Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (7): 925-937.doi: 10.1007/s11442-021-1878-0
• Research Articles • Next Articles
CUI Yaoping1,2(), LI Nan1,2, FU Yiming2, CHEN Liangyu2
Received:
2021-02-15
Accepted:
2021-04-27
Online:
2021-07-25
Published:
2021-09-25
About author:
Cui Yaoping, PhD, E-mail: cuiyp@lreis.ac.cn
Supported by:
CUI Yaoping, LI Nan, FU Yiming, CHEN Liangyu. Carbon neutrality and mitigating contribution of terrestrial carbon sink on anthropogenic climate warming in China, the United States, Russia and Canada[J].Journal of Geographical Sciences, 2021, 31(7): 925-937.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 6
CRF trends between 2000-2016 induced by natural and anthropogenic sources for China, the United States, Russia and Canada (a) and separately per country (b-e). The decrease observed in 2016-2100 was derived from Equations 4 and 5, assuming no further CO2 emissions occurred after 2016.
[1] |
Anderson-Teixeira K J, Snyder P K, Twine T E et al., 2012. Climate-regulation services of natural and agricultural ecoregions of the Americas. Nature Climate Change, 2(3):177-181.
doi: 10.1038/nclimate1346 |
[2] |
Anselm A J, 2017. China’s efforts in sustainable development: A test case for Nigeria's environmental sustainability goals. Modern Economy, 8(5):770-790.
doi: 10.4236/me.2017.85054 |
[3] |
Archer D, Eby M, Brovkin V et al., 2009. Atmospheric lifetime of fossil fuel carbon dioxide. Annual Review of Earth and Planetary Sciences, 37(1):117-134.
doi: 10.1146/annurev.earth.031208.100206 |
[4] |
Boden T A, Marland G, Andres R J, 2017. Global, regional, and national fossil-fuel CO2 emissions. doi: 10.3334/CDIAC/00001_V2017.
doi: 10.3334/CDIAC/00001_V2017 |
[5] | Cao M K, Li K R, 2000. Perspective on terrestrial ecosystem-climate interaction. Advances in Earth Science, 15(4):446-452. (in Chinese) |
[6] |
Clark P U, Shakun J D, Marcott S A et al., 2016. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Climate Change, 6(4):360-369.
doi: 10.1038/nclimate2923 |
[7] |
Clarke D W, Boyle J F, Plater A J, 2017. Particle-size evidence of barrier estuary regime as a new proxy for ENSO climate variability. Earth Surface Processes and Landforms, 42(10):1520-1534.
doi: 10.1002/esp.v42.10 |
[8] |
Cui Y P, Meadows M E, Li N et al., 2019. Land cover change intensifies actual and potential radiative forcing through CO2 in south and southeast Asia from 1992 to 2015. International Journal of Environmental Research and Public Health, 16(14):2460.
doi: 10.3390/ijerph16142460 |
[9] |
Cui Y P, Xiao X M, Zhang Y et al., 2017. Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years. Scientific Reports, 7(1):14963.
doi: 10.1038/s41598-017-13783-5 |
[10] |
Dass P, Rawlins M A, Kimball J S et al., 2016. Environmental controls on the increasing GPP of terrestrial vegetation across northern Eurasia. Biogeosciences, 13(1):45-62.
doi: 10.5194/bg-13-45-2016 |
[11] |
Davin E L, Noblet-Ducoudré N, 2010. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. Journal of Climate, 23(1):97-112.
doi: 10.1175/2009JCLI3102.1 |
[12] |
Eby M, Weaver A J, Alexander K et al., 2013. Historical and idealized climate model experiments: An intercomparison of Earth system models of intermediate complexity. Climate of the Past, 9(3):1111-1140.
doi: 10.5194/cp-9-1111-2013 |
[13] | Fang J Y et al., Carbon Missions from China and the World: Some Views on Relationships between Carbon Emissions and Socio-economic Development. Beijing: Science Press. (in Chinese) |
[14] | Fang J Y, Zhu J L, Shi Y, 2018. The responses of ecosystems to global warming. Chinese Science Bulletin, 63(2):136-140. (in Chinese) |
[15] |
Feddema J J, Oleson K W, Bonan G B et al., 2005. The importance of land-cover change in simulating future climates. Science, 310(5754):1674-1678.
doi: 10.1126/science.1118160 |
[16] |
Feldman D R, Collins W D, Gero P J et al., 2015. Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature, 519(7543):339-343.
doi: 10.1038/nature14240 pmid: 25731165 |
[17] | Gregg J S, Andres R J, Marland G, 2008. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophysical Research Letters, 35(8):L08806. |
[18] |
Heimann M, Markus M, 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451(7176):289-292.
doi: 10.1038/nature06591 pmid: 18202646 |
[19] |
Houghton R A, House J I, Pongratz J et al., 2012. Carbon emissions from land use and land-cover change. Biogeosciences, 9(12):5125-5142.
doi: 10.5194/bg-9-5125-2012 |
[20] | IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. |
[21] |
Joos F, Roth R, Fuglestvedt J S et al., 2013. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmospheric Chemistry and Physics, 13(5):2793-2825.
doi: 10.5194/acp-13-2793-2013 |
[22] |
Kirschbaum M U F, Saggar S, Tate K R et al., 2013. Quantifying the climate-change consequences of shifting land use between forest and agriculture. Science of the Total Environment, 465:314-324.
doi: 10.1016/j.scitotenv.2013.01.026 |
[23] | Kondo Y, Matsui H, Moteki N et al., 2008. Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. Journal of Geophysical Research, 116(D08204). |
[24] |
Landry J S, Matthews H D, 2016. Non-deforestation fire vs. fossil fuel combustion: The source of CO2 emissions affects the global carbon cycle and climate responses. Biogeosciences, 13(7):2137-2149.
doi: 10.5194/bg-13-2137-2016 |
[25] |
Landschützer P, Gruber N, Bakker D et al., 2015. Recent variability of the global ocean carbon sink. Global Biogeochemical Cycles, 28(9):927-949.
doi: 10.1002/gbc.v28.9 |
[26] |
Le Quéré C, Andrew R M, Friedlingstein P et al., 2018. Global Carbon Budget 2018. Earth System Science Data, 10(4):2141-2194.
doi: 10.5194/essd-10-2141-2018 |
[27] |
Lee D S, Pitari G, Grewe V et al., 2010. Transport impacts on atmosphere and climate: Aviation. Atmospheric Environment, 44(37):4678-4734.
doi: 10.1016/j.atmosenv.2009.06.005 pmid: 32288556 |
[28] |
Li M D, Cui Y P, Qin Y C et al., 2020. Parameter localization of greenhouse gas value model and greenhouse gas storage simulation for forest ecosystems in China. Forests, 11(11):1150.
doi: 10.3390/f11111150 |
[29] | Li N, Cui Y P, Fu Y M et al., 2021. Contribution of anthropogenic CO2 in China to global radiative forcing and its offset by the ecosystem during 2000-2015. Annals of the New York Academy of Sciences, 1488(1):56-66. |
[30] |
Lim C, Kafatos M, Megonigal P, 2004. Correlation between atmospheric CO2 concentration and vegetation greenness in North America: CO2 fertilization effect. Climate Research, 28(1):11-22.
doi: 10.3354/cr028011 |
[31] | Loboda T V, Chen D, 2016. Spatial distribution of young forests and carbon fluxes within recent disturbances in Russia. Global Change Biology, 23(1):135-153. |
[32] |
Loehle C, 2014. A minimal model for estimating climate sensitivity. Ecological Modelling, 276:80-84.
doi: 10.1016/j.ecolmodel.2014.01.006 |
[33] | Lovenduski N S, Gruber N, Doney S C, 2008. Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Global Biogeochemical Cycles, 22(3):GB3016. |
[34] | Mendoza V M, Garduno R, Villanueva E E et al., 2015. Mexico’s contribution to global radiative forcing by major anthropogenic greenhouse gases: CO2, CH4 and N2O. Atmosfera, 28(3):219-227. |
[35] |
Montenegro A, Eby M, Mu Q et al., 2009. The net carbon drawdown of small scale afforestation from satellite observations. Global and Planetary Change, 69(4):195-204.
doi: 10.1016/j.gloplacha.2009.08.005 |
[36] |
Myhre G, Highwood E J, Shine K P et al., 1998. New estimates of radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 25(14):2715-2718.
doi: 10.1029/98GL01908 |
[37] | National Oceanic and Atmospheric Administration Earth System Research Laboratory, 2016. NOAA’s Annual Greenhouse Gas Index. http://www.esrl.noaa.gov/gmd/aggi/. |
[38] | Peter W, Jacobson A R, Sweeney C et al., 2007. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences of the United States of America, 104:18925-18930. |
[39] | Prather M J, 2007. Lifetimes and time scales in atmospheric chemistry. Philosophical Transactions of the Royal Society A, 365(1856):1705-1726. |
[40] |
Roe G H, Baker M B, 2007. Why is climate sensitivity so unpredictable? Science, 318(5850):629-632.
doi: 10.1126/science.1144735 |
[41] |
Rohling E J, Marino G, Foster G L et al., 2018. Comparing climate sensitivity, past and present. Annual Review of Marine Science, 10(1):261-288.
doi: 10.1146/annurev-marine-121916-063242 |
[42] | RüstemoğLu H, Andrés A, 2016. Determinants of CO2 emissions in Brazil and Russia between 1992 and 2011: A decomposition analysis. Environmental Science & Policy, 58:95-106. |
[43] |
Schwaab J, Bavay M, Davin E et al., 2015. Carbon storage versus albedo change: Radiative forcing of forest expansion in temperate mountainous regions of Switzerland. Biogeosciences, 12(2):467-487.
doi: 10.5194/bg-12-467-2015 |
[44] |
Tang X Y, Cui Y P, Li N et al., 2020. Human activities enhance radiation forcing through surface albedo associated with vegetation in Beijing. Remote Sensing, 12(5):837.
doi: 10.3390/rs12050837 |
[45] | Tian H Q, Xu X F, Lu C Q et al., 2011. Net exchanges of CO2, CH4, and N2O between China’s terrestrial ecosystems and the atmosphere and their contributions to global climate warming. Journal of Geophysical Research Biogeosciences, 116:G02011. |
[46] | World Bank, 2017. World Development Indicators. Retrieved from https://databank.worldbank.org/data/reports.aspx?source=2&series=NY.GDP.MKTP.KD.ZG&country=# |
[47] | World Bank, 2018. Global Economic Propects: The Turning of the Tide? Retrieved from http://documents1.worldbank.org/curated/en/409371528428688065/pdf/Embargoed-GEP2018b-full-report-05142018.pdf. |
[48] |
Xu X F, Tian H Q, Zhang C et al., 2010. Attribution of spatial and temporal variations in terrestrial methane flux over North America. Biogeosciences, 7(11):3637-3655.
doi: 10.5194/bg-7-3637-2010 |
[49] |
Zhang Y, Xiao X M, Wu X C et al., 2017. Data Descriptor: A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Scientific Data, 4:170165.
doi: 10.1038/sdata.2017.165 |
[1] | LUO Xiang, AO Xinhe, ZHANG Zuo, WAN Qing, LIU Xingjian. Spatiotemporal variations of cultivated land use efficiency in the Yangtze River Economic Belt based on carbon emission constraints [J]. Journal of Geographical Sciences, 2020, 30(4): 535-552. |
[2] | Li XU, Guirui YU, Nianpeng HE. Increased soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s [J]. Journal of Geographical Sciences, 2019, 29(1): 49-66. |
[3] | Wensong SU, Yanyan Liu, Shaojian WANG, Yabo ZHAO, Yongxian SU, Shijie LI. Regional inequality, spatial spillover effects, and the factors influencing city-level energy-related carbon emissions in China [J]. Journal of Geographical Sciences, 2018, 28(4): 495-513. |
[4] | Changjian WANG, Fei WANG, Xiaolei ZHANG, Hongou ZHANG. Influencing mechanism of energy-related carbon emissions in Xinjiang based on the input-output and structural decomposition analysis [J]. Journal of Geographical Sciences, 2017, 27(3): 365-384. |
[5] | Lei SHEN, Yanzhi *SUN. Review on carbon emissions, energy consumption and low-carbon economy in China from a perspective of global climate change [J]. Journal of Geographical Sciences, 2016, 26(7): 855-870. |
[6] | Jun ZHAI, Jun ZHAI, Ronggao LIU, Guosong ZHAO, Lin HUANG. Radiative forcing over China due to albedo change caused by land cover change during 1990-2010 [J]. Journal of Geographical Sciences, 2014, 24(5): 789-801. |
[7] | CHUAI Xiaowei, HUANG Xianjin, WANG Wanjing, WEN Jiqun, CHEN Qiang, PENG Jiawen. Spatial econometric analysis of carbon emissions from energy consumption in China [J]. Journal of Geographical Sciences, 2012, 22(4): 630-642. |
[8] | CHUAI Xiaowei, LAI Li, HUANG Xianjin, ZHAO Rongqin, WANG Wanjing, CHEN Zhigang. Temporospatial changes of carbon footprint based on energy consumption in China [J]. Journal of Geographical Sciences, 2012, 22(1): 110-124 . |
[9] | WEI Benyong, FANG Xiuqi, WANG Yuan. The effects of international trade on Chinese carbon emissions: An empirical analysis [J]. Journal of Geographical Sciences, 2011, 21(2): 301-316. |
[10] | ZHANG Zhiqiang, QU Jiansheng, ZENG Jingjing. A quantitative comparison and analysis on the assessment indicators of greenhouse gases emission [J]. Journal of Geographical Sciences, 2008, 18(4): 387-399. |
|