTZ. Note that the shaded area indicates the statistical significance (p <0.05): (a, d) temperature, (b, e) precipitation, and (c, f) aridity index.
[1] | Allen C D, Macalady A K, Chenchouni H et al., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology & Management, 259(4): 660-684. |
[2] | Allen R G, Pereira L S, Raes D et al., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. United Nations Food and Agriculture Organization, Rome. |
[3] |
Andreu-Hayles L, D’Arrigo R, Anchukaitis K J et al., 2011. Varying boreal forest response to Arctic environmental change at the Firth River, Alaska. Environmental Research Letters, 6(4): 045503.
doi: 10.1088/1748-9326/6/4/045503 |
[4] | Arora V K, Boer G J, 2005. Fire as an interactive component of dynamic vegetation models. Journal of Geophysical Research, 110(G2): 149-167. |
[5] |
Asmus M L, Nicolodi J O, Anello L S et al., 2019. The risk to lose ecosystem services due to climate change: A South American case. Ecological Engineering, 130: 233-241.
doi: 10.1016/j.ecoleng.2017.12.030 |
[6] | Che M L, Chen B Z, Wang Y et al., 2013. Review of dynamic global vegetation models (DGVMs). Chinese Journal of Applied Ecology, 25(1): 263-271. (in Chinese) |
[7] |
Chen Y N, Zhang X Q, Fang G H et al., 2020. Potential risks and challenges of climate change in the arid region of northwestern China. Regional Sustainability, 1(1): 20-30.
doi: 10.1016/j.regsus.2020.06.003 |
[8] | Collatz G J, Ball J T, Grivet C et al., 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Elsevier, 54(2-4): 107-136. |
[9] |
Collatz G J, Ribas-Carbo M, Berry J, 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Functional Plant Biology, 19(5): 519-538.
doi: 10.1071/PP9920519 |
[10] |
Dessai S, Adger W N, Hulme M et al., 2004. Defining and experiencing dangerous climate change. Climatic Change, 64(1/2): 11-25.
doi: 10.1023/B:CLIM.0000024781.48904.45 |
[11] |
Diffenbaugh N S, Field C B, 2013. Changes in ecologically critical terrestrial climate conditions. Science, 341(6145): 486-492.
doi: 10.1126/science.1237123 pmid: 23908225 |
[12] | Ding Y H, 2018. Sustainable management and action in China under the increasing risks of global climate change. Engineering, 4(3): 12-21. |
[13] | Fu C, 1992. Transitional Climate Zones and Biome Boundaries: A Case Study from China. New York: Springer. |
[14] | Fung I Y, Doney S C, Lindsay K et al., 2005. Evolution of carbon sinks in a changing climate. Proceedings of the National Academy of Sciences of the United States of America, 102(32): 11201-11206. |
[15] |
Gang C C, Zhang Y Z, Wang Z Q et al., 2017. Modeling the dynamics of distribution, extent, and NPP of global terrestrial ecosystems in response to future climate change. Global and Planetary Change, 148: 153-165.
doi: 10.1016/j.gloplacha.2016.12.007 |
[16] |
Heimann M, Reichstein M, 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451(7176): 289-292.
doi: 10.1038/nature06591 |
[17] |
Heyder U, Schaphoff S, Gerten D et al., 2011. Risk of severe climate change impact on the terrestrial biosphere. Environmental Research Letters, 6(3): 034036.
doi: 10.1088/1748-9326/6/3/034036 |
[18] |
Huang L, He B, Chen A F et al., 2016. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Scientific Reports, 6(1): 24639.
doi: 10.1038/srep24639 |
[19] | IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA: Cambridge University Press. |
[20] | IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. |
[21] | Jones R N, Preston B L, 2011. Adaptation and risk management. Wiley Interdiplinary Reviews: Climate Change, 2(2): 296-308. |
[22] | Lin X, Qian W H, 2012. Review of the global monsoon and monsoon marginal zones. Advances in Earth Science, 27(1): 26-34. (in Chinese) |
[23] |
Littell J S, Oneil E E, Mckenzie D et al., 2010. Forest ecosystems, disturbance, and climatic change in Washington State, USA. Climatic Change, 102(1): 129-158.
doi: 10.1007/s10584-010-9858-x |
[24] | Liu Y H, Wang W T, 2019. The new situation of global climate governance and China’s green development strategy. China Sustainability Tribune, 18(Suppl.1): 16-21. (in Chinese) |
[25] |
Loreau M, De Mazancourt C, Duffy E, 2013. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters, 16(Suppl.1): 106-115.
doi: 10.1111/ele.2013.16.issue-s1 |
[26] |
Lorenzoni I, Pidgeon N F, O'Connor R E, 2005. Dangerous climate change: The role for risk research. Risk Analysis, 25(6): 1387-1398.
pmid: 16506969 |
[27] |
Mao J F, Dan L, Wang B et al., 2010. Simulation and evaluation of terrestrial ecosystem NPP with M-SDGVM over continental China. Advances in Atmospheric Sciences, 27(2): 427-442.
doi: 10.1007/s00376-009-9006-6 |
[28] |
Mao J F, Fu W T, Shi X Y et al., 2015. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environmental Research Letters, 10(9): 094008.
doi: 10.1088/1748-9326/10/9/094008 |
[29] | Minnen J G V, Onigkeit J, Alcamo J, 2002. Critical climate change as an approach to assess climate change impacts in Europe: Development and application. Environmental Science & Policy, 5(4): 335-347. |
[30] |
Moss R H, Edmonds J A, Hibbard K A et al., 2010. The next generation of scenarios for climate change research and assessment. Nature, 463(7282): 747-756.
doi: 10.1038/nature08823 |
[31] |
Mu S J, Li J L, Zhou W et al., 2013. Spatial-temporal distribution of net primary productivity and its relationship with climate factors in Inner Mongolia from 2001 to 2010. Acta Ecologica Sinica, 33(12): 3752-3764. (in Chinese)
doi: 10.5846/stxb |
[32] | Nielsen U N, Ball B A, 2015. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biology, 21(4): 1407-1421-1407-1421. |
[33] | Olson R J, Scurlock J M O, Prince S D et al., 2013. NPP Multi-Biome: Global Primary Production Data Initiative Products, R2. ORNL Distributed Active Archive Center, Oak Ridge, Tennessee, USA. |
[34] |
Pan S F, Tian H Q, Dangal S R S et al., 2014. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century. Plos One, 9(11): e112810.
doi: 10.1371/journal.pone.0112810 |
[35] |
Pan S F, Tian H Q, Lu C Q et al., 2015. Net primary production of major plant functional types in China: Vegetation classification and ecosystem simulation. Acta Ecologica Sinica, 35(2): 28-36. (in Chinese)
doi: 10.1016/j.chnaes.2015.03.001 |
[36] |
Piao S, Liu Z, Wang T et al., 2017. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, 7(5): 359-363.
doi: 10.1038/nclimate3277 |
[37] |
Pierce D W, Barnett T P, Santer B D et al., 2009. Selecting global climate models for regional climate change studies. Proceedings of the National Academy of Sciences of the United States of America, 106(21): 8441-8446.
doi: 10.1073/pnas.0900094106 pmid: 19439652 |
[38] | Piontek F, Müller C, Pugh T A et al., 2014. Multisectoral climate impact hotspots in a warming world. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3233-3238. |
[39] | Qin D H, 2015. China’s National Assessment Report on Extreme Climate Events and Disaster Risk Management and Adaptation. Beijing: Science Press. (in Chinese) |
[40] |
Ramakrishna R N, Charles D K, Hirofumi H et al., 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625): 1560-1563.
pmid: 12791990 |
[41] |
Reynolds J F, Smith D M S, Lambin E F et al., 2007. Global desertification: Building a science for dryland development. Science, 316(5826): 847-851.
pmid: 17495163 |
[42] |
Richardson A D, Hufkens K, Milliman T et al., 2018. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature, 560(7718): 368-371.
doi: 10.1038/s41586-018-0399-1 |
[43] |
Scholze M, Knorr W, Arnell N W et al., 2006. A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 103(35): 13116-13120.
pmid: 16924112 |
[44] |
Seddon A W, Macias-Fauria M, Long P R et al., 2016. Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531(7593): 229-232.
doi: 10.1038/nature16986 |
[45] |
Sitch S S B, Ic. P, Arneth A et al., 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2): 161-185.
doi: 10.1046/j.1365-2486.2003.00569.x |
[46] |
Sneyers R, 1990. On the statistical analysis of series of observations. Journal of Biological Chemistry, 258(22): 13680-13684.
doi: 10.1016/S0021-9258(17)43970-6 |
[47] |
Steffen W, Noble I, Canadell J et al., 1998. The terrestrial carbon cycle: Implications for the Kyoto Protocol. Science, 280(5368): 1393-1394.
doi: 10.1126/science.280.5368.1393 |
[48] |
Taylor K E, Stouffer R J, Meehl G A, 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4): 485-498.
doi: 10.1175/BAMS-D-11-00094.1 |
[49] |
Thibeault J M, Seth A, 2014. Changing climate extremes in the Northeast United States: Observations and projections from CMIP5. Climatic Change, 127(2): 273-287.
doi: 10.1007/s10584-014-1257-2 |
[50] |
Urban M C, 2015. Accelerating extinction risk from climate change. Science, 348(6234): 571-573.
doi: 10.1126/science.aaa4984 pmid: 25931559 |
[51] | Wang C, Wang X B, Liu D W et al., 2014. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications, 5(1): 1-8. |
[52] |
Wang H, Liu G H, Li Z et al., 2016. Impacts of climate change on net primary productivity in arid and semiarid regions of China. Chinese Geographical Science, 26(1): 35-47.
doi: 10.1007/s11769-015-0762-1 |
[53] |
Wang L, Chen W, Huang G et al., 2017. Changes of the transitional climate zone in East Asia: Past and future. Climate Dynamics, 49(4): 1463-1477.
doi: 10.1007/s00382-016-3400-4 |
[54] |
Warszawski L, Frieler K, Huber V et al., 2014. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3228-3232.
doi: 10.1073/pnas.1312330110 pmid: 24344316 |
[55] |
Warszawski L, Friend A, Ostberg S et al., 2013. A multi-model analysis of risk of ecosystem shifts under climate change. Environmental Research Letters, 8(4): 044018.
doi: 10.1088/1748-9326/8/4/044018 |
[56] | Wei Y M, Yuan X C, Wu G et al., 2014. Climate change risk management: A bibliometric analysis based on Web of Science. Bulletin of National Natural Science Foundation of China, 28(5): 347-356. (in Chinese) |
[57] | Wu S H, 2011. Integrated Risk Governance. Beijing: Science Press. (in Chinese) |
[58] | Wu S H, Yin Y H, Zheng D et al., 2005. Aridity/humidity status of land surface in China during the last three decades. Science in China, 48(9): 1510-1518. |
[59] |
Wu Z T, Dijkstra P, Koch G W et al., 2011. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Global Change Biology, 17(2): 927-942.
doi: 10.1111/gcb.2010.17.issue-2 |
[60] |
Xu C G, McDowell N G, Fisher R A et al., 2019. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nature Climate Change, 9(12): 948-953.
doi: 10.1038/s41558-019-0630-6 |
[61] |
Xu M J, Wen X F, Wang H M et al., 2014. Effects of climatic factors and ecosystem responses on the inter-annual variability of evapotranspiration in a coniferous plantation in subtropical China. Plos One, 9(1): e85593.
doi: 10.1371/journal.pone.0085593 |
[62] |
Yang J, Zhang X, Luo Z et al., 2017. Nonlinear variations of net primary productivity and its relationship with climate and vegetation phenology, China. Forest, 8(10): 361.
doi: 10.3390/f8100361 |
[63] | Yin Y H, Ma D Y, Wu S H, 2018a. Climate change risk to forests in China associated with warming. Scientific Reports, 8(1): 1-13. |
[64] |
Yin Y H, Ma D Y, Wu S H, 2018b. Nonlinear changes in aridity due to precipitation and evapotranspiration in China from 1961 to 2015. Climate Research, 74(3): 263-281.
doi: 10.3354/cr01500 |
[65] |
Yin Y H, Ma D Y, Wu S H et al., 2015. Projections of aridity and its regional variability over China in the mid-21st century. International Journal of Climatology, 35(14): 4387-4398.
doi: 10.1002/joc.4295 |
[66] |
Yin Y H, Wu S H, Zheng D et al., 2008. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China. Agricultural Water Management, 95(1): 77-84.
doi: 10.1016/j.agwat.2007.09.002 |
[67] | Yin Y Y, Tang Q H, Wang L X et al., 2016. Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China. Scientific Reports, 20905. |
[68] | Yu G R, He N P, Wang Q F, 2013. Carbon Budget and Carbon Sink of Ecosystems in China: Theoretical Basic and Comprehensive Assessment. Beijing: Science Press. |
[69] |
Yu L, Gu F, Huang M et al., 2020. Impacts of 1.5°C and 2°C global warming on net primary productivity and carbon balance in China’s terrestrial ecosystems. Sustainability, 12(7): 2849.
doi: 10.3390/su12072849 |
[70] |
Yuan Q Z, Wu S H, Zhao D S et al., 2014. Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005. Journal of Geographical Sciences, 24(1): 3-17.
doi: 10.1007/s11442-014-1069-3 |
[71] | Zhang G L, Xu X L, Zhou C P et al., 2011. Responses of vegetation changes to climatic variations in Hulun Buir grassland in past 30 years. Acta Geographica Sinica, 66(1): 47-58. (in Chinese) |
[72] | Zhang L S, Fang X Q, Ren G Y et al., 1997. Environmental changes in the north China farming-grazing transitional zone. Earth Science Frontiers (China University of Geosciences, Beijing), 4(1/2): 131-140. (in Chinese) |
[73] | Zhao T B, Chen L, Ma Z G, 2014. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Science Bulletin, 59(4): 412-429. (in Chinese) |
[74] | Zheng D, 2008. Ecogeographical Regionalization Research of China. Beijing: The Commercial Press. (in Chinese) |
[1] | ZHANG Yuhang, YE Aizhong, YOU Jinjun, JING Xiangyang. Quantification of human and climate contributions to multi-dimensional hydrological alterations: A case study in the Upper Minjiang River, China [J]. Journal of Geographical Sciences, 2021, 31(8): 1102-1122. |
[2] | Ilan STAVI, Eli ZAADY, Alexander GUSAROV, Hezi YIZHAQ. Dead shrub patches as ecosystem engineers in degraded drylands [J]. Journal of Geographical Sciences, 2021, 31(8): 1187-1204. |
[3] | CHENG Changxiu, JIANG Yifan, SONG Changqing, SHEN Shi, WU Yunfeng, ZHANG Tianyuan. Spatiotemporal patterns of the daily relative risk of COVID-19 in China [J]. Journal of Geographical Sciences, 2021, 31(7): 1039-1058. |
[4] | CUI Yaoping, LI Nan, FU Yiming, CHEN Liangyu. Carbon neutrality and mitigating contribution of terrestrial carbon sink on anthropogenic climate warming in China, the United States, Russia and Canada [J]. Journal of Geographical Sciences, 2021, 31(7): 925-937. |
[5] | YU Chenglong, LIU Dan, ZHAO Huiying. Evaluation of the carbon sequestration of Zhalong Wetland under climate change [J]. Journal of Geographical Sciences, 2021, 31(7): 938-964. |
[6] | TENG Jialing, TIAN Jing, YU Guirui. Biogeographical patterns of arbuscular mycorrhizal fungi diversity in China’s grasslands [J]. Journal of Geographical Sciences, 2021, 31(7): 965-976. |
[7] | JIANG Xiaowei, BAI Jianjun. Predicting and assessing changes in NPP based on multi-scenario land use and cover simulations on the Loess Plateau [J]. Journal of Geographical Sciences, 2021, 31(7): 977-996. |
[8] | LI Yu, HAN Qin, HAO Lu, ZHANG Xinzhong, CHEN Dawei, ZHANG Yuxin, XU Lingmei, YE Wangting, PENG Simin, LI Yichan, FENG Zhuowen, LIU Hebin. Paleoclimatic proxies from global closed basins and the possible beginning of Anthropocene [J]. Journal of Geographical Sciences, 2021, 31(6): 765-784. |
[9] | ZHANG Huijie, AN Li, BILSBORROW Richard, CHUN Yongwan, YANG Shuang, DAI Jie. Neighborhood impacts on household participation in payments for ecosystem services programs in a Chinese nature reserve: A methodological exploration [J]. Journal of Geographical Sciences, 2021, 31(6): 899-922. |
[10] | HUANG Chang, ZHANG Shiqiang, DONG Linyao, WANG Zucheng, LI Linyi, CUI Luming. Spatial and temporal variabilities of rainstorms over China under climate change [J]. Journal of Geographical Sciences, 2021, 31(4): 479-496. |
[11] | HUANG Lin, NING Jia, ZHU Ping, ZHENG Yuhan, ZHAI Jun. The conservation patterns of grassland ecosystem in response to the forage-livestock balance in North China [J]. Journal of Geographical Sciences, 2021, 31(4): 518-534. |
[12] | CHE Lei, ZHOU Liang, XU Jiangang. Integrating the ecosystem service in sustainable plateau spatial planning: A case study of the Yarlung Zangbo River Basin [J]. Journal of Geographical Sciences, 2021, 31(2): 281-297. |
[13] | GAO Jiangbo, ZUO Liyuan. Revealing ecosystem services relationships and their driving factors for five basins of Beijing [J]. Journal of Geographical Sciences, 2021, 31(1): 111-129. |
[14] | ZHANG Chi, WU Shaohong, LENG Guoyong. Possible NPP changes and risky ecosystem region identification in China during the 21st century based on BCC-CSM2 [J]. Journal of Geographical Sciences, 2020, 30(8): 1219-1232. |
[15] | LIU Ruiqing, XU Hao, LI Jialin, PU Ruiliang, SUN Chao, CAO Luodan, JIANG Yimei, TIAN Peng, WANG Lijia, GONG Hongbo. Ecosystem service valuation of bays in East China Sea and its response to sea reclamation activities [J]. Journal of Geographical Sciences, 2020, 30(7): 1095-1116. |
|