Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (7): 965-976.doi: 10.1007/s11442-021-1880-6
• Research Articles • Previous Articles Next Articles
TENG Jialing1,2(), TIAN Jing3,1, YU Guirui1,2,*(
)
Received:
2020-11-10
Accepted:
2021-03-10
Online:
2021-07-25
Published:
2021-09-25
Contact:
YU Guirui
E-mail:tengjl92@gmail.com;yugr@igsnrr.ac.cn
About author:
Teng Jialing (1992-), PhD, specialized in microbial ecology. E-mail: tengjl92@gmail.com
Supported by:
TENG Jialing, TIAN Jing, YU Guirui. Biogeographical patterns of arbuscular mycorrhizal fungi diversity in China’s grasslands[J].Journal of Geographical Sciences, 2021, 31(7): 965-976.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
List of environmental factors
Variables | Abbreviation | Unit | ||
---|---|---|---|---|
Climate | Energy | Mean annual temperature | MAT | ℃ |
Mean temperature of coldest month | MTCM | ℃ | ||
Mean temperature of warmest month | MTWM | ℃ | ||
Annual total radiation | Rd | MJ m-2yr-1 | ||
Maximum monthly radiation | Rdmax | MJ m-2day-1 | ||
Minimum monthly radiation | Rdmin | MJ m-2day-1 | ||
Minimum photosynthetically active radiation | PARmin | mol m-2day-1 | ||
Maximum photosynthetically active radiation | PARmax | mol m-2day-1 | ||
Potential evapotranspiration | ET0 | mm yr-1 | ||
Water | Mean annual precipitation | MAP | mm | |
Precipitation of the driest month | PDM | mm | ||
Precipitation of the wettest month | PWM | mm | ||
Other | Maximum monthly wind speed | Windmax | m s-1 | |
Dryness index | ||||
Soil | Organic carbon | SOC | % | |
Carbon-Nitrogen ratio | CN | / | ||
Total phosphorus | STP | mg kg-1 | ||
Available phosphorus | SAP | mg kg-1 | ||
NO3- | / | mg kg-1 | ||
NH4+ | / | mg kg-1 | ||
pH | / | / | ||
Oxidation reduction potential | ORP | mv |
Figure 2
Longitudinal trends in arbuscular mycorrhizal fungi (AMF) richness (a) and AMF richness in different (b) areas and (c) habitats. Solid line represents model-predicted values of richness at a range of longitudes. Different letters indicate significant difference in richness between two groups.
Table 2
Correlation coefficients and significance between arbuscular mycorrhizal fungi (AMF) richness and environmental variables
Variables | ALL | LP | MP | TP | |
---|---|---|---|---|---|
Energy | MAT | 0.052 | 0.074 | 0.245* | -0.118 |
MTCM | -0.190** | 0.036 | 0.265* | -0.188* | |
MTWM | 0.216** | 0.079 | 0.191 | 0.048 | |
Rd | -0.155** | -0.063 | -0.181 | 0.299** | |
Rdmax | 0.022 | -0.052 | -0.123 | 0.383** | |
Rdmin | -0.298** | -0.093 | 0.13 | 0.01 | |
PARmax | -0.069 | -0.069 | -0.207 | 0.341** | |
PARmin | -0.297** | -0.099 | -0.015 | -0.052 | |
ET0 | 0.196** | 0.241* | 0.245* | 0.189* | |
Water | MAP | -0.213** | -0.094 | 0.16 | -0.352** |
PDM | -0.203** | 0 | -0.201 | 0.003 | |
PWM | -0.076 | -0.039 | 0.2 | -0.360** | |
Other | Windmax | 0.255** | 0.200* | -0.011 | 0.244** |
DI | -0.257** | -0.183 | -0.242* | -0.211* | |
Soil | SOC | -0.160** | -0.027 | 0.128 | -0.225** |
CN | -0.056 | -0.016 | 0.012 | 0.244** | |
STP | -0.239** | -0.121 | -0.003 | -0.076 | |
SAP | 0.052 | 0.101 | -0.344** | -0.157 | |
NH4+ | -0.203** | -0.173 | -0.1 | -0.172* | |
NO3- | -0.033 | -0.145 | -0.147 | -0.156 | |
pH | 0.116* | -0.007 | 0.253* | 0.266** | |
ORP | -0.211** | -0.099 | -0.015 | -0.052 |
[1] | Allen A, Gillooly J, Brown J, 2007. Recasting the species-energy hypothesis: The different roles of kinetic and potential energy in regulating biodiversity. In: Storch D, Marquet P, Brown J (eds.). Scaling Biodiversity. Cambridge: Cambridge University Press, 283-299. |
[2] |
Allen W J, DeVries A E, Bologna N J et al., 2020. Intraspecific and biogeographical variation in foliar fungal communities and pathogen damage of native and invasive Phragmites australis. Global Ecology and Biogeography, 29(7):1199-1211.
doi: 10.1111/geb.v29.7 |
[3] |
Andrew C, Halvorsen R, Heegaard E et al., 2018. Continental-scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition. Journal of Biogeography, 45(8):1942-1953.
doi: 10.1111/jbi.2018.45.issue-8 |
[4] |
Bever J D, Richardson S C, Lawrence B M et al., 2009. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecology Letters, 12(1):13-21.
doi: 10.1111/ele.2008.12.issue-1 |
[5] | Botnen S S, Davey M L, Aas A B et al., 2019. Biogeography of plant root-associated fungal communities in the North Atlantic region mirrors climatic variability. Journal of Biogeography, 46(7):1532-1546. |
[6] | Brundrett M C, Abbott L K, 2002. Arbuscular mycorrhizas in plant communities. In: Sivasithamparama K, Dixon K W, Barrett R L (eds.). Microorganisms in Plant Conservation and Biodiversity. Dordrecht: Springer Netherlands, 151-193. |
[7] |
Bueno C G, Moora M, Gerz M et al., 2017. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Global Ecology and Biogeography, 26(6):690-699.
doi: 10.1111/geb.2017.26.issue-6 |
[8] |
Ceulemans T, Van Geel M, Jacquemyn H et al., 2019. Arbuscular mycorrhizal fungi in European grasslands under nutrient pollution. Global Ecology and Biogeography, 28(12):1796-1805.
doi: 10.1111/geb.12994 |
[9] | Chaudhary V B, Lau M K, Johnson N C, 2008. Macroecology of microbes: Biogeography of the glomeromycota. In: Varma A (ed.). Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 529-563. |
[10] | Chu H, Gao G F, Ma Y et al., 2020. Soil microbial biogeography in a changing world: Recent advances and future perspectives. mSystems, 5(2):e00803-00819. |
[11] |
Crisp M D, 2001. Historical biogeography and patterns of diversity in plants, algae and fungi: Introduction. Journal of Biogeography, 28(2):153-155.
doi: 10.1046/j.1365-2699.2001.00522.x |
[12] |
Dai E, Huang Y, Wu Z et al., 2016. Analysis of spatio-temporal features of a carbon source/sink and its relationship to climatic factors in the Inner Mongolia grassland ecosystem. Journal of Geographical Sciences, 26(3):297-312.
doi: 10.1007/s11442-016-1269-0 |
[13] |
Davison J, Moora M, Opik M et al., 2015. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 349(6251):970-973.
doi: 10.1126/science.aab1161 |
[14] |
De Deyn G B, Quirk H, Bardgett R D, 2011. Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biology Letters, 7(1):75-78.
doi: 10.1098/rsbl.2010.0575 |
[15] |
Decaëns T, 2010. Macroecological patterns in soil communities. Global Ecology and Biogeography, 19(3):287-302.
doi: 10.1111/j.1466-8238.2009.00517.x |
[16] |
Dickie I A, Richardson S J, Wiser S K, 2009. Ectomycorrhizal fungal communities and soil chemistry in harvested and unharvested temperate Nothofagus rainforests. Canadian Journal of Forest Research, 39(6):1069-1079.
doi: 10.1139/X09-036 |
[17] |
Drenovsky R E, Steenwerth K L, Jackson L E et al., 2010. Land use and climatic factors structure regional patterns in soil microbial communities. Global Ecology and Biogeography, 19(1):27-39.
pmid: 24443643 |
[18] |
Duffy K J, Waud M, Schatz B et al., 2019. Latitudinal variation in mycorrhizal diversity associated with a European orchid. Journal of Biogeography, 46(5):968-980.
doi: 10.1111/jbi.13548 |
[19] |
Fellbaum C R, Mensah J A, Cloos A J et al., 2014. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist, 203(2):646-656.
doi: 10.1111/nph.2014.203.issue-2 |
[20] |
Gai J P, Tian H, Yang F Y et al., 2012. Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia, 55(3):145-151.
doi: 10.1016/j.pedobi.2011.12.004 |
[21] |
Gavito M E, Schweiger P, Jakobsen I, 2003. P uptake by arbuscular mycorrhizal hyphae: Effect of soil temperature and atmospheric CO2 enrichment. Global Change Biology, 9(1):106-116.
doi: 10.1046/j.1365-2486.2003.00560.x |
[22] |
Hawkes C V, Hartley I P, Ineson P et al., 2008. Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biology, 14(5):1181-1190.
doi: 10.1111/gcb.2008.14.issue-5 |
[23] |
Hawkins B A, Field R, Cornell H V et al., 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84(12):3105-3117.
doi: 10.1890/03-8006 |
[24] |
Heino J, Tolkkinen M, Pirttilä A M et al., 2014. Microbial diversity and community-environment relationships in boreal streams. Journal of Biogeography, 41(12):2234-2244.
doi: 10.1111/jbi.12369 |
[25] |
Jenkins D G, Brescacin C R, Duxbury C V et al., 2007. Does size matter for dispersal distance? Global Ecology and Biogeography, 16(4):415-425.
doi: 10.1111/geb.2007.16.issue-4 |
[26] |
Jiao C, Yu G, He N et al., 2017. Spatial pattern of grassland aboveground biomass and its environmental controls in the Eurasian steppe. Journal of Geographical Sciences, 27(1):3-22.
doi: 10.1007/s11442-017-1361-0 |
[27] |
Johnson D, Vandenkoornhuyse P J, Leake J R et al., 2004. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist, 161(2):503-515.
doi: 10.1046/j.1469-8137.2003.00938.x |
[28] |
Kiers E T, Duhamel M, Beesetty Y et al., 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333(6044):880-882.
doi: 10.1126/science.1208473 |
[29] |
Kivlin S N, 2020. Global mycorrhizal fungal range sizes vary within and among mycorrhizal guilds but are not correlated with dispersal traits. Journal of Biogeography, 47(9):1994-2001.
doi: 10.1111/jbi.v47.9 |
[30] |
Krüger M, Teste F P, Laliberté E et al., 2015. The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression. Molecular Ecology, 24(19):4912-4930.
doi: 10.1111/mec.13363 |
[31] |
Lee J, Lee S, Young J P W, 2008. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 65:339-349.
doi: 10.1111/fem.2008.65.issue-2 |
[32] |
Liu H, Hu B, Wang Y et al., 2017. Two ultraviolet radiation datasets that cover China. Advances in Atmospheric Sciences, 34(7):805-815. (in Chinese)
doi: 10.1007/s00376-017-6293-1 |
[33] |
Mariotte P, Meugnier C, Johnson D et al., 2013. Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species. Mycorrhiza, 23(4):267-277.
doi: 10.1007/s00572-012-0465-8 pmid: 23064770 |
[34] | Martonne E, 1926. Une nouvelle fonction climatologique: L'indice d'aridité. La Meteorologie, 2449-2458. |
[35] |
Merckx V S F T, Gomes S I F, Wapstra M et al., 2017. The biogeographical history of the interaction between mycoheterotrophic Thismia (Thismiaceae) plants and mycorrhizal Rhizophagus (Glomeraceae) fungi. Journal of Biogeography, 44(8):1869-1879.
doi: 10.1111/jbi.12994 |
[36] |
Mu S, Yang H, Li J et al., 2013. Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia, China. Journal of Geographical Sciences, 23(2):231-246.
doi: 10.1007/s11442-013-1006-x |
[37] |
Nielsen U N, Osler G H R, Campbell C D et al., 2010. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. Journal of Biogeography, 37(7):1317-1328.
doi: 10.1111/jbi.2010.37.issue-7 |
[38] |
Öpik M, Moora M, Liira J et al., 2006. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. Journal of Ecology, 94(4):778-790.
doi: 10.1111/jec.2006.94.issue-4 |
[39] |
Pinel-Alloul B, André A, Legendre P et al., 2013. Large-scale geographic patterns of diversity and community structure of pelagic crustacean zooplankton in Canadian lakes. Global Ecology and Biogeography, 22(7):784-795.
doi: 10.1111/geb.12041 |
[40] |
Prober S M, Leff J W, Bates S T et al., 2015. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 18(1):85-95.
doi: 10.1111/ele.2014.18.issue-1 |
[41] |
Queloz V, Sieber T N, Holdenrieder O et al., 2011. No biogeographical pattern for a root-associated fungal species complex. Global Ecology and Biogeography, 20(1):160-169.
doi: 10.1111/geb.2011.20.issue-1 |
[42] |
Sato K, Suyama Y, Saito M et al., 2005. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassland Science, 51:179-181.
doi: 10.1111/j.1744-697X.2005.00023.x |
[43] |
Schwarzott D, Schüßler A, 2001. A simple and reliable method for ssuRNA gene DNA extraction, amplification, and cloning from single am fungal spores. Mycorrhiza, 10(4):203-207.
doi: 10.1007/PL00009996 |
[44] |
Simon L, Lalonde M, Bruns T D, 1992. Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology, 58:291-295.
doi: 10.1128/aem.58.1.291-295.1992 |
[45] |
Smith S E, Manjarrez M, Stonor R et al., 2015. Indigenous arbuscular mycorrhizal (AM) fungi contribute to wheat phosphate uptake in a semi-arid field environment, shown by tracking with radioactive phosphorus. Applied Soil Ecology, 96:68-74.
doi: 10.1016/j.apsoil.2015.07.002 |
[46] | Smith S E, Read D, 2008. The symbionts forming arbuscular mycorrhizas. In: Smith S E, Read D (eds.). Mycorrhizal Symbiosis. 3rd ed. London: Academic Press, 13-41. |
[47] |
Soudzilovskaia N A, Douma J C, Akhmetzhanova A A et al., 2015. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Global Ecology and Biogeography, 24(3):371-382.
doi: 10.1111/geb.2015.24.issue-3 |
[48] |
Steidinger B S, Bhatnagar J M, Vilgalys R et al., 2020. Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. Journal of Biogeography, 47(3):772-782.
doi: 10.1111/jbi.v47.3 |
[49] | Tang L Q, H L, B H et al., 2017. A dataset of reconstructed photosynthetically active radiation in China (1961-2014). China Scientific Data, 340-351. (in Chinese) |
[50] |
Treseder K K, 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist, 164(2):347-355.
doi: 10.1111/nph.2004.164.issue-2 |
[51] |
Twieg B D, Durall D M, Simard S W, 2007. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytologist, 176(2):437-447.
doi: 10.1111/nph.2007.176.issue-2 |
[52] |
Vályi K, Mardhiah U, Rillig M C et al., 2016. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. The ISME Journal, 10(10):2341-2351.
doi: 10.1038/ismej.2016.46 |
[53] |
van der Heijden M G A, Martin F M, Selosse M A et al., 2015. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205(4):1406-1423.
doi: 10.1111/nph.2015.205.issue-4 |
[54] | Wang L, Yu H, Zhang Q et al., 2018. Responses of aboveground biomass of alpine grasslands to climate changes on the Qinghai-Tibet Plateau. Journal of Geographical Sciences, 28(12):1953-1964. |
[55] |
Wang Z, Tang Z, Fang J, 2009. The species-energy hypothesis as a mechanism for species richness patterns. Biodiversity Science, 17(6):613. (in Chinese)
doi: 10.3724/SP.J.1003.2009.09161 |
[56] |
Xu X, Wang N, Lipson D et al., 2020. Microbial macroecology: In search of mechanisms governing microbial biogeographic patterns. Global Ecology and Biogeography, 29:1870-1886.
doi: 10.1111/geb.v29.11 |
[57] |
Yang T, Adams J M, Shi Y et al., 2017. Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity. New Phytologist, 215(2):756-765.
doi: 10.1111/nph.2017.215.issue-2 |
[58] |
Yin X, Song B, Dong W et al., 2010. A review on the eco-geography of soil fauna in China. Journal of Geographical Sciences, 20(3):333-346.
doi: 10.1007/s11442-010-0333-4 |
[59] |
Yuan Q, Wu S, Dai E et al., 2017. NPP vulnerability of the potential vegetation of China to climate change in the past and future. Journal of Geographical Sciences, 27(2):131-142.
doi: 10.1007/s11442-017-1368-6 |
[60] |
Zhang Y, Qi W, Zhou C et al., 2014. Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982. Journal of Geographical Sciences, 24(2):269-287.
doi: 10.1007/s11442-014-1087-1 |
[61] |
Zhou Z, Wang C, Luo Y, 2018. Response of soil microbial communities to altered precipitation: A global synthesis. Global Ecology and Biogeography, 27(9):1121-1136.
doi: 10.1111/geb.v27.9 |
[1] | Wenlan GAO, Keqin DUAN, Shuangshuang LI. Spatial-temporal variations in cold surge events in northern China during the period 1960-2016 [J]. Journal of Geographical Sciences, 2019, 29(6): 971-983. |
[2] | Wenjiao SHI, Yiting LIU, Xiaoli SHI. Development of quantitative methods for detecting climate contributions to boundary shifts in farming-pastoral ecotone of northern China [J]. Journal of Geographical Sciences, 2017, 27(9): 1059-1071. |
[3] | Minghong TAN. Exploring the relationship between vegetation and dust-storm intensity (DSI) in China [J]. Journal of Geographical Sciences, 2016, 26(4): 387-396. |
[4] | XU Jinyong, ZHANG Zengxiang, ZHAO Xiaoli, WEN Qingke, ZUO Lijun, WANG Xiao, YI Ling. Spatial and temporal variations of coastlines in northern China (2000-2012) [J]. , 2014, 24(1): 18-32. |
[5] | ZHU Huiyi, HE Shujin. Land pressure and adaptation in the mountainous region of northern China: An empirical analysis of 21 small watersheds [J]. Journal of Geographical Sciences, 2010, 20(6): 913-922. |
[6] | LI Yuechen. Land cover dynamic changes in northern China: 1989?2003 [J]. Journal of Geographical Sciences, 2008, 18(1): 85-94. |
[7] | SONG Yang, QUAN Zhanjun, LIU Lianyou, YAN Ping, CAO Tong. The influence of different underlying surface on sand-dust storm in northern China [J]. Journal of Geographical Sciences, 2005, 15(4): 431-438. |
[8] | HE Chunyang, LI Jinggang, WANG Yuanyuan, SHI Peijun, CHEN Jin, PAN Yaozhong. Understanding cultivated land dynamics and its driving forces in northern China during 1983-2001 [J]. Journal of Geographical Sciences, 2005, 15(4): 387-395. |
[9] | JIANG Weiguo, LI Jing, LI Jiahong, CHEN Yunhao, WU Yongfeng. Changes and spatial patterns of eco-environment in the farming-pastoral region of northern China [J]. Journal of Geographical Sciences, 2005, 15(3): 329-336. |
[10] | HE Chunyang, LI Jinggang, SHI Peijun, CHEN Jin, PAN Yaozhong, LI Xiaobing. Modelling scenarios of land use change in northern China in the next 50 years [J]. Journal of Geographical Sciences, 2005, 15(2): 177-186. |
[11] | WANG Zhiwei, ZHAI Panmao, ZHANG Hongtao. Variation of drought over northern China during 1950-2000 [J]. Journal of Geographical Sciences, 2003, 13(4): 480-487. |
|