Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (7): 938-964.doi: 10.1007/s11442-021-1879-z
• Research Articles • Previous Articles Next Articles
YU Chenglong(), LIU Dan*(
), ZHAO Huiying
Received:
2020-06-09
Accepted:
2020-11-13
Online:
2021-07-25
Published:
2021-09-25
Contact:
LIU Dan
E-mail:nefuycl@163.com;nefuliudan@163.com
About author:
Yu Chenglong (1973-), PhD, specialized in ecological meteorology. E-mail: nefuycl@163.com
Supported by:
YU Chenglong, LIU Dan, ZHAO Huiying. Evaluation of the carbon sequestration of Zhalong Wetland under climate change[J].Journal of Geographical Sciences, 2021, 31(7): 938-964.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Remote sensing classification accuracy of Zhalong Nature Reserve from 1975 to 2018
Time | Classification accuracy (%) | Kappa coefficient | Time | Classification accuracy (%) | Kappa coefficient |
---|---|---|---|---|---|
1975 | 90.44 | 0.8756 | 1997 | 90.80 | 0.8916 |
1976 | 90.46 | 0.8778 | 1998 | 90.10 | 0.8711 |
1977 | 90.48 | 0.8824 | 1999 | 91.02 | 0.8985 |
1978 | 90.83 | 0.8920 | 2000 | 92.15 | 0.9153 |
1979 | 91.15 | 0.9022 | 2001 | 91.46 | 0.9074 |
1980 | 91.61 | 0.9125 | 2002 | 90.98 | 0.8968 |
1981 | 91.65 | 0.9131 | 2003 | 92.19 | 0.9156 |
1982 | 90.36 | 0.8711 | 2004 | 91.01 | 0.8981 |
1983 | 90.43 | 0.8735 | 2005 | 91.25 | 0.9051 |
1984 | 90.47 | 0.8801 | 2006 | 90.55 | 0.8841 |
1985 | 90.85 | 0.8929 | 2007 | 90.46 | 0.8771 |
1986 | 90.86 | 0.8959 | 2008 | 91.57 | 0.9086 |
1987 | 90.88 | 0.8965 | 2009 | 92.41 | 0.9178 |
1988 | 91.10 | 0.9005 | 2010 | 90.01 | 0.8701 |
1989 | 91.21 | 0.9043 | 2011 | 91.48 | 0.9076 |
1990 | 91.45 | 0.9063 | 2012 | 92.26 | 0.9171 |
1991 | 91.00 | 0.8974 | 2013 | 92.35 | 0.9174 |
1992 | 91.04 | 0.8985 | 2014 | 91.57 | 0.9086 |
1993 | 91.17 | 0.9025 | 2015 | 91.99 | 0.9142 |
1994 | 91.19 | 0.9036 | 2016 | 92.22 | 0.9162 |
1995 | 91.23 | 0.9046 | 2017 | 91.56 | 0.9082 |
1996 | 91.44 | 0.9057 | 2018 | 90.80 | 0.8916 |
Figure 2
Taylor plot of meteorological simulation field data relative to meteorological observation field data around the Zhalong Nature Reserve from 1961 to 2018 (a. Maximum air temperature under RCP4.5; b. Maximum air temperature under RCP8.5; c. Minimum air temperature under RCP4.5; d. Minimum air temperature under RCP8.5; e. Precipitation under RCP4.5; f. Precipitation under RCP8.5) (, , and symbolise pattern-point data, where is the type with the shortest distance from the observation-point data, and is the mode-set data, while n symbolises the observation-point data.)
Table 2
Distance between model points and observation points with different meteorological elements and emission scenarios in the Wuyur River basin
Meteorological element | Emission scenarios | Pattern | Distance from model point to observation point | Meteorological element | Emission scenarios | Pattern | Distance from model point to observation point |
---|---|---|---|---|---|---|---|
Maximum temperature | RCP4.5 | CESM1-BGC | 1.06 | Minimum temperature | RCP4.5 | GFDL-ESM2G | 1.13 |
CMCC-CM | 1.07 | GFDL-ESM2M | 1.13 | ||||
GISS-E2-H | 1.04 | MIROC5 | 1.10 | ||||
GISS-E2-H-CC | 1.03 | NorESM1-M | 1.10 | ||||
GISS-E2-R | 1.03 | Multimodel set | 0.96 | ||||
GFDL-ESM2M | 1.07 | RCP8.5 | CanESM2 | 1.12 | |||
MIROC5 | 1.03 | GFDL-ESM2G | 1.11 | ||||
Multimodel set | 0.79 | NorESM1-M | 1.13 | ||||
RCP8.5 | CESM1-BGC | 1.12 | Multimodel set | 0.97 | |||
FIO-ESM | 1.12 | Precipitation | RCP4.5 | CMCC-CM | 141.98 | ||
GISS-E2-H | 1.11 | EC-EARTH | 141.53 | ||||
GISS-E2-H-CC | 1.09 | GFDL-ESM2G | 141.72 | ||||
GISS-E2-R | 1.08 | Multimodel set | 117.88 | ||||
INM-CM4 | 1.13 | RCP8.5 | CESM1-BGC | 140.94 | |||
Multimodel set | 0.86 | GFDL-ESM2G | 137.90 | ||||
MPI-ESM-LR | 140.68 | ||||||
Multimodel set | 116.40 |
Table 3
Comparison between measured values and calculated results of various models
NPP acquisition method | R | Sig. | Independent-sample t-test |
---|---|---|---|
CASA model | 0.229 | 0.049 | Sig.=0.969 |
TEC model | -0.134 | 0.329 | Sig.=0.002 |
Beijing model | 0.049 | 0.722 | Sig.<0.001 |
Chikugo model | 0.055 | 0.692 | Sig.<0.001 |
Thornthwaite Memorial model | 0.135 | 0.327 | Sig.<0.001 |
Miami model | 0.134 | 0.329 | Sig.<0.001 |
Zhou Guangsheng-Zhang Xinshi model | 0.117 | 0.396 | Sig.=0.077 |
Table 4
Landscape conversion coefficient for the Zhalong Nature Reserve
Conversion coefficient | Building land and unused land | Cultivated land | Grass | Herbaceous bog | Water bodies |
---|---|---|---|---|---|
Building land and unused land | 0 | 1 | 2 | 3 | 4 |
Cultivated land | -1 | 0 | 1 | 2 | 3 |
Grass | -2 | -1 | 0 | 1 | 2 |
Herbaceous bog | -3 | -2 | -1 | 0 | 1 |
Water bodies | -4 | -3 | -2 | -1 | 0 |
Table 5
Variation of average temperature and precipitation in four seasons in the Zhalong Nature Reserve from 1975 to 2018
Meteorological factors | Season | Mean value | Maximal value | Minimum value | Standard deviation | Propensity of change Air temperature (℃/10a), Precipitation (mm/10a) | P-value |
---|---|---|---|---|---|---|---|
Temperature (℃) | Spring | 5.88 | 3.40 | 8.54 | 1.30 | 0.33 | 0.031 |
Summer | 21.67 | 19.65 | 23.49 | 0.85 | 0.30 | 0.002 | |
Autumn | 4.36 | 2.13 | 6.43 | 1.13 | 0.35 | 0.008 | |
Winter | -16.27 | -20.10 | -11.53 | 1.81 | 0.25 | 0.246 | |
Precipitation (mm) | Spring | 57.31 | 16.47 | 135.56 | 29.28 | 3.80 | 0.279 |
Summer | 317.10 | 159.56 | 526.33 | 85.01 | 7.89 | 0.441 | |
Autumn | 69.01 | 20.40 | 194.45 | 35.73 | 2.86 | 0.506 | |
Winter | 8.27 | 2.64 | 25.61 | 4.69 | 1.72 | 0.001 |
Table 6
Statistical characteristics of average annual NPP, Rh, and NEP in the Zhalong Wetland from 1975 to 2018
Items | NPP | Rh | NEP |
---|---|---|---|
Mean value (gC·m-2·a-1) | 500.21 | 337.59 | 162.62 |
Standard deviation (gC·m-2·a-1) | 52.76 | 10.80 | 45.56 |
Linear regression correlation coefficient | 0.319 | 0.650 | 0.155 |
Normalised tendency rate (gC·m-2·10a-1) | 0.06 | 0.14 | 0.003 |
Sample number | 44 | 44 | 44 |
Significance | 0.034 | <0.001 | 0.314 |
Table 7
Current (1975-2018) and future (2019-2029) carbon sequestration in the Zhalong Wetland
Time | Climate scenario | Carbon sequestration (1011 gC·a-1) | Standard deviation (1011 gC·a-1) |
---|---|---|---|
1975-1979 | Reality | 2.096 | 0.772 |
1980-1989 | 3.126 | 1.024 | |
1990-1999 | 2.811 | 0.917 | |
2000-2009 | 1.899 | 0.793 | |
2010-2018 | 2.404 | 0.737 | |
2019-2029 | RCP4.5 | 2.421 | 0.225 |
RCP8.5 | 2.407 | 0.382 |
Table 8
Effects of interaction of environmental factors on carbon exchange components in Zhalong Nature Reserve
Dominant interaction | NPP | Rh | NEP |
---|---|---|---|
Dominant interaction 1 q | Temperature×Precipitation 0.881 | Temperature×Precipitation 0.218 | Temperature×Precipitation 0.854 |
Dominant interaction 2 q | Precipitation×Land use type 0.862 | Precipitation×Land use type 0.116 | Precipitation×Land use type 0.842 |
Dominant interaction 3 q | Precipitation 0.850 | Temperature×Land use type 0.106 | Precipitation 0.837 |
Dominant interaction 4 q | Temperature×Land use type 0.008 | Temperature 0.104 | Temperature×Land use type 0.016 |
Dominant interaction 5 q | Temperature 0.005 | Precipitation 0.088 | Temperature 0.015 |
Dominant interaction 6 q | Land use type 0.002 | Land use type 0.001 | Land use type 0.001 |
Table 9
Comparison of results of heterotrophic soil respiration
Land cover type | Method | Microbial heterotrophic respiration (μmol·m-2·s-1) | Research area |
---|---|---|---|
Farmland ecosystem | Closed-chamber soil carbon flux system (LI-8100) | March to November: 0.79-1.20 | Shaanxi Province ( |
Root biomass extrapolation | Growing season: 1.11-1.96 | Liaoning Province ( | |
Static chamber method | Full year: 0.58 ± 0.08 for waterlogged fields, 0.75 ± 0.10 for dry fields | Sanjiang Plain, Heilongjiang Province ( | |
Model calculations | Growing season: 0.90-2.42 | Present study | |
Model calculations | Full year: 0.12-2.42 | Present study | |
Forest ecosystem | Closed-chamber alkali absorption method | Full year: 0.59-1.37 | Fujian Province ( |
Closed-chamber soil carbon flux system (LI-8100) | Full year: 0.82-7.11 | Fujian Province ( | |
Alpine meadow | Soil respiration chamber (Li6400-09) | Growing season: 0.47-0.63 | Tibetan Plateau ( |
Static chamber method | Growing season: 0.95-2.53 | Tibetan Plateau ( | |
Grassland | Root biomass extrapolation | Growing season: 1.54-4.42 | Inner Mongolia ( |
Wetland ecosystem | Indoor cultivation, gas chromatography | Full year: 0.41 ± 0.22 for the deposition promotion zone, 0.07 ± 0.02 for the natural state | Chongming Island, Shanghai ( |
Model calculations | Growing season: 0.50-3.67 | Present study | |
Model calculations | Full year: 0.05-3.67 | Present study |
[1] |
Allison S D, Czimczik C I, Treseder K K, 2008. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology, 14(5):1156-1168.
doi: 10.1111/gcb.2008.14.issue-5 |
[2] |
Anderson F E, Bergamaschi B, Sturtevant C et al., 2016. Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols. Journal of Geophysical Research: Biogeosciences, 121(3):777-795.
doi: 10.1002/jgrg.v121.3 |
[3] | Bellen S V, Dallaire P L, Garneau M et al., 2011. Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada. Global Biogeochem Cycles, 25(2):1-15. |
[4] |
Bernal B, Megonigal J P, Mozdzer T J, 2017. An invasive wetland grass primes deep soil carbon pools. Global Change Biology, 23(5):2104-2116.
doi: 10.1111/gcb.2017.23.issue-5 |
[5] |
Burkett V, Kusler J, 2000. Climate change: Potential impacts and interactions in wetlands of the United States. Journal of the American Water Resources Association, 36(2):313-320.
doi: 10.1111/jawr.2000.36.issue-2 |
[6] |
Chen H P, 2013. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chinese Science Bulletin, 58(12):1462-1472.
doi: 10.1007/s11434-012-5612-2 |
[7] |
Chen W, Jiang Z, Li L, 2015. Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. Journal of Climate, 24(17):4741-4756.
doi: 10.1175/2011JCLI4102.1 |
[8] | Cui L D, Zha L, 2008. Wetland in Heilongjiang Province owes 100 million yuan in water debt for five emergency water replenishment. Heilongjiang Life Daily, 2008-05-25. (in Chinese) |
[9] | Efimova H A, 1983. Wang B Z trans. Radiation Factors of Plant Yield. Beijing: China Meteorological Press. |
[10] | Fang J Y, Liu G H, Xu G L, 1996. Biomass and net production of forest vegetation in China. Acta Ecologica Sinica, 16(5):497-508. (in Chinese) |
[11] |
Gang C, Zhou W, Wang Z et al., 2015. Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010. Journal of Agronomy and Crop Science, 201(1):57-68.
doi: 10.1111/jac.12088 |
[12] | Guo Y D, He Y, Deng W et al., 2004. Research on eco-environmental water demand of Zhalong national natural wetlands. Journal of Soil and Water Conservation, 18(6):163-174. (in Chinese) |
[13] |
Han G X, Zhou G S, Xu Z, 2009. Seasonal dynamics of soil respiration and carbon budget of maize (Zea mays L.) farmland ecosystem. Chinese Journal of Eco-Agriculture, 17(5):874-879. (in Chinese)
doi: 10.3724/SP.J.1011.2009.00874 |
[14] | Hao Q J, Wang Y S, Song C C et al., 2007. CO2 budget in agro-ecosystems in the Sanjiang Plain. Journal of Agro-Environment Science, 26(4):1556-1560. (in Chinese) |
[15] | Hawkins C F, Smith O E, 1983. The convention on wetlands of international importance especially as waterfowl habitat. Environmental Policy and Law, 10(2):70-71. |
[16] |
Hossler K, Bouchard V, 2010. Soil development and establishment of carbon-based properties in created freshwater marshes. Ecological Applications, 20(2):539-553.
doi: 10.1890/08-1330.1 |
[17] |
Howard J, Mcleod E, Thomas S et al., 2017. The potential to integrate blue carbon into MPA design and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 27(Suppl.1):100-115.
doi: 10.1002/aqc.v27.S1 |
[18] |
Hu Q W, Wu Q, Cao G M et al., 2008. Growing season ecosystem respirations and associated component fluxes in two alpine meadows on the Tibetan Plateau. Journal of Integrative Plant Biology, 50(3):271-279.
doi: 10.1111/jipb.2008.50.issue-3 |
[19] | IPCC, 2018. Special Report on Global Warming of 1.5℃ (SR15). Cambridge: Cambridge University Press, 785. |
[20] | Ivanov A A, Kosobryukhov A A, 2018. Cooperation of photosynthetic and nitrogen metabolism. In: Fominan I R, Biel K Y, Soukhovolsky V G. Adaptation and Tolerance to Extreme Environments. Hoboken: John Wiley & Sons, Inc., 329-437. |
[21] | Jia Q Y, Zhou L, Xie Y B et al., 2006. Study on biomass dynamics of Phragmites communis community in Panjin wetland. Journal of Meteorology and Environment, 22(8):25-29. (in Chinese) |
[22] | Jiang S, Jiang Z H, Li W et al., 2017. Evaluation of the extreme temperature and its trend in China simulated by CMIP5 models. Climate Change Research, 13(1):11-24. (in Chinese) |
[23] |
Kelting D L, Burger J A, Edwards G S, 1998. Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biology & Biochemistry, 30(7):961-968.
doi: 10.1016/S0038-0717(97)00186-7 |
[24] | Leith H, Box E, 1972. Evapotranspiration and primary productivity. Publications in Climatology, 25(1):37-46. |
[25] |
Liu D L, Zuo H P, 2012. Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia. Climatic Change, 115:629-666.
doi: 10.1007/s10584-012-0464-y |
[26] | Luo J M, Yin X G, Ye Y J et al., 2014. Impacts of edaphic environments on water quality under artificial disturbance in the Zhalong wetland. Chinese Journal of Soil Science, 45(2):450-456. (in Chinese) |
[27] |
Ma S Y, Verheyen K, Props R et al., 2018. Plant and soil microbe responses to light, warming and nitrogen addition in a temperate forest. Functional Ecology, 32(5):1293-1303.
doi: 10.1111/fec.2018.32.issue-5 |
[28] |
Miki T, Doi H, 2016. Leaf phenological shifts and plant-microbe-soil interactions can determine forest productivity and nutrient cycling under climate change in an ecosystem model. Ecological Research, 31(2):263-274.
doi: 10.1007/s11284-016-1333-3 |
[29] |
Mueller P, Granse D, Nolte S et al., 2017. Top-down control of carbon sequestration: Grazing affects microbial structure and function in salt marsh soils. Ecological Applications, 27(5):1435-1450.
doi: 10.1002/eap.2017.27.issue-5 |
[30] | Mueller P, Laniges N, Jack A et al., 2019. Assessing the long-term carbon-sequestration potential of the semi-natural salt marshes in the European Wadden Sea. Ecosphere, 10(1):e02556.10. |
[31] |
Packalen M S, Finkelstein S A, Mclaughlin J W, 2016. Climate and peat type in relation to the spatial variation of the peatland carbon mass in the Hudson Bay Lowlands, Canada. Journal of Geophysical Research: Biogeosciences, 121(4):1104-1117.
doi: 10.1002/jgrg.v121.4 |
[32] |
Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 7(4):811-841.
doi: 10.1029/93GB02725 |
[33] | Richardson C W, Wright D A, 1984. WGEN: A model for generating daily weather variables. U.S. Department of Agriculture, Agricultural Research Service ARS-8. |
[34] |
Saunders M J, Kansiime F, Jones M B, 2012. Agricultural encroachment: Implications for carbon sequestration in tropical African wetlands. Global Change Biology, 18(4):1312-1321.
doi: 10.1111/j.1365-2486.2011.02633.x |
[35] |
Schippers P, Sterck F, Vlam M et al., 2015. Tree growth variation in the tropical forest: understanding effects of temperature, rainfall and CO2. Global Change Biology, 21(7):2749-2761.
doi: 10.1111/gcb.12877 pmid: 25626673 |
[36] |
Shi J J, Geng Y B, 2014. Study on the distinguishing of root respiration from soil microbial respiration in a Leymus chinensis steppe in Inner Mongolia, China. Environmental Science, 35(1):341-347. (in Chinese)
doi: 10.1021/es001258s |
[37] |
Sim T G, Swindles G T, Morris P J et al., 2019. Pathways for ecological change in Canadian High Arctic wetlands under rapid twentieth century warming. Geophysical Research Letters, 46(9):4726-4737.
doi: 10.1029/2019GL082611 |
[38] | Tang Y S, Wang L, Jia J W et al., 2010. The effect of artificial disturbance such as siltation promotion on soil microbial respiration of tidal wetlands in the Yangtze River estuary. Acta Ecologica Sinica, 30(18):5022-5032. (in Chinese) |
[39] | Tao C W, Jiang C, Sun J X, 2016. Projection of future changes in climate in Northeast China using a CMIP5 multi-model ensemble. Chinese Journal of Geophysics, 59(10):3580-3591. (in Chinese) |
[40] |
Taylor K E, 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research Atmospheres, 106(D7):7183-7192.
doi: 10.1029/2000JD900719 |
[41] |
Wang J F, Li X H, Christakos G et al., 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. International Journal of Geographical Information Science, 24(1):107-127.
doi: 10.1080/13658810802443457 |
[42] |
Wang Q K, Liu S G, Tian P, 2018. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Global Change Biology, 24(7):2841-2849.
doi: 10.1111/gcb.14105 |
[43] |
Werth M, Kuzyakov Y, 2008. Root-derived carbon in soil respiration and microbial biomass determined by 14C and 13C. Soil Biology & Biochemistry, 40(3):625-637.
doi: 10.1016/j.soilbio.2007.09.022 |
[44] | Xin X G, Wu T W, Zhang J, 2012. Introduction of CMIP5 experiments carried out by BCC climate system model. Progressus Inquisitiones de Mutatione Climatis, 8(5):378-382. (in Chinese) |
[45] |
Yan H, Wang S Q, Billesbach D et al., 2015. Improved global simulations of gross primary product based on a new definition of water stress factor and a separate treatment of C3 and C4 plants. Ecological Modelling, 297:42-59.
doi: 10.1016/j.ecolmodel.2014.11.002 |
[46] | Yang K, Liu G D, Liu F et al., 2011. Soil restoration in riparian zone of Zhalong wetland, northeastern China. Earth Science Frontiers, 18(6):94-100. (in Chinese) |
[47] | Yang Y S, Chen G S, Xie J S et al., 2006. Soil heterotrophic respiration in native Castanopsis kawakamii forest and monoculture Castanopsis kawakamii plantations in subtropical China. Acta Pedologica Sinica, 43(1):53-61. (in Chinese) |
[48] | Yang Z J, Zheng Y X, Chen S D et al., 2018. High resolution temporal analysis of heterotrophic respiration in the soil of a subtropical forest by using continuous wavelet transformation. Acta Ecologica Sinica, 38(14):5078-5086. (in Chinese) |
[49] | Yao Y, Luo Y, Huang J B, 2012. Evaluation and projection of temperature extremes over China based on 8 modeling data from CMIP5. Progressus Inquisitiones de Mutatione Climatis, 8(4):250-256. (in Chinese) |
[50] | Yu C L, Liu D, 2018. Spatiotemporal evolution of land cover types and response to climate change in Zhalong Wetland. Ecology and Environmental Sciences, 27(11):2117-2126. (in Chinese) |
[51] |
Yu Z L, Genet H, He Y J et al., 2018. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska. Ecological Applications, 28(6):1377-1395.
doi: 10.1002/eap.2018.28.issue-6 |
[52] | Zhang D Q, Shi P L, He Y T et al., 2006. Quantification of soil heterotrophic respiration in the growth period of alpine steppe-meadow on the Tibetan Plateau. Journal of Natural Resources, 21(3):458-464. (in Chinese) |
[53] | Zhang Y H, Su L Y, Yu W H et al., 2015. Characteristics of landscape dynamic changes in Zhalong wetland. Acta Geographica Sinica, 70(1):131-142. (in Chinese) |
[54] | Zhang Y J, Guo S L, 2019. Effect of environmental factors on variation characteristics of soil microbial respiration and its temperature sensitivity. Environmental Science, 40(3):1446-1456. (in Chinese) |
[55] |
Zhao T B, Chen L, Ma Z G, 2014. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Chinese Science Bulletin, 59(4):412-429.
doi: 10.1007/s11434-013-0003-x |
[56] | Zhao Z C, Luo Y, Huang J B, 2019. Thinking again on global warming of 1.5℃ after the IPCC published SR15. Climate Change Research, 15(2):212-216. (in Chinese) |
[57] | Zhou G S, Zhang X S, 1996. Study on NPP of natural vegetation in China under global climate change. Acta Phytoecologica Sinica, 20(1):11-19. (in Chinese) |
[58] | Zhou X J, Wang F L, Wu Y Y et al., 2013. Analysis of temperature change characteristics of Heilongjiang Province, Northeast China and whole country in recent 60 years. Journal of Natural Disasters, 22(2):124-129. (in Chinese) |
[59] | Zhu Z H, 1993. Estimation model of net primary productivity of natural vegetation. Chinese Science Bulletin, 38(15):1422-1426. (in Chinese) |
No related articles found! |
|